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0. INTRODUCTION.

0.0 A method of using co-citation data to identify scientific specialties
and trace their development through time is outlined here. At this point,
the method is purely "theoretical” in the sense that no algorithms for
implementing the method are suggested. Even at this theoretical level,
the discussion is incomplete in several ways.  Important formal
properties of some of the constructs employed remain to be clarified. The
specific way these constructs relate to "theory nets" [!] produced by
philosophical "content analysis" remains to be specified in detail.

0.1 The method outlined here differs from earlier attempts
[13],[14],[15], to use co-citation data to reveal the structure of science
in the following ways:

A)  The ultimate aim of the analysis is to compare the structure of
scientific specialties (both synchronic and diachronic) revealed by co-
citation analysis with the structure revealed by a certain kind of content
analysis ([1]).

B) The synchronic ahalysis generalizes earlier efforts in that it
countenances the possibility that some specialties may be sub-specialties
of two or more higher level specialties.

C)  The diachronic analysis:

1)  takes as the units of analysis "temporal cross-sections" of the
scientific literature, rather than the whole of the reference
literature;

)

2)  makes explicit the criteria it employs for identifying the same
specialties in successive temporal cross-sections and locating
emergent specialties in the synchronic structure of the cross-
sections.

D)  Uses the mathematical apparatus of fuzzy sets to describe the
concepts of significance and proximity in the scientific literature as well
as the concept of a scientific specialty.

E)  Suggests a graphical approach to the fuzzy set analysis that pictures
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pieces of literature and specialties as "vectors in a multi-dimensional
space whose direction indicates the nature of the specialty and magnitude
indicates their relative importance

0.2  The mathematical apparatus required for this approach is developed
in Secs. 1-5. The application to scientific literature is described in
Secs. 6-11. The relation between this approach an other is indicated in

Sec. 9. A generalization of one aspect of the approach is sketched in
Secs. 12-14.

1. FUZZY SIMILARITY STRUCTURES.

1.0 A fuzzy similarity structure S is a crisp set { together with a
fuzzy set w and a fuzzy relation ¢ over w that is reflexive and symmetric.
Fuzzy similarity structures are ideally suited to dealing with situations
in which the data yields numerical measures of "closeness", "similarity"
or similarity" -- measured by o -- over a set of objects  which differ in

their "relative significance" or "weight" -- measured by w. Formally,

S = {Q,w,0>
where
al Q e |SET]
b) w € FUZ(Q)
c) o e FUZ(Q < Q)
d) a{x,y) < max(w(x),wly)).

Here *|SET]’ denotes the class of all sets. *SET(X,Y)’ denotes the set of
all functions from set X to set Y. For all Q € |SET]I,

v e SET(Q,[0,1])

is a fuzzy set on the base set Q. For all x € Q, v(x) is the degree of
membership of x in the fuzzy set v. The set of all fuzzy sets on { is
denoted by

FUZ(Q) := SET(Q,[0,1]).
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Condition d) requires that ¢ be a fuzzy relation OVER the fuzzy set w.
Intuitively, this means that the "importance” of similarities in the data
can be no greater than the "importance” of the objects regarded as similar.
It is this feature of fuzzy similarity structures that suit them for dealing
with data in which everything is not equally important. The limiting
case, in which everything IS equally important occurs when

w=Q

where Q is the fuzzy set corresponding to the crisp set Q, i.e., for all x ¢

Q
Qlx) = 1.

That o is some kind "closeness" relation is assured be two additional
requirements: -

e) a(x,x) = wix)
f) a{x,y) = aly,x).

1.1 Let ’|FSM|’ denote t he class of all fuzzy similarity structures.
We take the category of fuzzy similarity structures to be

[IFSMI| := < [FSMI, FSM, FSM_ >
here, for all 5, S ¢ [FSM| |
FSM(S,S") := {Fg> | a)  feSET(Q,Q)

b g e MAN([O,1],(0,1])

c) forall x,y €S

and FSM is SET .
C C



1.2 The full sub-category of ||FSMI| in which ¢ is a crisp relation we
denote by *[ISMI|’. It is sometimes convenient to consider the full sub-
categories of ||[FSM|| and |ISMI| whose objects have the same "base set”
Q. These are denoted by ’[IFSM(Q)|I’ and ’||SM(Q)|]’ respectively.
members of |SM| and [SM(Q)| are denoted by ’< {, os >’, suppressing
the w which, in this case, is just a crisp sub-set of Q the "field" of o.
1.3 Sub-categories of ||[FSM|| obtained by restricting the class of
morphisms -- FSM -- describe the the invariance properties that might be
required of the functions ¢ and w. We might consider:
Ordinal Fuzzy Similarity Structures:

[IFSMOI| := < [FSM|, FSMO, FSM_ >
where

FSMO(S,S’) C FSM(S,3’)

so that g is monotone non-decreasing.
Interval Fuzzy Similarity Structures

IFSMIIL := < [FSMI, FSML, FSM_ »
where

FSMI(S,S’) C FSM(5,5’)

so that g is positive linear.
Ratio Fuzzy Similarity Structures

[IFSMRI] := < [FSMI, FSMR, FSM_ >
where

FSMR(S,5’) C FSM(5,5°)

so that g is positive multiplicative.



1.4  In some situations, o may have additional properties of interest.
It may be transitive:

g) gealpo

where ¢’ denotes max-min composition. That is, forall v, p € FUZ{Q x
Q), x, ¥, z € &,

(v e w)(x,2) 1= max| min(v(x,y),uly,z)) .
y € £

Fuzzy similarity structures in which o is transitive are called ’fuzzy
equivalence structures’. Thus the category of

Fuzzy Equivalence Structures:
IIFEQII := < [FEQI, FEQ, FEQ_ >

The category of fuzzy equivalence structures is a full sub category of the
category of fuzzy similarity structures;

[IFEQII < [IFSMI].
That is for E, E* € |FEQI|, FEQ(E,E’) = FSM(E,E").
There are also orainal, interval, ratio, etc. fuzzy equivalence structures.
These will all be sub-categories of |IFEQI| in which the morphisms are
restricted as above.
1.5 For E € |[FEQI, the complement of o

g:i=1-0

which intuitively represents "separation” is an "ultrametric’, i.e.,
h) o(x,z) € max(o(x,y), aly,z)).
and conversely, for S ¢ [FSM| if o is an ultrametric then S ¢ |ESM].

1.6 Note that if o is an ultrametric it is also a metric, i.e.

=
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i) a(x,z) € alx,y) + oly,z)

but not conversely. So we may distinguish the category of
Metric Fuzzy Similarity Structures

[IMEFSM]|| in which o is such that o is a metric.

The sub-category relations are

IIFEQII < IIMFSMI| <|IFSMI|.

1.7  There is a way of converting any fuzzy similarity structure into a
metric fuzzy similarity structure. First, note that any v € FUZ({) may

be regarded as a vector in the "unit-positive hyper-cube" of [IR"VEC|
where n = N(Q). Any specific way of doing this requires that some way
of ordering the members of Q be specified so that we know which v-values

are to be plotted along which axis in R™ For simplicity, we will con-
sider only finite n. Let

d e ISETN ", Q)

"index" Q. Forie N+n, let ’xi’ denote d(i). Then for any V ¢ IRnVECI,
let

vy € SET(C,1V])
be such that, for all v € Q

vd(_u) 1= { v(xy), u(xz,...,u(xn) >

Any metric on HR"VECII will clearly "impose" a metric on FUZ Q).

1.8 Second, note that, for all x € , we may define the "potential
function of x", g € FUZ(Q), so that, for all y € Q,

Ux(y) = alx,y).
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We may thus impose a metric on FUZ(Q) by regarding the potential
functions o as vectors in some metric vector space over R". More

precisely, For all Q e |SETI|, and indexing functions d there is a functor
Met : |IFSM(Q) | X [INR"VEC|| + [IMFSM(Q) 1,
where n = N{{2) and IlMRnVECII is the category of vector spaces over R"

cum metric, so that, for all
{Q, w, o> e |[FSM(Q)!]
{V, p> e IMRPVEC]
Met( (Q, w,0 >, <V, um > ) =<, W', 0>
iff
Q=Q
and, there is an indexing function d so that, for all x, y € £,

w'(x) =y (vd(or ),vd(a 1)

X X

alx,y) = 1 - plvyla ), vylo )

It is easy to see that the bilinearity of u entails that ¢ ’ is

a fuzzy relation over w’. Further ¢’ is a metric on Q’ so that < {’, «’,
g’ > is a metric fuzzy similarity structure.

