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ABSTRACT

We begin by considering two principles, each having the form causal completeness ergo

screening-off. The first concerns a common cause of two or more effects; the second

describes an intermediate link in a causal chain. They are logically independent of each

other, each is independent of Reichenbach’s principle of the common cause, and each is a

consequence of the causal Markov condition. Simple examples show that causal incom-

pleteness means that screening-off may fail to obtain. We derive a stronger result: in a

rather general setting, if the composite cause C1 & C2 & . . . & Cn screens-off one event

from another, then each of the n component causes C1, C2, . . ., Cn must fail to screen-off.

The idea that a cause may be ordinally invariant in its impact on different effects is

defined; it plays an important role in establishing this no-go theorem. Along the way,

we describe how composite and component causes can all screen-off when ordinal in-

variance fails. We argue that this theorem is relevant to assessing the plausibility of the

two screening-off principles. The discovery of incomplete causes that screen-off is not

evidence that causal completeness must engender screening-off. Formal and epistemic

analogies between screening-off and determinism are discussed.
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1 Introduction

Screening-off gets discussed in two causal contexts. First, in a causal chain

from C to I to E, there is the idea that the intermediate link I screens-off C

from E. For example, when Joe dials Sally’s telephone number, this causes

Sally’s phone to ring, and her phone’s ringing causes her to pick up. In the old

days, the ringing of Sally’s phone screened-off Joe’s dialling from her answer-

ing; given that her phone is ringing, the probability of her picking up is the

same, whether or not Joe dialled her number. But times have changed. With

caller-ID there now are two ways that Joe’s dialling Sally can affect whether

she picks up her phone; his dialling causes her phone to ring and his dialling

causes her caller-ID window to say ‘Joe Schmoe is calling’. Now the phone’s

ringing does not screen-off Joe’s dialling from Sally’s picking up.

The second context in which screening-off gets discussed involves a

common cause that is said to screen-off its joint effects from each other.

For example, in Mendelian genetics, when two parents have two offspring,

the genotype of the parental pair screens-off one offspring’s genotype from the

other’s. Given that the parental pair is AA and Aa at a locus, the probability

that one offspring is AA is 1/2 regardless of what the other offspring’s geno-

type happens to be. This simple relation has not been supplanted by modern

technology (at least, not yet).

When caller-ID came on line, ‘the ringing of Sally’s phone’ ceased to pro-

vide a ‘complete description’ of the causally relevant events that occurred at

that time. With this failure of completeness, the ringing no longer

screened-off. A similar point pertains to Mendelian genetics. Although the

genotype of the parental pair screens-off one offspring’s genotype from

the other’s, the genotype of just one parent does not. Given that mom is

AA, the probability that one offspring is AA takes different values depending

on what the genotype is of the other offspring. Here again, an incomplete

cause fails to screen-off.

Phone calls and Mendelian reproduction are, of course, just examples; there

are general principles concerning screening-off by intermediate links and by

common causes. Since we wish to discuss how these principles are related to

each other, we will formulate them with reference to a single set of variables.

But first we need to explain our notation and define two concepts. As shown in

Figure 1, the variables E1 and E2 at t3 represent two effects of the proximate

cause Cp at t2, which in turn is caused by the distal cause Cd at t1. Each variable

can take various discrete values (we’ll say that a variable is dichotomous when

it has two values and nondichotomous when it has three or more); when it

takes a value, the result is what we will call ‘an event’. For example, ‘Cd ¼ 1’

represents the event of the variable Cd being in state one. To philosophers

wedded to the idea that causation is a relation between events, it may sound
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odd to say that causation is a relation between variables, but there is really no

oddity here. Whether Joe dials Sally’s number influences whether Sally’s phone

rings, and whether it rings influences whether she picks up. This is variable

talk. But it also is true that Joe’s dialling causes the phone to ring, and the

phone’s ringing causes Sally to pick up. This is event talk. We stipulate that

the occurrence of an event is equivalent to a certain proposition’s being true.

As our examples suggest, X screens-off Y from Z means that

PrðY ¼ ijX ¼ kÞ ¼ PrðY ¼ ijX ¼ k&Z ¼ jÞ; for all i; j; k:1

This definition of screening-off applies precisely when all the conditional

probabilities are well-defined (meaning that the conditioning propositions

all have non-zero probabilities).

With this definition in hand, we can now state what we call the common

cause principle (CC):

If C is the only common cause of two effects E1 and E2, and neither Ei

causes the other, then C screens-off E1 from E2.

What if E1 and E2 have more than one common cause? Does this mean

that CC does not apply? Not at all—the several common causes can be

melded together into a single composite cause. This is what we did when we

Figure 1. Two questions about screening-off: Does the proximate cause Cp

screen-off the distal cause Cd from E1 and from E2? Does Cp screen-off E1 from E2?

1 This implies that PrðY ¼ i &Z ¼ jjX ¼ kÞ ¼ PrðY ¼ ijX ¼ kÞPrðZ ¼ jjX ¼ kÞ for all i, j, k; the

converse holds also, provided PrðX ¼ k&Z ¼ jÞ4 0.
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discussed the parental pair as a single common cause of the two offspring

genotypes.

Notice that CC differs from Reichenbach’s ([1956]) widely discussed prin-

ciple of the common cause (RPCC), one version of which reads as follows:

If E1 and E2 are correlated,2 and neither causes the other, they have a

screening-off common cause.3

CC clearly does not entail RPCC, since RPCC would be false if there were

correlated event pairs that are causally unconnected in the sense that neither

causes the other and they have no common causes (Sober [2001]; Sober [2008],

pp. 230–4) but the existence of such event pairs would not falsify CC. RPCC

does not entail CC; the fact that two correlated events have a screening-off

common cause does not imply that a complete set of common causes will

screen-off.

We turn now to intermediate links. We will say that Cp is an intermediate

link between Cd at t1 and an event E at a later time t3 precisely when Cp occurs

between t1 and t3, Cd causes Cp, and Cp causes E. A first attempt at defining an

intermediate link principle would be to assert that if Cd causes Cp, and Cp

causes E, and Cp is the only intermediate link between Cd and E, then Cp

screens-off Cd from E. However, it is easy to see that this principle will not

hold in general; for example, suppose that there is a second, direct pathway by

which Cd causes E (one that does not pass through Cp), as in the left-hand

(curved) link shown in Figure 2. Then Cp may fail to screen-off E from Cd. It

may be replied that the thesis of ‘no action at a temporal distance (NATD)’,4

can be invoked here. The idea is that there must exist a ‘representative’ event,

R, on the curved path between Cd and E, and if we regard the more complete

composite cause (Cp, R) as an intermediate link between Cd and E, then it will

now screen-off E from Cd. Although this recourse to NATD rescues the inter-

mediate link principle we stated, it will not work for certain other cases, such

as the two asterisked situations depicted in Figure 2. If an event either causes

both Cp and E (upper * in Figure 2) or it causes both Cd and E (lower * in 2),

then not only can Cp fail to screen-off Cd from E but so too may (Cp, R), for

2 These correlations involve probabilities, not sample frequencies. When E1 and E2 are dichot-

omous, correlation means that PrðE1 &E2Þ 6¼ PrðE1ÞPrðE2Þ.
3 Although Reichenbach formulated his principle for dichotomous variables, it is natural to for-

mulate the principle so that it applies to n-state variables, for any n � 2 (Uffink [1999]). Our

definitions of screening-off and CC do so.
4 We take NATD to assert:

Along each path from C to E there exists an intermediate link I so that C causes I

and I causes E.

This principle entails that there are infinitely many intermediate links between Cd and E.
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any collection R of intermediate links between Cd and E (as these must lie on

the directed causal path Cd!Cp!E).5,6

We can avoid the three counter-examples shown in Figure 2, and set NATD

to one side, by formulating the intermediate link principle (IL) as follows:

If Cd causes Cp which causes E, and if every path from Cd to E, and from

any cause of Cp to E, passes through Cp, then Cp screens-off E from Cd.

Although we have formulated IL by describing Cp as a single variable, there is

nothing wrong with thinking of it as a conjunction of variables. For example,

if C1
p ;C2

p ; . . . ;Cn
p are the only intermediate links between Cd and E, (IL) will

Figure 2. Three cases in which Cp can fail to screen-off Cd from E, involving either

a second, direct link from Cd to E, or events (*) that cause Cp and E or that cause

Cd and E. The addition of other causal links, or of other events on existing (or new)

causal links, cannot restore the guarantee that Cp will screen-off Cd from E.

5 Or, in addition, on the left-hand curved link if it is also present. Note also that the upper * in

Figure 2 could occur before Cd though it is shown in Figure 2 as occurring after it.
6 In fact, screening-off must fail in the circumstances described above when the conditions of

non-degeneracy and weak influence, which we will discuss in Section 2, are satisfied.
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say that ðC1
p ;C2

p ; . . . ;Cn
p Þ screens-off Cd from E if the assumptions in (IL) are

satisfied. The different conjuncts may have different temporal indices, but

each must fall between the dates of Cd and E, namely t1 and t3. This parallels

our earlier point that, when CC talks about C being the ‘only’ common cause,

there is nothing wrong with thinking of it as a conjunction of common causes,

and these conjuncts may likewise have different dates.

Neither IL nor CC rules out considering less inclusive sets of intermediate

links or common causes; perhaps some of these can be said to screen-off. For

example, maybe Cp all by itself will screen-off E1 from E2 in Figure 1, there

being no need to mention Cd. If there are n causal pathways linking C at t1 to E

at t3, maybe n intermediates, one on each pathway, will suffice to screen-off C

from E.

If the causal relations described in IL and CC are deterministic, then both

principles are true, for the simple reason that probabilities of 0 and 1 are

‘sticky’. Consider how CC applies to Figure 1. If the causal relations depicted

there are deterministic, then PrðE1 at t3jCp at t2Þ must equal 0 or 1, and this

entails that PrðE1 at t3jCp at t2 &E2 at t3Þ must also equal 0 or 1, so

screening-off obtains. On the other hand, if causal relations are not determin-

istic, the question remains as to why IL and CC should be accepted. We take

no stand in what follows on whether IL and CC are true.