1.9  We may let <V, u ) be fixed and consider
Mety : IFSM(Q) ] » [IMFSMI(C) [
For MetP(S) =< Q' W, o’ >, consider the function

® e SET( Q> =< Q’, [0,1])
so that



a’{u,v)

Ofu,v) :=

w{u) W' {v)

In the case that u is the familiar Euclidean metric, ®(u,v) is just the
cosine of the angle between the vectors uand v. It takes the value ! when
the angle between vectors is 0 and the value 0 when the angle is 7/2 the
maximum value in this situation. © is a similarity relation over the
fuzzy set Q° (but not over the fuzzy set w’) so that

CQ, Q05
is a fuzzy similarity structure.

1.10  Intuitively, @(Vd(x),vd(y)) tells us how close x and y are indepen-

dently of how significant they are in terms of w. The "magnitude’
w’ (v4(x}) tells us how how significant x is in terms of w. Still more

intuitively, in the vector representation of S the magnitude of the vectors
tells us how w-important they are and the angle between the vectors tells
us how o-similar they are -- with more vectors in more nearly the same
direction representing more og-similar members of Q. That is, "direc-
tions" in the vector space represent regions of o-similarity. Vectors of
different w-magnitudes may all lie in very nearly the same odirection.

1.1 It is convenient to have some notation for the fuzzy similarity
structure

(Q, 0,05

associated with MetP(S). We shall call it ’@P(S)’. We may as well think

of @I-‘ as a functor

9}‘ : HIFSMQ) ] — [IMFSM(Q) 1]

2.  TYPOLOGIES.

(AW

.0 Consider the partial ordering of crisp similarity on a finite set {.
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2(Q) = {ISM) ], €5

where |SM(Q)] is the set of all crisp similarity structures on {, and C is
set-theoretic inclusion. A "typology for Q" is a sub-structure of

< ISME)], € 5

which is a simple ordering containing the vacuous similarity structure on
Q, 5y := < Q, QX Q>, together with a "stratification function” g.

ITYQ) | :={ < ISMI, G, g > |
a) < [ISMI, C > € ISMQ)], C >
b) So € |SM]
c) { ISMI, C > is a simple ordering
d  if m = N({SM|) then
g € SET(|SMI, No+m—l)

so that
g(Se) = 0
if S* C-covers S then
g(3) =¢gl&) -1 1

Members of |TY(Q)] may be conceived as sub-chains of the chains in the
partial ordering Z(Q). In the case that the similarity structures are all
equivalence structures Z(Q) is a "taxonomy". In this case, each level in
the taxonomy is a partition of £.

2.1 For any S = < Q, 0 > € [SM(Q)| we define the the set of S-types:
S/g={tCS|] a txtlo
b) for all x € (5 ~ ), there is a

y € T so that <x,y> ¢t }

-



S-types are sub-sets of Q all of whose members are o-related and which
are "maximal" in that the contain all members of Q that are o-related to
all their members. S-types are sometimes called 'S-cliques’. Generally,
the the same sub-set of { may be as an S-type of two distinct similarity
structures that appear in a typology for Q. In the case that 2({)) is a
taxonomy S-types are equivalence classes and they can not intersect.

2.1 For any T € |TY(Q)|, we may consider the partial ordering of the
S-types under set-theoretic inclusion.

CISMI/ /e, C 5
where
ISM|//c :=U {S/a | S e |[SM| }.
We may append to this partial ordering of S-types a level function
m ¢ SET( ISMI//, Ng'™)
so that, for all © € |SM|//a

m(t) := max { m | there is an 5 € |[SM] so that
t € |S|/g and m = g(35) }.

That is, m(t) is lowest g-level in the typology at which a similarity
structure appears that has t as an S-type. Thus, for T e ITY(Q)], we
may define the: |

Type Structure for a Typology

T//a = < ISMI//o, C, m >
T//c depicts the "specialization" or "inclusion” relation among S-types in
the typology T. In addition, it tells us the lowest level in the typology at
which an S-type occurs. For an S-type that appears in different g-levels,
the m-level tells us the the "strongest" degree of similarity that still
yields this S-type. Any stronger similarity relation "splits” this S-type.

2.2 The C-inclusion relation on |SM|//c has the following property:
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if t #¢” and v C ¢’ then m(t) < m(c’).
That is whenever t is a distinct sub-type of t’ it must be in a lower level
in the type structure. However, a type T may appear in level m without
being a sub-type of any higher level type in the type structure. This
happens when t is in S/¢ for more than one S in the typology. t appears
in the type structure only at the level corresponding to lowest level in the
typology in which it appears.
3. TYPOLOGIES FOR FUZZY SIMILARITY STRUCTURES.
3.0  We may define a functor

Ty : HIFSMQ 1 = IITY@ 1
T)’(< Qa W, g >) =< 'SMl, C_a g >

iff there is a ¢ € ISET( D,(cg), |SM| ) so that, for all r € Dy(0); x, v € &,
if c(r) = < Q, o (r) >, then |

{x, y» € clr) iff a(x,y) 2 r

3.1 Note that a consequence of this definition is:
for all ry £ r; € Da{a), glry & glry).

That is, lower level in the typology correspond to increasing values of the
fuzzy similarity relation o. A bit more precisely, when

Ty( < Q, w, 0> ) =<ISMI|, C, g >
we may define
¢ € ISET(Ng'™, Dy(0) )
and
r:=c’eg
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so that, for all S. 3’ ¢ |SMI,
r(S) £r(3) iff g(5) £g(&).

In effect, the r-function maps the integer g-level values by their corres-
ponding values of ¢ in Dy(o). It tells us how big the o-similarity value

that corresponds to the crisp similarity in S.

3.2)  Note that the number of levels in in the typology Ty(S) is just the
number of distinct values of the fuzzy similarity relation ¢ in 5. In some
cases, we might expect this to yield a typology that was "too fine" to be
useful. That is, there would be too many levels and too many distinct
types. This problem is somewhat less serious when we consider type
structures, rather than typologies, because identical types appearing at
different levels are no longer distinguished. Some method of further
aggregating types at the same level would serve to make the resulting type
structure more tractable even though the number of levels in the typology
was not reduced. One way of reducing the number of levels is simply to
arbitrarily choose a number of levels, say m, and divide [0,1] into m
equal intervals. Then define the crisp similarity relations using values of
the fuzzy similarity relation in these intervals.

3.3 Consider now, the type structure corresponding to Ty(S) for the
fuzzy similarity structure S = < Q, w, g >.

Ty(S)//a = {ITYS)//ol, C , m >

We may define the r-level of types in Ty(5)//c in the following way.
With ¢” defined as before, define

r e SET(ITY(S)//al, Dz(o))
r:=c’ em.
That is, the r-value of t is the value of the fuzzy o-similarity correspond-
ing to the lowest level S of the typology in with t appears as an S-type.

Consider S-types at the same r-level that is,

{telTY(S)//al I r(r) =r}.



There will be some S € |SM| so that
S/ar) = {tel|TY(S)//al | r(t) =r}.

Thus S-types at the same r-level will not be C-related. Further, © e
S,/fo(r*) is such that:

" a) for all x, y € T, glx,y) 2 r(z)
b) if z  © then there is some x € t so that og(x,z) < r({r).
Or equivalently:

min| o(x,y) 2 r(t) > max| min| os(w,z).
X,Y €T zftT WET

Next, consider t # ¢t and t C ©’ so that m(t) > m(z’). Thus
r(t) > r(t’)

so that members of t have g-similarity values at least as great as r{7)
which is strictly greater than r(z’).

3.4 It is of some interest to note that we may also obtain fuzzy
similarity structures from typologies. That is, we may define a functor:

Fsm: [[TY({Q) [l = [IFSM(E) ]
so that
Fsm( { |SM|, C, g > =<, w, o>
iff, if g, = max {eS) 1S e SMI }, then for all x, y € Q,
olxy) = 1/g_ (max {g(S) | x> €3 })
w(x) = max { o(x,z) | ze Q}

Note that Fsm is not a left inverse for Ty. Generally,

e
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Fsm(Ty(X) = X.
However Ty is a left inverse for Fsm since, for all Y € |TY{) ],
Ty(Fsm(Y) =Y.

3.5 Ty gives a typology for any fuzzy similarity structure, but the
typology it gives may not be the one we are interested in. In some cases,
the "interesting" typology for fuzzy similarity structure S is obtained
form Ty only after S has be "transformed" into another fuzzy similarity
structure. We may represent this transformation by an "auto-functor”

A : |[IFSM(Q) || — [IFSM{Q) 11
A may be composed with Ty to give
Tye A

which also takes fuzzy similarity structures on Q into fuzzy {-typologies.

In particular, for any metric u on IIR"VECH where n = N({{),
Ty e Met
y ¢ vie 7
yields a Q-typology as does
Tye O .

It is a relative this latter functor that will be of most interest to us.

4. TYPOLOGIES FOR METRIZED FUZZY SIMILARITY
STRUCTURES.

Q

4.0  Consider the fuzzy similarity structure S, a metrization Met (5)

and the associated similarity structure © 5). If we are interested in a
typology for S that ignores w-importancd' then Ty « © (S), for some p

might be appropriate. Intuitively, this typology groups members of { into
g-similarity classes according to how nearly "in the same direction” they
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lie in the vector representation of ¢. It ignores the magnitude of the
vectors. |

4.1 There is, however, still another possibility suggested by the vector

representation of S. We may aggregate members of Ty e © (5) in a quite
natural way to obtain fewer @P(S)—types. Let a

0,8 =<, Q.0 >
and consider
Ty(<Q, @, 05 ) = CISMI, C, g >
Let
S, = <@, 0, 0> =g ().

That is, S; is the first, non-trivial crisp similarity structure in the

typology. The crisp similarity relation o, is such that
oy(u,v) iff &(u,v) 2 ry
where r, is the smallest non-zero value that ® takes in {2’

4.2 We may aggregate each member of (’/c; in the following way.
For all tle Q /gy, let

—tl'—':{-{.vlvev:l}
where
u+vi=$u+v.

That is, t' is the vector average of all the vectors in t'. It is also a

vector in the unit-positive hyper-cube of HRnVECII with n = N{Q) and thus
a fuzzy set on Q. In effect, we have transformed the crisp type t into a

fuzzy type t!. We may now consider



Qg = —tii | t’i e/}

and regroup these average vectors into similarity classes using the same
criterion of closeness that produced the original similarity classes
Q'/oy. That is, we consider

2'/ay/a;.

We may then reaggregate the members of these similarity classes. In
general, this procedure may be iterated n-times to produce

Q,,nn
/ T1.

We may halt the procedure when it ceases to produce new equivalence
classes, i.e. when

n

n
Q Mo, =@ /oy oy

This will generally have the effect of reducing the number of "significantly

different" directions representing o,-similarity. Note, however, that
n n

resulting %ii and t!, may still overlap in the sense of both having non-

zero values for the same members of (. They are maximally aggregated
only in the the angle between them is greater than ry.

4.3  We may do the same thing at every lower level of Ty @ @ (5) thus
producing a new structure of similarity classes. H

Ty e GPS) //g =< |Tye @F(S) //al, C,m )
As well as looking at the ordering of aggregated similarity classes by set

theoretic inclusion C, we can also look at the ordering of their aggregation
under fuzzy-set inclusion C. That is, let

KOIi={T1re [Tyed,s) //al .
Then let
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K(S) := < [K©S), Cpp m >

where m(t) = m(t). We will call K(S) ’the fuzzy type structure for ST It

is also convenient to have some notation for the set of types at a given m-
level. We let, for all m e (D;(o)),

KES) | = { telKS)| I mE) =m}h
4.4)  Once we have decided to deal with fuzzy types, instead of crisp

types, it is possible to consider other partial ordering relations on |K(S)]
besides C together with more general "identity criteria” for fuzzy types.

Some idea of how to do this is described below in Secs. 12-14.

5. TYPOLOGY KINEMATICS.
5.0 Consider a sequence of fuzzy similarity structures over disjoint

sub-sets of the same set € with an additional fuzzy relation ¢ on Q that
may serve to measure similarity of members of {l across these sub-sets.

SQ=<Q,Q, w,o,c>
so that
Q e SET(N,", Pot(Q))
so that, for all t, t’ e NgT, t # t,
QM) NQE) = A
w € SET(Ny',FUZ Q)
o € SET(N, ,FUZ(Q X Q)
so that, for all t € No',
w(t) € FUZQ(t))
olt) € FUZQ() x Q1)
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so that for all t € No+
S(t) = <Q), wit), alt)>.
is a fuzzy similarity structure in the previous sense and
c e FUZIQ % Q)
so that, for all x, y € £2,
c(x,y) = cly,x).

There is no need to require that c be reflexive since we shall only consider
its values for members of disjoint sets.

5.1  Consider the sequence of aggregated type structures for 5Q

Relate members of

using the c-relation by defining
C e FUZ(FUZ(2) < FUZ({))
so that for all v, u e FUZ({))

2| vx) clx,y) uly)

x,y € €
Cly, p) =
Z| vix) ply)
x,y €

In particular



2| tltx) clx,y),tt+l,y)
x € Qt)
y € Q(t+1)

Clr{t), t{t+1)) :=

Z| Tt,x)tit+1,y)
x € £(t)
y e Qlt+1)

At this point, we drop the ’ ’ notation over the '¢’’s. It is to be under-
stood that the 't’’s denote fuzzy types.

5.3 For each m-level, define the s-level successor relation on
IK(S(t)ml bat IK(S(HUm!
by, for all s € [0,1],
SS(r(t),r(Hi)) iff C(c(t),ct+1)) > s

Note that the Ss relation holds only between fuzzy types of the same m-

level in successive members of the sequence of fuzzy typologies. Note
also that m-levels in successive fuzzy type structures in the sequence may
correspond different levels of ¢-similarity since D,(o(t)) will generally

be different for different t. There may not even be the same number of m-
levels in successive members of the sequence. The m-level just reflects
the order of these values. That this order is "significant" enough to use as
a method of identifying types through time is an empirical hypothesis
about the data. In the case that the number of m-levels differs, it may be
convenient to redefine m-levels in terms of intervals in in [0,1]. For the
sake of intuitive clarity, we do not do this here.

5.4  We categorize change from K(S(t)) to K(S(t+1)) using properties of
S in roughly the following way.

A) t(t) has a unique successor t(t+1) in K(S(t+1)) and t(t+1) has a
unique predecessor -- t (t) is genidentical with z{t+1)

B) t(t) has no successor in K(S{t+1)) -- t{t) dies at t
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C) t(t+1) has no predecessor in K(S(t)) -- t{t+1) is born at t

i) there is some 7’ (t+1) genidentical with a ©’{t) and t(t+1) C_f
o’ (t+1)) t(t+1) is a new specialization of t’(t). The ’ed
fuzzy clusters will be of a higher m-level than t{t+1).

ii) there is some ’(t+1) genidentical with a ©’(t) and 7’{t+1)
Cf t{t+1)) -- t{t+1) is a new generalization of ¢’(t). (Maybe

we need to require that there be other specializations of
t{t+1) perhaps only in a later period.) The ’ed fuzzy clusters
will be of lower level than t(t+1).

iii) both i} and ii)

Note that there may be new kinds that are specializations (generalizations)
of more than one old type.

D) t{t) has multiple successors t,(t+1) each of which is preceded
only by t{t).

i) the r (t+1) develop into specializations (generalizations) at

later stages -- slow development of new specializations

ii)  t(t) fragments into different specializations

E) t{t+1) has multiple predecessors t,(t) each of which is succeed-
ed only by t{t+1) !

F)  t{t) has multiple successors some of which have multiple
predecessors.

6. LITERATURE.

6.0 Let us begin by conceiving "scientific literature" rather broadly.
Let us view this literature as a set of scientific documents -- |[L. The
paradigm example of a scientific document is an article in a refereed
scientific journal. But we may construe |[L broadly enough so that it
contains books, journal articles, letters -- perhaps even films, phonograph
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recordings, floppy disks and tapes. Intuitively, a scientific document in
this broad sense is an abstract linguistic object that is "about" a scientific
subject. A document is abstract in that it may, and typically does, have
several "instances". For example, each copy of a article in a scientific
journal is an instance of a single document. It may not always be so clear
as it is in this example whether two physical objects are instances of the
same or different documents. Scholars may dispute whether two hand-
written manuscripts are "copies" or ‘"instances" of the same original
document. Formally, IL is just a finite, non-empty set.

IL e |SET]; # A and finite

I ~ the scientific literature; the set of all scientific documents

6.1 Let us understand |L to contain ALL scientific documents "from the
beginning up to now". Each document has associated with it exactly one
"date". Ordinarily, we might take the date of a document is its date of
publication. More fundamentally though, a document’s date is the time at
which it was produced or completed. Some documents may be produced
before they are published (but not conversely) -- e.g. the forgotten
manuscript at the bottom of the desk drawer. Formally, "date” is a
function from the set of documents into the non-negative real numbers.

d e SET(IL, Rg"
d ~ the date function

We may think of d(x) as the date of production of document x measured in
years from some, not quite arbitrarily chosen, zero point. We agree to
choose our "zero time" so that no documents were produced before this
time. We could, of course, allow negative dates. But the notation is
simpler if we do not. We shall need to consider sets of documents
produced between two dates.