CC and IL have different standings in current science. Quantum mechanics

has led many to be wary of CC; some even think that quantum mechanical

theory and evidence provide good reason to think that CC is false (e.g. Van

Fraassen [1982]), though it must be recognized that the DeBroglie–Bohm in-

terpretation of quantum mechanics is deterministic, which means that it en-

tails that CC is true. So inside quantum mechanics, CC is controversial.

Outside, CC has rarely been doubted; Cartwright ([2002]) is an exception.

IL exhibits a different pattern; this principle is widely assumed, both inside

of quantum mechanics, and out. When an intermediate link fails to screen-off

(and there are no asterisked common causes that might explain why), the usual

reaction is that the link must be causally incomplete.

Despite these differences, both IL and CC are consequences of a central

principle in Bayes net modelling called the causal Markov condition. To ex-

plain why, we begin by defining what it is for a set of variables, V, and an

acyclic causal graph, G, for those variables to satisfy the Markov condition

(MC). This is true precisely when, for every X2V,

PrðX jParðX ÞÞ ¼ PrðX jParðX Þ&NDðX ÞÞ:

Here Par(X) are the parents of X (i.e. X’s direct causes in V), and ND(X) are

the non-descendants of X (i.e. variables in V not caused by X). Thus, MC says

that Par(X) screens-off X from ND(X) for all X2V.
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Let X, Y, Z be any variables or sets of variables. Assuming MC, a sufficient

condition for Z to screen-off X from Y is that X and Y are ‘d-separated’ by Z

(Theorem 1.2.4 of Pearl ([2000])). Here d-separation is a condition that de-

pends just on the structure of the causal graph G within which X, Y, Z sit, and

not on the details of the underlying probability distribution that satisfies MC.7

If X and Y are not d-separated by Z, then Z might still screen-off X from Y,

but this requires precise tuning of the parameters describing the underlying

probability distribution (we will provide an example of this in Theorem 5b).8

The definition of MC leaves it open when, if at all, a set of variables and a

graph will satisfy the Markov condition. We follow Hitchcock’s ([2010]) ex-

position and define the causal Markov condition (CMC) as follows:

If V is a suitable set of variables and G is a true and complete graph of the

causal relations among those variables, then (V, G) will obey the Markov

condition.

Of course, everything depends on specifying what it means for V to be

‘suitable’. To avoid trivialization, this can’t be defined to mean that (V, G)

exhibits the screening-off properties demanded by MC. Hitchcock ([2010])

points out that the CMC will or may fail if the following conditions aren’t

satisfied:

(i) V are appropriately distinct.

(ii) V does not include variables that describe distant correlations in quan-

tum systems.

(iii) V are sufficiently fine-grained.

(iv) V doesn’t involve mixing populations of different types.

(v) V is causally sufficient; that is, if V contains variables X and Y that have

common causes, then those common causes are also in V.

(vi) The population to which (V, G) and the probability distribution applies

was selected by a procedure that is not biased towards two or more of the

variables in the set V.

We will understand the CMC to assert that these six conditions suffice for the

MC to be satisfied. We note that the six conditions that go into the CMC are a

motley crew. Five of them are ‘formal’ in the sense that they are neutral about

the subject matter of the model under discussion. The sixth is different—it

7 Formally, Z d-separates X from Y if and only if each (undirected) path from a variable in X to a

variable in Y includes at least one of the following chains, where i, j are any elements of V: (i)

i!z!j or (ii) i z!j where z2Z, or (iii) i!m j where m is not in Z and no descendant of m is

in Z (for further details, see for example Pearl [2009], or Spirtes et al. [1993/2000]).
8 The fact that a cause, C, of two effects, E1 and E2, must screen-off each from the other if C

d-separates those two effects ensures that our main no-go results (Theorems 4 and 6 and their

corollaries) remain true if ‘screening-off’ is replaced throughout by ‘d-separates’ in their

statement.
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excludes causal models that are about quantum mechanical phenomena. We

understand why this sixth condition is included but it still gives us pause. If

quantum mechanics makes it reasonable to decline to assume the CMC, why

should one be so sure that CMC works fine in all other domains? We return to

this question at the end of the article.

We now describe how CMC entails both IL and CC:

Theorem 1

(1a) CMC entails IL: If Cd causes Cp which causes E, and if every path from

Cd to E and from any cause of Cp to E, passes through Cp, then CMC

entails that Cp screens-off E from Cd.

(1b) CMC entails CC: If C is the only common cause of two effects E1 and E2,

and neither Ei causes the other, then CMC entails that C screens-off E1

from E2.

To establish Theorem (1a), a case analysis reveals that the only way that Cp

can fail to d-separate Cd from E is by one of the situations described in

Figure 2 (additional links and events may also be present). However, this is

excluded by the antecedent of IL. So, Cp d-separates Cd from E and thereby Cp

screens-off Cd from E, by Theorem 1.2.4 of Pearl ([2000]).

To establish Theorem (1b), we simply note that E1 and E2 are d-separated

by C, and so we may apply Theorem 1.2.4 of Pearl ([2000]), as we did for

Theorem (1a). This completes the proof of Theorem 1. «

Since IL and CC are both consequences of the CMC, the question arises

of why it is worth stating them as separate principles. The reason is that

they are logically independent of each other (when CMC is not assumed),

as we will show shortly (Corollary 1). But we first observe that even when

CMC is true, there can be causal systems in which there are common causes

and intermediate links, where one of these screens-off whereas the other does

not. This is the point of our Theorem 2. Returning to Figure 1, we now will

take (Cd, Cp) to be the ‘C ’ described in CC and (E1, E2) to be the ‘E’ described

in IL.

Theorem 2

(i) When Cd causes Cp, and Cp causes each of E1 and E2 (with neither Ei

causing the other) and the CMC is satisfied, it is possible for C¼ (Cd, Cp)

to screen-off E1 from E2 and yet for Cp to fail to screen-off Cd from E1 or

from E2. It is also possible for Cp to screen-off Cd from E1 and from E2,

yet for C ¼ (Cd, Cp) to fail to screen-off E1 from E2.

(ii) Moreover, these two claims also hold when (Cd, Cp) is replaced just

by Cp.

Elliott Sober and Mike Steel520

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article/64/3/513/1470585 by Serials D

epartm
ent user on 06 Septem

ber 2020



The proof of the first and second claim in Part (i) of Theorem 2 is illustrated by

the two situations shown in Figure 3a and b, respectively (in part (b), * is a

cause of E1 and E2 that is not a cause of Cd). In both cases it is clear that Cd

causes Cp, and Cp causes each of E1 and E2 (with neither Ei causing the other).

Now, in Figure 3a, although (Cd, Cp) d-separates E1 from E2, Cp does not

d-separate Cd from E1 or from E2 (and so, in particular, there is a probability

distribution for which Cp does not screen-off Cd from E1 or from E2, by the

second part of Theorem 1.2.4 of Pearl ([2000])). Similarly, in Figure 3b,

although Cp d-separates (and so screens-off) Cd from E1 and E2, (Cd, Cp)

does not d-separate E1 from E2 (and so there is a probability distribution

for which Cp does not screen-off E1 from E2).

Regarding proof of part (ii), the second claim of part (i) still holds when

(Cd, Cp) is replaced by Cp by repeating the earlier argument with Figure 3b.

However, to establish the first claim of part (i) when (Cd, Cp) is replaced by Cp,

requires more care. First observe that, for Figure 3c, Cp d-separates E1 from

E2 and Cp does not d-separate Cd from E1, and so, as before, we can obtain an

example in which Cp screens-off E1 from E2 but fails to screen-off Cd from E1.

However, we wished for something stronger, namely that Cp also fails to

screen-off Cd from E2, and this does not hold in Figure 3c. Moreover,

adding additional variables and/or directed arcs (for example adding a

second event * with arcs to Cp and E2) will not help for the simple reason

that if Cp d-separates E1 from E2 then Cp either d-separates Cd from E1 or Cp d-

separates Cd from E2.

Thus, to provide an example for the first claim in (ii) we cannot rely just on a

d-separation argument but must instead resort to an example that requires

‘fine balance’. Such examples exist, and we provide an explicit one in the

Appendix. This completes the proof of Theorem 2. «

(a) (b) (c)

Figure 3. Cases relevant to the proof of Theorem 2.

Screening-Off and Causal Incompleteness 521

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article/64/3/513/1470585 by Serials D

epartm
ent user on 06 Septem

ber 2020



We provide a simple example to illustrate the first situation described in

Theorem 2(i), and corresponding to Figure 3a, in which causes are determin-

istic and trichotomous (and exchangeable).9 Suppose that Cd and Cp are, re-

spectively, the genotype (AA, Aa or aa) of a female, and of the male who is

chosen as a mate by the female. Suppose that a is a recessive allele, and A is

dominant, so that individuals of type AA or Aa exhibit one phenotype

(type-P), whereas those of type aa exhibit a second (type-Q); a familiar

example from the genetics of eye colour is P¼ brown and Q¼ blue. We

assume that the population is in Hardy–Weinberg equilibrium, with both

alleles present. Suppose further that a type-Q female will only select as her

mate a type-Q male, but a type-P female is indifferent to the phenotype of

males in her mate selection. Suppose that once the female selects a male they

have two offspring. Let E1 be the event that the one child is type-P and E2 the

event that the other child is type-P. Regarding the condition that Cp does not

screen-off Cd from Ei, a sufficient condition for this to hold is that:

PrðEijCp ¼ aa &Cd ¼ aaÞ 6¼ PrðEijCp ¼ aaÞ; ð1Þ

and this applies in this example since the left-hand side is zero, whereas the

right-hand side is non-zero.