L e SET(Ry" x R, Pot(|L) )
Lit,t) ;= {xe L]t <dx) <t}

~ the literature between times t and t’



This also provides us with a way of referring to the literature produced up
to date t.
L(O,t) ~ the literature up to t

6.2 In addition to the date function, the scientific literature also comes
equipped with with a citation relation. The paradigm example of the
citation relation holding is provided by journal articles x and y where x is
cited in the list of references occurring in y. We might countenance an
somewhat broader interpretation of citation in which, for example,
implicit references to the contents of one document in another might count
as citation. Whether one document cites another, in this broader sense, is
a question to be decided by close examination of the contents of the two
documents by historians. Only in the paradigm cases, can questions about
the citation relation be decided on the basis of something close to purely
syntactical data. Formally, the citation relation ¢ is just a binary
relation on |L.

cC ILx|L
c(x,y) ~ xiscited byy

It is plausible to think that documents can not cite themselves. That is,
for all x € |L,

not c(x,x).

It is also plausible to think that document x can not cite documents
produced later than x. That is, for all x, y € L,

c(x,y) only if d(x) = d(y).

There may be counter examples to this if d(x) is understood to be the
publication date. But we take d(x) to be the production date and this
proposition to be an analytic truth about “production” of documents.
Though we co not countenance self-citation. We do countenance mutual
citation. That is, for some x, y € |L it might be that

c(x,y) and c(y,x).

However, by virtue of our convention relating citation and production

=i
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dates, mutual citation entails identical production dates.

6.3  The analysis of the kinematics of scientific literature outlined here
will focus on "literature cross-sections". A literature cross-section is
just the set of all scientific documents produced during a time period of
"thickness" A. We may envision all of |L sliced into cross-sections of
thickness A. These cross-sections are numbered in temporal sequence so
that we may locate each cross-section by its number in the sequence.
More precisely, consider

D e SET(NT < R¥, Pot(|L) )
D(p,4) := L( (p-1)\D, pA )
~ the literature cross-section of thickness A at time pA

The integer argument p in D(p,A) indicates the temporal position of the
literature cross-section D(p,A). The real number A indicates the thick-
ness of the cross-section. For example, D(1982,1) is the set of scientific
docurnents produced during the year 1882 ( assuming we measure time in
years with the customary zero point).

6.4  There is no compelling reason to take A = 1 year. Indeed, there is
some reason to think that a somewhat larger A might be more appropriate.
Consider

c{D(p,A) ~ documents cited in D{p,A)

D(p-m,A) N c<D(p,A) ~ documents in cross-section D{p-m,4)
cited in D(p,A)

N(D(p-m,A) N c<D(p,4))

D(PaAsm) =
N(c<D(p,4A))

~ fraction of documents cited in D(p,A)
that are in D{p-m,A)

L]
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s ™2 pp,Am) = Plp,A)

m=1

~ fraction of documents cited in D(p,A)
that are produced in the 5
cross-sections of thickness A

immediately preceding D(p,A)

~ for A = 1, the "Price Index" for
the entire literature |L.

The value of PI{p,1), for recent values of p, has been observed to be about
0.32. It might make some sense to look at PI{p,A) as a function of A and
think about whether this could tell us what the optimal choice of A for the
analysis of literature kinematics should be.

6.5)  For some purposes, one might want to use a "corrected’ set of
documents.

m ot L —NF
naly) == N(e<(y))
N({x e L |clxy D
~ the number of documents cited iny
L, s NT = N — Pot(IL)
IL (P1sp2) == {x € IL | py S nalx) < pz )

~ the literature excluding review articles

(p2(x) > p2) and "pontificating” (nz(x) < py)
D:R = RY = Pot(lL)

D{t,A) := Lt) ~ Lt - A)

~ the source literature at t relative to
interval A
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D_ : RX RY x N* x Nt — Pot(IL)
Dc(taAapiapz) = D(t)A) n “—-C(PI’PZ)

~ corrected source literature

However, the method of analysis proposed here attempts to deal in a
different way with the concerns that motivate using a corrected set of
documents.

7. INFLUENTIAL LITERATURE.

7.0  Let us begin to characterize the "influence" of a document x by
considering q(p,A,x) -- the number of documents in the literature cross
section D(p,A) that cite document x. Formally,

q € SETINY < R < |L,NF)

so that
q(p,A,x) :=N({y|yeDp,A) and clx,y) }.
~ the number of times x is cited in the
literature cross section of thickness A
at time pA.
Alternatively,

q(p,A,x) = N( c>(x) N D(p,A))

where c>(x) is the set of all documents that cite x. Note that q(p,4A) is
defined on all of |L, including D(p,A) C |L. Documents in D(p,A) may cite
other documents in D{p,A).

7.1 We may convert the function
q(psA) € SET(IL,N™)

into a measure of the relative influence of "reference documents" in the
"source literature" D(p,A) by normalizing with respect to the number of

‘:;:
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citations received by the document most frequently cited in D{p,A).
Consider,

w e SETR =< RY < |L, [0,1])
so that

q(p,A,x)

w(p,A,x) :=
max| (q(p,A,y))
y € |L

w -- influential literature -- is a time dependent fuzzy set on |L whose
degree of membership is the relative frequency of citation in the source
literature of thickness A at time pA. Note that the base set of w is |L and

not L(0,pA), but for t’> pA, w(t’,A,x) = 0, for all x.

7.2 The time dependent fuzzy set w(p,A) plays a role analogous to the
"highly cited literature" H in Small and Griffith [15]:

H e SET(R < Rt < N |L)
Hip,A,n) := { x e L(0,pA) | q(p,A%) 2n}

~ the documents cited more than n times
in the source literature D(p,A)

8. CO-CITATION AND PROXIMITY MEASURES.
8.0  The fundamental data we use to characterize the "topology" of
scientific literature is the co-citation relation. Documents x and y are co-

cited by document z g'ust when both x and y are cited by z. Formally, the
co-citation relation c* is a tertiary relation on |L:

c? C IL < |L < |L
so that, for all x, y, z € |L,

c? (x,y,2) iff c(x,z) and cly,z)

-~
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~ x and y are co-cited by z

Clearly, the c?relation is symmetric and transitive in the first two
arguments. That is, for all x, y, w, z € |L,,

c?(x,y,z) iff c?2(y,x,z).
and,
if c?(x,y,2) and c?(y,w,z) then c?(x,w,z).

According to our definition, all documents are co-cited with themselves
whenever they are cited. That is, for all x, z € |L,

c?(x,x,z) iff c(x,z).

Thus, for all z, c?(-,-,z) is an equivalence relation with the two equival-
ence classes -- those documents cited in z and those documents not cited
in z. Since we do not countenance self-citation, we have, for all x, y € |L

not c?(x,y,x).
Thus, mutual citation --
c(x,y) and c{y,x)

-- does not entail co-citation of x and y by some z. Also note that the set
of documents that co-cite x and y is just the intersection of the set of
documents that cite x and the set of documents that cite y. That is, for all
%,y € |L,

c® (x,y) = c>(x) N> ly).

Note that we could generalize the co-citation relation by defining ¢ (n 2
1) to be an n+1-ary relation on |L so that
i

C {X{geneaX Z
13 ')na)

is true just when z cites all of STPRRE S8 The citation relation ¢ is ¢! in

this notation.



8.1  We may obtain indicators of the proximity of documents x and y, as

erceived by the producers of documents in the literature cross-section
B(p,A) by considering the number of documents in D(p,A) that co-cite x
and y -- b(p,A,x,y). Formally,

b e SET(NY x RY < |L < L, N
b(p,A,x,y) := N(c? (x,y) N D(p,A) )

~ the number of documents in
literature cross section D(p,A)
that co-cite x and y

Note that b(p,A) is defined for all of |L, including D(p,A) C [L. Members
of D(p,A) may be co-cited by other members of D(p,A). Among the pro-
perties of b(p,A) worth noting are the following. For all x, y € IL,

blp,A,x,y} = b(p,A,y,x)
b(p,A,x,y) € min (g(p,A,x), glp,A,y) )
b(p,A,x,x) = q(p,4,x).
8.2 We can obtain an indicatior for the relative proximity of the
document pair <x,y> by normalizing b(p,A) with number of citations
received by the document most frequently cited in D(p,A).
A eSETIN' xRV < IL = [L, [0,1])
b(p,A,x,y)

max| q(p,A,2)
z e |L

Ap,A,x,y) =

Ap,A) is the relative frequency of co-citation in the source literature of
thickness A at time pA. Note that normalizing A(p,A) with the maximum
number of citations is the same as normalizing with respect to the
maximum number of co-citations. These maxima are, in fact, the same
number since we count documents as being co-cited with themselves. We
could, of course define A{p,A) only on pairs of distinct documents and then
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normalize with
max | b(p,A,z,w) .

z,well;z#w

8.3 X\ is a time dependent fuzzy relation on the time dependent fuzzy
set A [8] in the sense that, for all p € N+,

Ap,A,x,y) € min(A(p,A,x},A(p,A,y)).