Since CMC entails both IL and CC, the two principles can have opposite

truth-values only when CMC is false. For believers in the CMC, it won’t make

sense to separate CC from IL. But for those who have yet to commit, it is

interesting that IL and CC do not necessarily stand or fall together, as the next

result asserts.

Corollary 1

In the setting of Figure 1, probability distributions on (Cd, Cp, E1, E2) can be

defined so that CC holds and IL fails. Similarly, it is also possible for IL to

hold and CC to fail.

Corollary 1 follows directly from Theorem 2(i); simply take a probability

distribution on (Cd, Cp, E1, E2) that arises in each of the two scenarios con-

sidered in Theorem 2(i) (under CMC) but apply them to the causal setting of

Figure 1, where the additional (curved) paths and * events in Figure 3 (used to

generate the probability distribution on (Cd, Cp, E1, E2)) no longer exist. Note

that the antecedent of CC and IL both hold in this setting, and in one case the

consequent of CC fails, whereas in the other that of IL fails. This completes

the proof of Corollary 1.

Although CC and IL are logically independent of each other, there is a

property of the screening-off relation that we explore in what follows that

9 Theorem 2 remains true even for dichotomous causes, and with effects that are not determin-

istically based on the states of their causes.
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pertains to each. Both are formulated in terms of an event that is said to be

causally complete. What happens to screening-off when we consider events

that are causally incomplete? Telephony and Mendelism show that an incom-

plete cause may fail to screen-off even though a complete cause succeeds in

doing so. Can something stronger be demonstrated—that an incomplete cause

must fail to screen-off if a complete cause succeeds? What assumptions about

causality are needed to establish this stronger result?

2 Influence and Non-degeneracy Conditions

Suppose that C1 and C2 are each common causes of E1 and E2, and that C1

and C2 are not related to each other as cause to effect. An example, discussed

earlier, is the two parents who have two offspring. We set to one side the

example depicted in Figure 1, in which Cd and Cp are both common causes

of E1 and E2, and Cd causes Cp. We begin with the case of two common causes

and later generalize to the case of n.

The variables C1, C2, E1, and E2 may be dichotomous (in which case we

denote the two states as 0 or 1) or take values in a larger set of states.10 Here we

consider the following question: if each possible combination of values for the

pair C1 and C2 (which we denote as (C1, C2)) screens-off E1 from E2, is it

possible for one or both of the causes (C1 or C2) individually to screen-off E1

from E2? In what follows, we call C1 and C2 the constituent (or component)

causes and their conjunction, C1 &C2, the composite cause. In the genetics

example, the genotype of each parent is a constituent cause, whereas the geno-

type of the parental pair is the composite cause. The theorems we prove in

what follows concern the relationship between composite causes screening-off

and constituent causes screening-off.

We assume the following two propositions about these constituent causes,

which we state now for two or more causes C1, . . . , Ck, each of which can

assume an arbitrary number of states, and with each cause able to influence

one or more effects E1, . . . ,Em:

Non-degeneracy (n-D): For any assignment s1; . . . ; sk of states to

C1; . . . ;Ck, respectively, the events Ci ¼ si have nonzero joint probabil-

ity; that is

PrðC1 ¼ s1 &C2 ¼ s2 & � � � &Ck ¼ skÞ4 0:

Weak influence of Ci on Ej (w-I): For cause Ci and effect Ej, there exists at

least one assignment of states for the remaining k � 1 causes, such that

10 In the case of dichotomous variables E1 and E2, it is an easy exercise to show that X screens-off

E1 from E2 if conditional independence applies for the events E1 ¼ 1 and E2 ¼ 1.
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some change in the state of Ci,
11 while holding fixed the value of the

remaining k � 1, changes the probability of at least one state, sj, of Ej.
12

Notice that condition n-D implies that the causes are less than perfectly cor-

related, that is, PrðCi ¼ sijCj ¼ sj; 8j 6¼ iÞ5 1, for each i. Regarding w-I, if

each cause exerts weak influence on each effect, we say that w-I holds uni-

formly. Note that, even for two effects, this uniform application of w-I does

not require that there exist some change to a state of Ci (with all other causes

fixed) that simultaneously changes the probability of some state of E1 and of

some state of E2. That stronger requirement is represented by the following

proposition:

Strong influence (s-I): For each cause Ci, there exist at least one

assignment of states for the remaining k� 1 causes, such that some

change in the state of Ci while holding fixed the value of the remaining

k� 1 changes the probability of at least one state of each of the m effects.

Strong-influence entails weak-influence for the same reason that ‘there is a

single day that is everyone’s birthday’ entails ‘everyone has a birthday’. The

strong influence proposition, s-I will figure in Theorems 4, 5a, and 5b, but

it will be dropped and replaced by weak influence, w-I, and by a propos-

ition about causation concerning ordinal invariance in developing Theorems

6 and its corollary. None of our results requires a definition of what

causation is.