X is reflexive in A in the sense that, for all p € N+,

Ap,A,x,x) = Alp,A,x).
A is éymmetr*ic in the sense that, for all p € N+,

Ap,A,x,y) = Ap,A,y,x).
Thus G = < w, A > is a time dependent fuzzy graph.
8.4  Other measures of the strength of co-citation links have been
suggested. In [15] Small and Griffith use simply the un-normalized co-

citation number b(p,A). This measure is clearly unnatural in the fuzzy
set formulation since it is not a fuzzy relation on |L. Small [13] uses

essentially
b (PaAvxa}’)

P(P,A,X,y) = %
[ q(p,A,x) q(p,A,y) ]°

Ap,A,x%,Y)
[ A D,A%) Apydyy) 12

First, note that, though u(p,A) is a fuzzy relation on [L, it is not a fuzzy
relation on the fuzzy set A(p,A) since pu(p,A,x,y) may be greater than
min(A(p,A,x),A(p,A,y)). Second, note that u(p,A,x,y) grows large as
either A(p,A,x) or A(p,A,y) become small. This has the effect of making
the strength of co-citation links inversely proportional to the "impact” of



the co-cited documents. Garfield [4] views this as an advantage of u over
b:

"...{1) makes the co-citation threshold less restrictive,
(than b) which permits fields of relatively low activity to
become visible."

It should be noted that normalizing b with q___has somewhat of the same

effect of raising the measure of relative co-citation strength between
documents with relatively few total citations compared to what would be
indicated by an unnormalized b. It does not however exaggerate this effect
as u would seem to do. Note that this exaggeration is avoided if one (as
Small does) arbitrarily truncates the A function at a certain level and
considers only "highly cited" documents. A second virtue that Garfield [4]
attributes to u over b is that it gives less effect than b to co-citation
links between highly cited methodology papers and other papers. Note
that, for a methodology paper m, q(m) ~q__  so that A, as well as p,

would have this advantage over b. In Sec. 10.4 below a proximity
measure somewhat similar to y will be suggested.

8.5  The basic fuzzy relation A may be used to develop a number of
"oroximity measures" on |L. First, consider max-min composition of
fuzzy relations on |L.

(n e V) (x,2) :=max| (min (plxy), viy,z) ))
y € |L

It is easy to show that e is associative. So we may define (suppressing
the p and A arguments for notational convenience):

A=A
INEEDNT I
A= AT e
N o= sup | Al

ne{l,2,...}

Intuitively, we may think of
y Y

]
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min{ A(x,y), Aly,z))

as the strength of the 2 order co-citation lirk or co-citation chain
between x and z through y. The idea is that a chain is no stronger than its
weakest link. We may then think of A%(x,z) as the strength of the strongest
chain of length 2 connecting x an z. Similarly,

z) )

is the strength of the nM_order co-citation link or chain between x and z

min( MX,)’;, AY1Yzseees Ay 2Yp 1o Ay

n_l

through vy, vya..., yn_iand A(x,2) is the strength of the strongest nth—order‘
co-citation link or chain of length n connecting x and z.

8,6  Since A is reflexive
i
n- n
AN

Note that >\n(x,z) is directly proportional to the max-min of the number of
co-citations of pairs of documents in '"chains" connecting x and z, even

though the value of A(x,z) itself is normalized to be in [0,1]. Note that

*
A is always transitive, in the sense that

* * *
A oXN SA

but the A" are generally not transitive. It is also worth noting that no A"
can be converted into a metric by the transformation

A= 1 - AN
First,
Ax,x) = 1 - A (x,x)
=1 -Ax
=0

Second, depending on vy,



A"(x,2) may be < or 2 \"(x,y) + A"(y,2).

Intuitively, the co-citation strength between x and z is not related in any
systematic way to the the co-citation strength between x and y and between
y and z.

8.7  The proximity measures A" separate the effect of co-citation into
different fuzzy relations for each length of co-citation chain. It would be
convenient to combine these relations into a single relation that summar-
ized the whole effect of co-citation between documents. Consider now the
fuzzy relation o(p,4).

a(p,A) € FUZ(|L > |L)
a(p,A) (x,y) := Ug|  (N(psAxy) /)
nz0
where Ur is the union operation for fuzzy sets defined by:

(v Ue p)(x) := max (v(x), p(x) )
so that
alx,y) =max| (A'xy) /n).

nz

We may think of the degree of membership of <x,y> in ¢ as a measure of
how close y is to x in terms of the number of co-citations of x and y. Co-
citation links count in inverse proportion to their order -- hence the factor
*1/n’. That is lower order co-citation links count more toward regarding

y as near to x. More precisely, g(x,y) is the maximum value of Ax,y) /
n.

8.8  Note that, for all x, y € |L
g(x,x) = w(x)
and

a(x,y) = aly,x)
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Further, when
c(x,z) iff cly,z)
then
alx,y) = w(x) = wly).

For the same reason as the )\n, o can not be converted into a metric in
the obvious way. Thus, in the terminology of Sec. 1,

<Ly w, 02

is a non-metric fuzzy similarity structure. So we may use all the ana-
lytical tools on it that were developed in Secs. 2-5.

9.  ACLUSTERING LITERATURE CROSS-SECTIONS.

9.0  There are a number of ways to use the A" to group documents in
D(p,A) into crisp clusters (See [17].) We want to look briefly at some of
them just to contrast them with the method suggested in the next section.

9.1  After Rosenfeld [12], consider
K"(p,A) := { K(p,A) C D(p,A) |

min|  A"p+1,A,x,y) 2
X,y € K

max| (min| A'(p+i,w,2)) }.
zfgK wek

(Having once made it explicit, we suppress the p and A dependency where
no confusion can result.) For z £ K,

min| An(w,z)
w e K

is the weakest \™-link that z has with any member of K. Intuitively, it is

ol
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the strength of z’s A"-link with K.

max|  (min| A"(w,2))

z £K w e K

is then the strength of the strongest AM-link with K among non-members of
K.

9.2  Thus, K is determined by the property that the strength of the
weakest of the A™-links linking members of K is greater than the strength

of the strongest A™-link between any non-member of K and K, where the
strength of a non-member’s link to K is the strength of its weakest link to
a member of K. More explicitly then, the strength of the weakest of the

A-links linking members of K is greater than the strength of any non-

member’s weakest A-link to a member of K.

9.3 It is relatively easy to see that two members of K", say K and K’,
may intersect. For n =1, consider:

y
Al=.5 A =7

Here

{x, y} and {y, 2} € K! and {x, z} ¢ K.

9.4  Gererally, for K e K, S C K" it will not be the case that S ¢ K.
But if S = K’ € K", then

min| A'(x,y) = min| A(x,y).
x,y € K x,y € K’



That is, nested sets in K" may be ordered according to the minimum A

values that characterize them. Recall that A"(x,z) is directly proportional
to the max-min of the number of co-citations of pairs of documents in
"chains" connecting x and z. Thus we may order members of nested sets

N : : .
in K according to the m-values where m is smallest max-min value of

the number of co-citations in nt..hforder‘ chains connecting the pairs. That
is,

m: K'Y Nt

) = gy [min] N(y) ]
X,y € K
where
Aay = Max | q(p,A,Y)

y el

Intuitively, we may think of the m-value of K as the smallest number of
co-citations linking members of the in the strongest chains connecting

pairs in K. The smaller the members of K" become, the bigger the m-

value characterizing them becomes. Note that all singletons {x} are in K"
for any n with the corresponding m-value being qmaxd(x). Note also that

. . n . N
intersections of members of K" need not be in K.

9.5  Consider the largest K" clusters. They include documents linked
by "order chains whose weakest links have only 1 co-citation as well as
documents linked by M order chains whose weakest links have m > 1 co-

citations. We may think of the members of K" arranged in the following
kind of array, according to m-value

[
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m-value

| largest K" clusters; not a partition generally

2 sub-sets of level 1| clusters; possibly
subsets of more than one level 1 cluster;
perhaps with some intersections

3 sub-sets of level 2 clusters; etc.

singletons and documents co-cited whenever

9
M Gited

9.6  This suggests it is expedient to consider the sets:

}

max

K" (p,4) := {K(p,&) e K'(p,A) | min|  N'(p+i,Axy) =m / g
X,y €
; will be

Consider first K™ and K" As we have seen, each K ¢ K"
m m m

+1 +
a sub-set of at least one K’ e K"  obtained by successively adding docu-
ments to K that are linked to all Ts members by a A" link of strength m.
There will generally be several ways to do this since, the documents
eligible for addition at any stage, though linked in this way to all members
of K, may not be so linked to each other. Thus, which document is added
at a particular step may determine which documents may be added at

subsequent steps. Likewise, each K’ € Knm may have several sub-sets
that are members of K" .
m+

. '
9.7 Consider now Knm and K" m Since A is reflexive
AT <ean,

_1
Thus, every K e K" m is a sub-set (perhaps improper} of at least one

3&



1
. n . -
K> e K" . Moreover, every K e K'_ has at least one sub-set in K"
m m m’

though all these sub-sets may be singletons. Intuitively, every K ¢ KT m

can be extended to a member of Knm by adding all documents that have A"
links to of strength m to all members of Knnlm but fail to have >\n_1 links
of strength m to all members. It may be possible to extend K in this
manner to distinct members of Knm. Some documents may be linked to

all members of K by A" links of strength m, but still not linked to each
other by such links. If such an expansion is not possible then K is itself a

member of Knm. Conversely, every K’ e Knm can be restricted to a
_
member of K" m by deleting members that are not linked to every other
_
member by a LI link of strength m. There may be several ways to do

this, depending on where you start. If there is no way to do it then K’ is

itself a member of K™ .

1
9.8  Consider now Knm 4 and K" . As we have seen, members of
both these sets will generally be sub-sets of members of Knm . What are

the possible sub-set relations among these? = There appsars to be no
general way to sort these out. Members of K'  jand K™ may inter-

sect in all possible ways. They may even be identical.

9.9 Consider finally the limiting case of K*. Since A" is transitive,
thf members of K m for any m partition |L. Consider K*i. Members of
K", contain pairs that are linked by arbitrarily long chains whose individ-
ual links need be no stronger than 1 co-citation. This is the coarsest
partition provided by the K . K, also partitions |L. l\/)lkoreover‘,
K e K, is a sub-set (not necessarily proper) of exactly one K’ € K jand the
members of K*Z that are sub-sets of K’ partition K’. Note though that

*
some members of this partition of K’ may be singletons. The K s for

T2
=N



various mvalues are the clusters of Small and Griffith [15 ] restricted to
the cross section D(p,A). The C-relation on them forms a set of "trees" or
"dendograms” whose branches do not intersect. In the language of cluster
analysis, they are a hierarchical taxonomy. This type of clustering is not
appropriate for our purposes since it rules out the possibility that cluster
at level m being a specialization of more than one cluster at level m - 1.

9.10  One possible way to see document clusters as having the structure
of a specialization net in which one cluster may be a specialization of
several others is just to consider the partial ordering

< IK(p,4), C >.
where
— m
IK(p,A) .—U{mﬁmmax,nZO]K n}.

This would of course be the "specialty structure" of all of science at pA
relative to the cross-section thickness A. Sub-nets would correspond to
the specialty structures of various disciplines and sub-disciplines. It is at
the level of sub-disciplines and disciplines that we should expect to see
this net structure become isomorphic to a theory element net.

9.11  This structure would be a generalization of the partition structure
of Griffith and Small [15] in that structures of the following kind might be
present in the partial ordering.

This makes it possible to think that <|K(p,A), @ > could be isomorphic to
the most general kind of theory element specialization net [1].

9.12  There is however a problem with this. The additional structure
is obtained by introducing different lengths of citation chains -- the

W
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parameter ’n’. This has the effect that one and the same cluster may be
1

arrived at in two different ways. In particular, Knm 41 and K™ o Mmay

intersect. While not fatal to this approach, this suggests that there may be
a good deal of redundancy in |[K. More generally, some of members of |K,
though distinct, may overlap to such a degree that we would want to say
they represented the same speciality. This is perhaps most obvious in the

case of members of Knm ! and K™ m When there are identical members
of these two sets there is no problem with identifying these identical
members with the same specialization of a member of Knm. We have

simply characterized the same literature cluster in two different ways.
But when non-identical members have intersections that a large relative
to the members themselves, we might have trouble deciding whether we
have one speciality or two. Less obviously, even when members of Knm 41
intersect, it will not always be possible to say when these members
represent one specialty or two. What we need is some way to say how
much overlap among intersecting clusters is required before we may
conclude that they represent the same specialty.

10.  o-CLUSTERING LITERATURE CROSS SECTIONS.

10.0  The basic idea here is to use the o(p+1,A) relation determined
by co-citation in the "source literature" in the cross-section D(p+1,4) to
cluster documents in the immediately preceding literature cross-section
D(p,A).. The document clusters in D(p,A) and the relations among them
represent the "structure of the scientific literature" at time pA as
perceived by the producers of the literature in the immediately succeeding
cross-section D(p+1,A). Intuitively, the structure of the clusters in
D(p,A) is determined by the most myopic hindsight. By clustering only
literature cross-sections of thickness A -- rather than the whole of the
preceding literature L(0,t) as Small and Griffith [15] do -- we can observe
changes in the structure of the literature over time in a somewhat more
convenient way.

10.1 How much of the "reference literature” we capture in D(p,A)
depends, of course, on how big A is. The scientific literature is charac-
terized by a kind of myopic hindsight in the sense that one-half the

Rl
=



documents cited in D(p,1) will have dates later than about p-10 years
[11]. Thus, if we take A = 1, we might expect to capture somewhat more
than 5 per-cent of all the literature cited in D(p+1,1) in the previous
year’s literature section.

10.2  For each p,

S(p,A) := < D(p,A), w(p+1,A)|, os(p+1,4)| >
D(p,A) D(p,A)

is a fuzzy similarity structure in the sense of Sec. 1. Thus we may
consider the sequence of fuzzy similarity structures (in the sense of Sec.

5)
SQ: =<1, S, w, 7>
and the corresponding sequence of structures fuzzy type structures
K{S(p,A)).

This is the thing we take to depict the development scientific specialties
over time as reflected in the scientific literature. This is the structure
that we hypothesize will turn our to be isomorphic to the theory net
evolutions that represent the development of the "intellectual structure” of
science as revealed by a certain kind of "content analysis" [1].

10.3 Intuitively, K(S(p,A)) is a structure whose elements are fuzzy
sets over the basic set of documents in the literature cross-section
D(p,A). We arrive at these "fuzzy clusters" by aggregating the documents
in D(p,A), themselves represented as fuzzy sets on D(p,A). The fuzzy
clusters in K(S(p,A)) are structured into specialties of one another by
fuzzy set inclusion and organized into levels representing different degrees
of proximity.

10.4  The method of aggregation employed to arrive at the fuzzy
clusters is most naturally envisioned by considering the documents in
D(p,A) to be vectors in a vector space whose dimension is just the
number of documents in D(p,A). We may do this simply by considering o,

for document x to be a vector whose coordinates along axes representing
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each of the other documents y are just o (y). Intuitively, this locates

document x in the (unit-positive hyper cube of) the “intellectual space”
formed by the whole collection of documents. If we impose some metric
on this space, we may speak both of the magnitude and the direction of o, .

It is not immediately clear that the common Euclidean metric is the most
natural one to use here. Some thought should be given to the implications
of selecting different metrics. But, for purposes of illustrating the intui-
tive ideas, we may stick with the Euclidean metric. The magnitude of o
(Sec. 1.8)

is a measure of the relative importance of document x as indicated by its
relative citation frequency (in cross section D(p+1,A). (The exact relation
to the relative citation frequency is somewhat intricate in view of the
definition of o__.) The angle between ¢ and I 8 indicated by its cosine

is a measure of the proximity of documents x and y as indicated by
relative co-citation frequency. It appears to have properties similar to
the proximity indicator used by Small [13] (See Sec. 8.4) though the
details of how it related to other proximity indicators remain to be
explored.

10.5  This way of representing documents -- viewing the potential
function o of document x as a vector -- suggests that intuitively we may

view "directions” in a vector space of dimension N(D(p,A)) as specifying
the "subject matter orientation” of specialties. Such a direction is just an
"orientation" with respect to all the literature in D{p,A). Supplied with a
magnitude indicating its relative significance, -- a direction becomes a
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fuzzy set representing the specialty.

10.6  These intuitive ideas suggest first, that the appropriate way to
identify specialties is to cluster the ¢ ’s according to the magnitude of

the angle between their vector representations. © is, in fact, a fuzzy
similarity relation so all we know about typologies for fuzzy similarity
structures may be employed to construct @-similarity clusters at different
©-values.

10.7  Second, the vector representation makes it intuitively natural to
think of the clusters of s _-vectors as fuzzy sets, rather than crisp sets.