Because IL and CC describe what must be true when all the intermediate links

or all the common causes are in hand, it may seem that neither has any bearing

on practical science. Not so. Their applicability is to be found in their contra-

positives. Suppose your model says, correctly, that A causes B and B causes C,

and it then turns out that B does not screen-off A from C; IL will conclude that

there must be more going on causally than your model acknowledges—there are

additional variables and/or causal dependencies you need to take into account.

If your model says, correctly, that C is a common cause of E1 and E2, with

neither Ei causing the other, and it then turns out that C does not screen-off

these two effects from each other, CC will conclude that your model is incom-

plete—there are additional common causes out there in nature. So IL and CC

underwrite scientific inferences that are both commonplace and sensible. In

addition, the causal Markov condition (which entails CC and IL) plays a foun-

dational role in the discovery algorithms (developed by Spirtes et al. ([1993/

2000]); Verma and Pearl [1990], [1992]; Cooper and Herskovits [1992]) for

inferring causal relationships from probabilistic facts; the value of these

11 Here and in what follows, when we speak of ‘changing’ the state of a cause, we mean interven-

tions in the technical sense that has come to be used in the causal modelling literature. See, for

example, Pearl ([2000]), Spirtes et al. ([1993/2000]), and Woodward ([2003]).
12 We will refer to the fixed values of the remaining causes that reveal how a change in Ci alters the

probability of a state sj of Ej as ‘revelatory states’ for the ‘influenced state’, sj.
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algorithms is not something we dispute. Still, the question remains of whether

CC and IL are true, a topic to which we return at the end of this article.

We end this section by pointing out two restrictions on causes and effects

that arise from the previous definitions. First, suppose that C ¼ ðC1; . . . ;CnÞ

is a deterministic cause of E (i.e. the probability that E takes any particular

state is either 0 or 1 once we condition on the states of the individual causes

in C), and that C 0 includes C1; . . . ;Cn and at least one other event, and that C0

satisfies n-D. Then C 0 clearly still determines E, yet C 0 cannot satisfy w-I by

the following result, the proof of which (as with other results which follow) is

provided in the Appendix.

Theorem 3a

If C is a deterministic cause of E, and C 0 includes C and at least one other

cause, then C 0 must fail to satisfy n-D, or w-I, or both.

We also note that if a common cause, C, is to screen-off E1 from E2, this

can place constraints on the number of states that C must possess.

More specifically, we have the following result, whose proof is also in the

Appendix.

Theorem 3b

For any two events E1 and E2, each with k states, if the k� k matrix

P :¼ PrðE1 ¼ i &E2 ¼ jÞ has non-zero determinant,13 then any cause, C,

with fewer than k states must fail to screen-off E1 from E2.

In certain settings, P must have a non-zero determinant. One example arises

in modelling evolutionary processes, such as DNA site substitutions. Consider

any Markov process on k states (for DNA, k¼ 4 corresponding to the four

nucleotides A, C, G, T) that allows transitions between all states at a positive

rate, and is in equilibrium. Suppose that a (random) state of the process at

time t1 evolves from a common ancestor down two independent descendant

lineages for a further time t2. If E1 and E2 are the resulting two states (nucleo-

tides) at time t1 + t2, then P always has strictly positive determinant. However,

this does not mean that P has non-zero determinant for all Markovian pro-

cesses, since some have built-in independence assumptions that insure that the

determinant of P is zero.14 In these cases Theorem 3b has an extension in

13 A determinant equal to zero is a very strong constraint. Here’s a simple visual picture. Suppose

each Ei has three states; P is therefore a 3 � 3 matrix. Consider the three rows (or columns) of P

as three points in the three-dimensional cube (x, y, z) where 05 x; y; z5 1. The condition that

detðPÞ ¼ 0 is the condition that these three points are colinear.
14 Consider a Mendelian example. Let E1 and E2 be the genotypes (AA, Aa, aa) of two full sibs, and

suppose that the genotype of one parent is Aa whereas that of the second parent is a matter of

probability. Each possible state of the genotype of the second parent screens off E1 from E2. Yet

detðPÞ ¼ 0, so Theorem 3b does not apply.
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which a broader sufficient condition is identified that constrains the number of

states a common cause must have if it screens-off.15

Theorem 3b may be useful in practice. Observing the frequencies of (E1¼ i

and E2¼ j) for different values of i and j may permit you to estimate the entries

in the P matrix, and this may provide sufficiently strong evidence for you to

conclude that its determinant is non-zero. If so, you have good reason to

conclude that various conjectured common causes cannot screen-off.

3 A No-Go Theorem for Two Dichotomous Causes and its

Limitations

For dichotomous effects and just two common causes, at least one of which is

dichotomous, n-D and s-I suffice to establish a conflict between a composite

cause’s screening-off and a constituent cause’s doing so. Although we will

prove no-go theorems that cover larger numbers of variables (both dichotom-

ous and non-dichotomous), these will require more intricate conditions. For

starters, we have:

Theorem 4 (dichotomous cause(s) and effects)

Suppose that C1 and C2 are common causes of the dichotomous effects E1 and

E2, that n-D and s-I are satisfied, and that C2 is dichotomous. Then the com-

posite cause, (C1, C2), screens-off E1 from E2 only if C1 fails to do so.