We make a crisp set of ¢ _-vectors into into a fuzzy set simply by taking
the "vector average" of all the ¢ -vectors in the set. Intuitively, it is

easy to see how this average vector characterizes the "orientation” of the
initial crisp set of Ux-vector‘s.

10.8)  Finally, it is possible to see a natural way of reducing the
number of @-similarity clusters at a given level. You just form ©-
similarity clusters at the same level on the result of aggregating the
initial crisp clusters. This will result in non-singleton clusters whenever
the aggregate vectors are within the range of ©-similarity required for
cluster membership at the given level. This procedure may be iterated
until it yields only singleton clusters, thereby possibly reducing the
number of distinct clusters at this level.

{1{. oCLUSTER KINEMATICS.
11.0  Basically, what the sequence of type structures
K(S(p,A))

does for us it provide an intertemporal identity criterion of genidentity
criterion that allows us to recognize the same literature type as success-
ive stages and also, in some situations, to identify specializations and
generalizations of literature types. The way in which this sequence of
it-‘ﬂl)e structures describes scientific change may be made more explicit as
ollows.



11.1  We relate clusters in D(p,A) and D(pt+1,A} using relative citation
intensity:

2,y TPAX) Elxy) TlprL,AY)

Clr(p,A),r(p+l,A)) =
Zx’y t{p,A,x)tipt1,4,y)

where & is the characteristic function of the citation relation c. Thus the
citation relation here plays the role of the fuzzy relation over { (here =
IL) that connects successive fuzzy type structures in the sequence. Intui-
tively, the fuzzy C-relation measures the relative degree to which
members of type t(p+1,A) cite members of t(p,A). 'Relative’ means two
things here. First, members of the types contribute to the C-value in
proportion to their values as members of these types. Roughly, citations
both to and from more typical members of types contribute more to the C-
value for the types. Note that the fuzzy set representation of the types is
essential here. Second, the C-value is normalized to reflect the overall
size or significance of the types. The basic idea is that C-values for
types indicated the extent to which the types are the same or "genidenti-
cal".

1.2 Ideally, we might like to have some way of dealing with this
fuzzy genidentity relation without arbitrarily attenuating it to a crisp
genidentity relation. Right now, I can’t see a neat way to do this. It is
Fowever, relatively easy to see how to arbitrarily pick some "cut-off
value" and take two successive types to be genidentical when their C-value
exceeds this cut-off value. For each m-level, define the s-level successor
relation on

K(Sp,A))_| X K(S(E+1,4))
S_(t(p),tlp+1) iff Clrlp),rp+1)) > s

Recall that the 5_ relation holds only between fuzzy types of the same m-

level at successive time periods. Intuitively, then successive types are
"candidates" for being "the same" type only when their C-values are greater
than s.

11.3  There is a bit more that must be said, for exceeding cut-off s
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will not always be sufficient for genidentity. We may however categorize
change from t(p) to t(p+1) using properties of S_.

A)  t(p) has a unique S_-successor t(p+1) in K(S({p+1,A)) and t(p+l)

has a unique SS—predecessor' in K(S(p,A)) -- t(p) is genidentical with
t(p+1).

In this simple case there is no doubt that t(p+1) is the same type of
literature as t(p). It is a candidate and the only candidate. There is one
other equally simple case.

B) t(p) has no SS-successor in K(S(p+1,4) -- t(p) dies.

There just is no type of the same level as t(p) in D(p+1,A) that cites and
r(p) with sufficient intensity to be regarded as its successor.

11.4  Let’s now consider somewhat more complicated cases.
C)  tlp+1) has no S_-predecessor in K(S(p,A)) -- t(pt+1) is born.

Here t(p+1) can not be identified with any P-type at the same level. But
it may be identifiable as a specialization or generalization of some
previous type. |

C-i)  there is some t’(p+1) genidentical with a ’(p) and t(p+1) C ¢
o’ (p+1) - t(p+1) is a new specialization of ©’(p).
Note that the ’ed fuzzy clusters will be of a higher m-level than t(p+1).

C-1i) there is some ©’(p+1) genidentical with a ’(p) and ©’(p+1) C_f
t(p+1) - t(p+1) is a new generalization of 7’(p).

Here the ‘’ed fuzzy clusters will be of lower level than t(p+1). It is not
entirely evident the this is sufficient for counting t(p+1) as a generaliza-
tion of ©’(p). We might want to require as well that there be other spec-
ializations of t(p+1) —-either at p+1 or in some later period. The intuitive
idea is that a genuine generalization can’t be just a "diffusion” of the
literature of ©’(p) -- it must be a diffusion that ultimately results in a
"concentration" in a different direction. ,

C-iii)  both C-i) and C-ii).
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Here a new specialty appears in the "interval" between two specialization
linked members of K(S(p,A)). Once again, we might want to tighten this
condition by requiring that the new type ultimately exhibit specializations.
Note that, in all these cases, there may be new types that are specializa-
tions (generalizations) of more than one old type.

11.5)  We have considered cases where there exist unique S_-successors

or Ss—predecessor‘s at some level that can be identified either with t(p-i—i)

or some specialization or generalization of it. We now consider cases
where we do not have such uniqueness.

D) t{p) has multiple S_-successors T.(p+1) each of which is preceded
only by t(p). s '

Here the T, (p+1) are distinct types at the same m-level as t(p). The can
not be regarded as specializations or generalizations of z(p), but they may
well be "emerging" specializations of t(p). That is,

D-i) the ti(p+1) develop into specializations (generalizations) of t{p) at

later stages.

This might characterize the slow development of new specialities and
generalizations. In contrast we might have:

D-ii)  t(p) fragments into different types.

A looser identity criterion for types, might reveal all these to be equi-
valent (See Sec. 14 below.) But we might be driven to recognizing that, at
this m-level, the development was not "normal". There was genuine
fragmentation that could not be seen as specialization or generalization of
preceding types. Of course the fragments of t(p) could continue to fit into
the the entire structure of K(S(p,A)) and K(S(p+1,4)) in the same way
that t(p) did. The fragmentation or "revolutionary" development could be
localized.

11.6  We might also observe the "converse" of the situation just
considered.



E)  t{pt+!) has multiple Ss-predecessors ti(p) each of which is succeed-
ed only by t{p+1)

Again, a weaker identity criterion for types might reveal the t,(p) are

equivalent. If not, then this would be and example of "survival of the
fittest" or what Kuhn might term "the emergence of normal science". A
somewhat more intricate case of this sort would be:

F)  t(p) has multiple successors some of which have multiple predeces-
sors

Clearly F) and pérhaps D-ii) and E) do not count as "normal science" in the
sense of Kuhn.

11.7  The possible scenarios for the development of types over time
considered here are not offered as an exhaustive "typology of scientific
change". They simply suggest some kinds of development that have been
discussed by historians and philosophers of science that could be identified
using the apparatus described here. It is not difficult to sketch other
identifiable scenarios that would not fit so easily into available accounts
of scientific change. For example, consider t"(p+1) and =’(p+1), both new
specializations of the higher level t(p) which is genidentical with t{p+1).
Suppose there are t'(p+2) and ©’(p+2) genidentical with t'(p+1) and
T’ (p+1) respectively, but no t(p+2) genidentical with t(p+1). Do we still
want to say that the "evolutions" e" and &’ are specializations of the evolu-
tione 7

12. GENERALIZED FUZZY TYPE STRUCTURES.

12.0  Given a set of fuzzy types K that sort out members of { into
"kinds" or "types' according to their degree of o-similarity, there are
more general ways of thinking about their "logical structure” than the one
we have employed for |K(S)| in Sec. 10 above.

12.1  More generally, we may regard kinds of things in { to be struc-
tured by two fuzzy relations on fuzzy sets - an "identity relation" © and
type inclusion relation TI. Intuitively, © tells us the extent to which two
fuzzy sets are the same kinds of things. That is, tjand t, may be to some
degree the same kind of thing as in "Shrubs and bushes are pretty much
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the same." Il tells us the extent to which one fuzzy set is a kind of
another. That is, T, may be to some degree a kind of t; as in "Labrador
Retrievers are largely a kind of hunting dog." Finally, kinds of things in
Q are grouped into levels of strata that correspond to how much o-close-
ness is required to be very much of the kind in question.

12.2 Formally, a fuzzy type structure for the similarity structure S
= { Q, w, ¢ > should have at least the following properties. It should be
an ordered 4-tuple

(K,®, I, m>
where
a) K C FUZ(Q) and finite
b) w e K
c) forallteK, t Cpw

Intuitively, c) means that the degree to which something is of kind t can
be no greater than its significance in the data -- as indicated by w. Note,
however that c) does not rule out the possibility that max-values of v may
be much smaller than ¢. That is, there may be identifiable kinds of {’s
that are relatively insignificant as Q’s go. For example, there might be
coherent kinds of scientific literature that were relatively insignificant,
as science, in comparison to other kinds.