Moreover, if both causes are dichotomous and the composite cause

screens-off E1 from E2, then neither component cause screens-off.16

Theorem 4 also applies to the case of intermediate links: Suppose that C

causes I1 and I2, and each of these causes E, where all these variables are

dichotomous. If n-D and s-I are satisfied (with C1 ¼ I1, C2 ¼ I2, E1 ¼ E,

E2 ¼ C),17 then if the composite (I1, I2) screens-off C from E, each of the

constituents I1 and I2 fails to do so.

Notice that Theorem 4 requires at least one of the causes to be dichotom-

ous. What if none of them is? It turns out that extending Theorem 4 to non-

dichotomous causes necessarily requires imposing additional conditions, as

the following result makes clear.

15 Regardless of the value of the detðPÞ, if P has rank equal to r, then any common cause with fewer

than r states fails to screen-off E1 from E2 (see the proof of Theorem 3b). The ‘rank’ of a matrix

is the number of its linearly independent rows (or, equivalently, columns). E1 and E2 are inde-

pendent precisely when P has rank 1. At the other extreme, a k� k matrix has maximal rank k iff

its determinant is non-zero.
16 This theorem strengthens a result derived by Sober ([1988], pp. 98–9).
17 Here and elsewhere, we allow a ‘cause’ to also be an ‘effect’ (for example the event Cp in Figure

1); formally, there is no problem in doing this as the properties we describe relate to events

generally.

Elliott Sober and Mike Steel526

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article/64/3/513/1470585 by Serials D

epartm
ent user on 06 Septem

ber 2020



Theorem 5a (both causes non-dichotomous)

There exist two non-dichotomous causes C1 and C2 satisfying n-D and s-I for

two effects E1 and E2, where each of (C1, C2), C1 and C2 screens-off E1 from

E2. Moreover, we can require that the two causes each have three equiprob-

able states, and are independent of each other.

We now describe an example to justify Theorem 5a. Suppose we have two

causes C1 and C2, each of which has three states, along with two dichotomous

effects, E1 and E2, which are screened-off from each other by the pair (C1, C2).

Now, suppose that the conditional probabilities of the events E1 ¼ 1 and E2 ¼

1, given the possible combination of states of the causes are as shown in

Tables 1 and 2, respectively. Notice that, as we increase the numerical state

of C1 (for each fixed state of C2), the conditional probability that E1 ¼ 1

increases linearly (Table 1) whereas the conditional probability that E2 ¼ 1

increases and then decreases (Table 2).

As a simple example, let C1 be the number of rest days (1, 2 or 3) that a

runner takes every four days while training for a marathon, E1 be the event

that she has no injuries or pain at the start of the race (where increasing rest

helps), and E2 the event that she wins (where some rest, but not too much, is

best). Tables 1 and 2 also show a similar pair of contrasting behaviours if we

fix a value of C1 and vary C2 (in the marathon setting, C2 might measure the

degree of supportiveness of the running shoes used during training—as with

C1, larger C2 values increase the probability of E1, but there is again likely to

be a sweet spot for the event E2).

For the values in Tables 1 and 2, it can be shown that if the causes are

independent, and for i = 1, 2 we set

PrðCi ¼ 1Þ ¼
1

9
and PrðCi ¼ 2Þ ¼ PrðCi ¼ 3Þ ¼

4

9
;

Table 1. Pr(E1¼ 1jC1¼ g & C2¼ h)

C2¼ 1 C2¼ 2 C2¼ 3

C1¼ 1 0.2 0.3 0.4

C1¼ 2 0.3 0.4 0.5

C1¼ 3 0.4 0.5 0.6

Table 2. Pr(E2¼ 1jC1¼ g & C2¼ h)

C2¼ 1 C2¼ 2 C2¼ 3

C1¼ 1 0.2 0.4 0.3

C1¼ 2 0.4 0.6 0.5

C1¼ 3 0.3 0.5 0.4
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then C1 screens-off E1 from E2, thereby justifying Theorem 5a (a more formal

proof is provided in the Appendix). Moreover, by the symmetry in the tables,

C2 also screens-off E1 from E2. We note that the particular solution we have

described is not unique, but any solution requires certain equations to be

satisfied exactly.

Theorem 5a addressed the question of whether Theorem 4, which con-

cerns two dichotomous causes, breaks down when we depart from the

setting of dichotomous causes. The example described is germane because it

involves causes that have three states. Now we consider another departure

from the narrow compass of Theorem 4—we show that this theorem

also breaks down when there are more than two dichotomous causes.

Again, the increase in number that needs to be considered is modest—we

move from two to three. For three dichotomous causes, it is possible for the

composite cause to screen-off and for each of the three constituent causes to

screen-off as well.