12.3  We require of the "identity relation" © that
d) ® e FUZ(K xK)

and, for all 7, v’ € K

e) Oc,7t) = 1
f) @(r,’) = O, 1)
g) © . © C—f ©
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In g) ’e.’ denotes "max-av composition" defined by, for all v, p € FUZ( K
=<K),x,yeK

That is, © is a reflexive, symmetric and e_-transitive fuzzy relation on K

- what is might be called ’a strong fuzzy similarity relation’ on K.
Requiring e_-transitivity, rather than e- or max-min-transitivity has the

effect of imposing a stronger kind of identity criterion for kinds in K.
Intuitively, © is some kind of a measure of how much two fuzzy sets
"overlap". Requiring e_-transitivity for © in K means that the overlap of

T with r must be greater than the maximum over all " e K of the
average overlap of t with t" and t" with ©’. Thus, if there is some 7" that
overlaps significantly with both t and ©’ then t must overlap significantly
with ©’.

12.4  We require of the type inclusion relation that
h) IT e FUZ(K x< K)
so that, for all 7, ©” e K
i) if 7 C v then MI(r,7’) =
Requirement i) means that C-inclusion entails maximum [T-inclusion, but
lesser degrees of II-inclusion may obtain even when C-inclusion does not
hold. Note that i) entails that, for all t € K,
M{r,t) =1
and together with b) that
[I{r,0) = 1.

That is, IT is symmetric and o is the "maximum element" for the II-
ordering. We further require:



3) if M(z,7’) = N(r’,7) then B(r,7”))? 2 M(r,77).
k) T .. <1l

The idea of j) is to require that kinds that mutually include each other are
very nearly the same kinds. Intuitively, IT will be some kind of measure
of the portion of the difference between t and 7’ is attributable to t’s
being larger than t. Then II(z,’) = II{r’,r) just when they have the value
4 and i) amounts to requiring that ©(r,t’) 2 4% Stronger versions of i)
are obtained by replacing the exponent 2 by some e > 2. There does not
appear to be any obviously "natural" choice for the strength of i). The

fuzzy set Q corresponding to the crisp set { is the maximal element for

CK TS, dee.

12.5 K is "stratified" by m, i.e.

) m e SET(,Ng'™)
so that
m) m(g) = 0.

The m-function partitions K into n + 1 levels { 0, 1,..., n} or n non trivial
levels {1, 2,..., n }, excluding w. We need some notation for m-levels.

Forall me No+n, let

Km::{teKIm(t);m}.

Intuitively, the fuzzy sets in K are intended to characterize the degree to
which members of {2 satisfy some criterion of g-closeness. The stratifi-
cation function m is intended to partition K according to the strength of
the criterion of o-closeness whose degree of satisfaction the fuzzy sets
characterize. That is, we want level n to contain fuzzy sets characterizing
the degree to which members of Q satisfy a criterion of g-closeness that
is stronger than the criterion of g-closeness whose degree of satisfaction
is characterized by the fuzzy sets in in level n - 1. Just how we produce
fuzzy sets satisfying this intuitive requirement, we may leave open. Our
discussion here need not be tied to the specific way of constructing typol-

. . m .
ogies for S considered above. Thus, members of K characterize the
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degree of satisfaction of a .stronger criterion of o-closeness than do
H

M-
members of K .

13. TYPE INCLUSION II.

13.0  The Il-relation is intended to represent "type inclusion” or
"specialization'. That is ’TI(r, ©’) = r’ means roughly 't is a kind of r’to
degree r’. We explicitly countenance the possibility that fuzzy types may
overlap -- not just in the sense that t and ©’ may have a non-null intersec-
tion, but also in the sense that " may be a kind of t as well as a kind of
T’ to degree r, even though t and k’ do not stand in the Tl-relation to any
degree approaching r, in either direction.

13.1 There are at least two obvious candidates for the IlI-relation.
The first is just to identify T with fuzzy set inclusion Cg, i.e.

Mz, o) =1 iff ¢ C_f T’

This makes II a crisp relation on K and assures that it will be a fuzzy
partial ordering in the sense of i) - k) above. The second [16] is to let

for t ' ¢’ and

for Tt =1,

Intuitively, TI{z,7’) is a measure of the degree to which t is "contained in"
. The numerator is a measure of the degree to which t’ is greater than
r, while the denomenator is a measure of the total difference between t

and . Thus II(r,t’) is a measure of the proportion of the total difference
between T and ©’ attributable to t’s being greater than t’.

13.2  This interpretation of II has the following properties:
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1y  H{r,r) e [0,1]

2) M(z,r’) = 0 iff, for all x € 2, ©(x) S T°(x)
3) Ir,r’) = 1 iff, for all x € &, T°(x) S t(x)
4)  T(c,0) =1 - 1I(<°,7).

5 Mz, = M(x,7) iff N(z,’) = %

13.3  Defined in this way II, is a fuzzy relation on K, but it is not
guaranteed to be a fuzzy partial ordering of K. Whether it is depends on K.
Condition i) above is assured by definition. Whether condition j) holds
depends intuitively on how finely we distinguish members of K - our
identity criteria @ for fuzzy types. If we lump together putative fuzzy
types that overlap to a "significant degree" then j) is likely to hold for II
Similarly, k) -- transitivity -- will hold provided that when II(z,7’) is big,
it is big because t’ is bigger than t on x’s with big values for both t and

2.

13.4  Intuitively, this seems to be roughly what we want. Though C
will always give us a (trivial) fuzzy partial ordering, it will exclude from
the ordering much that is should intuitively be in it. (See [7] for some
empirical evidence suggesting this.) Better that we have a stronger
concept of type-inclusion and let it be an empirical fact about the proxi-

mity structure that it can be provided with a fuzzy typology in which type-
inclusion is transitive.

13.5 For any TT € FUZ(K x K), we may define a crisp relation Se on K
= K by:

For all ¢, v’ € K, t <o ¢’ iff II(c7,7) C_f (r,7°)

That is, © <e t° just when t’ is Il-included in t to a lesser degree than t
is M-included in t’. When II is identified as above, this entails that:

t <o T’ iff [I(z,T°) > 4.

That is © <e r* just when t is II-included in ¢’ to a degree greater than 2.



13.6 It is easy to see that if I satisfies i) above then, for all T e K.
TSer
and, if II satisfies k) then, for all 7, * € K,
if t <o ¢7 and T’ Se " then T Se "
That is, <e is reflexive and transitive when II is reflexive and transitive.
However, the converse does not hold. Condition j) on II does not entail,
forall r, o, t" e K
if t Se 7’ and T’ Se t then v = 7’,
The closest we can come to this is
if T <o 7’ and o’ Lo t then (B(r,))? 2 (z, 7).
Thus II’s being a fuzzy partial ordering (relative to ®) in the sense of i)
k) does not quite entail that <e is a crisp partial ordering. It does entail
that <e is a "weak partial ordering” in the sense of being reflexive and
transitive.
13.7  We then define ~e-equivalence.
Forallt, ©’ e Kt ~e ¢’ iff t <o ¢’ and ° Se 7,
Since <e is transitive ~e is an equivalence relation. We may then say
that t’ covers t (C(t’,r) just when t’ <e-includes t, T is not ~e-equivalent
to v’ and there is no ~e-distinct t" between T and t’ in the <e-ordering.

That is,

For all r, r* € K, C(r,” 7) iff t <e 7, not ©” ~e r and there isno t" €
7 i ? ’ 1] K )
K, not ¢ ~e 7, not 7" ~e ¢’ s0 that © <e 7" 2e '

Since <e is transitive, we have

For all 7, * € K, if C{’,t) then not-C(z,7’).

L0
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14. TYPE SIMILARITY ©.

14.0  Among the ways of measuring the relative amount of "overlap" or
"intersection" among members of FUZ(Q) that have been suggested ([2],
[16]) is this. Let

2| vixux
, x € 8
O,y =

( 2] vix? Z| p(X)Z)%
x € £ x € §2

© then has the following properties:
1)  © e FUZ( FUZ(Q) < FUZ(L) )
2) Ol =1 iff, for all x € &, v(x) = plx)
3)  Alw,p) =0 iff, for all x € Q, v(x) = 0 iff p(x) #0.
4)  Olv,u) = Oy

® will not necessarily be e -transitive, nor will it necessarily be related
to I-inclusion as required gy j) above. But, it is plausible to think that
these conditions must be satisfied by the candidates for the © and II
relations we are considering in situations where the data warrant imposing

a fuzzy typology.
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