Theorem 5b

There exist three independent and dichotomous causes C1, C2, C3 and two

dichotomous effects E1 and E2 that satisfy n-D and s-I, for which: (i) (C1, C2,

C3) screens-off E1 from E2; (ii) Ci screens-off E1 from E2 for each i¼ 1, 2, 3;

(iii) (C1, C2), (C2, C3), and (C1, C3) each fail to screen-off E1 from E2.

To establish this result we describe a bar game that involves three players,

each of whom reveals either a clenched fist or an open hand; they do so sim-

ultaneously (by the usual ‘three shakes method’). A person wins this game if he

or she reveals a hand that differs from what the other two players present, in

which case the latter two lose. Otherwise (i.e., if all three reveal a clenched fist

or all reveal an open hand) the game is a draw. Suppose each player decides his

or her strategy independently and chooses between the two strategies with

equal probability. If there is a winner, this player must drink a glass of tequila

(with probability 1), whereas each of the two losers is required to toss a fair

coin, and drink a glass of tequila if and only if the toss lands heads. If the game

ends in a draw, then one of the three players is selected uniformly at random

(for example, by rolling a fair die with two faces assigned to each person) and

that person drinks a glass of tequila.

Let E1 be the event that player 1 drinks a glass of tequila and E2 the

event that player 2 drinks a glass of tequila. We won’t model whether player

3 partakes. Let Ci be the hand behaviour of player i (for i¼ 1, 2, 3; with

0¼ open hand, 1¼ clenched fist). It is clear that n-D applies since the three

causes are independent and PrðCi ¼ 1Þ ¼ 1=2. Moreover, the strong influence

condition, s-I, applies, since if any two players select the same strategy (say

‘clenched fist’), then changing the strategy for the remaining player

from that same strategy to the alternative alters the probability of the

Elliott Sober and Mike Steel528

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article/64/3/513/1470585 by Serials D

epartm
ent user on 06 Septem

ber 2020



event E1 ¼ 1 and of the event E2 ¼ 1 (because we thereby change from a

draw to a situation in which there is a winner and two losers). Property (i) is

clear by the independence of the drinking behaviours after the hands are

held forth. For property (ii), the strong symmetry in the game entails that

the conditional probability PrðEj ¼ 1jCi ¼ xÞ takes the same values for both

j, all three values of i, and both values of x, and this probability equals

PrðEj ¼ 1jCi ¼ xÞ ¼
1

4
� 1þ

1

2
�
1

2
þ

1

4
�
1

3
¼

7

12
;

by considering the probability of win, loss, or draw, respectively, for player j.

Similarly,

PrðE1 ¼ 1&E2 ¼ 1jCi ¼ xÞ is also independent of i and x and

PrðE1 ¼ 1&E2 ¼ 1jCi ¼ xÞ ¼
1

4
� 1 �

1

2
þ

1

4
�
1

2
� 1þ

1

4
�

1

3

� �2

þ
1

4
�

1

2

� �2

¼
49

144
;

by considering the probability that player 1 wins, player 2 wins, both players

draw, and player 3 wins, respectively. It is now apparent that this quantity is

the square of PrðEj ¼ 1jCi ¼ xÞ, which establishes property (ii). Property (iii)

follows from the following corollary to Theorem 4 (also proved in the

Appendix):

Corollary 2

Suppose there are k4 1 dichotomous causes ðC1; . . . ;CkÞ which jointly

screen-off E1 from E2 (both dichotomous) and satisfy n-D and s-I. Then

ðC1; . . . ;Ck�1Þ cannot screen-off E1 from E2. The same conclusion applies

for any other conjunction of k � 1 causes.

This completes the proof of Theorem 5b.18 «

The results described in this section have two sorts of significance for philo-

sophical discussions of screening-off and of common cause explanations. The

first arises from the fact that Reichenbach’s ([1956]) discussion of the principle

of the common cause focused on the case of dichotomous events and a fair

amount of subsequent philosophical discussion has followed his lead, perhaps

tacitly assuming that the transition from two states to n would not make any

interesting difference. Theorems 4, 5a, and 5b show that the move from two

states to three sometimes involves a dramatic change. The second lesson per-

tains to the fact that philosophical discussions of screening-off often focus on

cases in which screening-off is robust; the qualitative ‘causal structure’ of a

system suffices to establish that various screening-off relations obtain in the

sense that screening-off does not depend on the values that various constituent

18 Theorems 5a and 5b involve examples that are a bit complicated. We searched for simpler

examples, but failed to find any.
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probabilities happen to have. This is true of the two examples with which we

began. Before caller-ID, the ringing of Sally’s telephone screened-off Joe’s

dialling her number from her picking up, and this relation held independently

of the probability that Joe dials her number and independently of the prob-

ability that Sally picks up her phone conditional on its ringing. In Mendelian

reproduction, the parental genotype screens-off one offspring’s genotype from

the other’s, and this is independent of how probable it is that the parental

genotype occurs in the first place. Even if you add a non-zero mutation rate so

that the probability of an offspring’s genotype, conditional on the genotypes

of its parents, takes values that differ from the usual Mendelian assignments,

screening-off still holds true. But screening-off isn’t always robust; in the

examples described in this section, screening-off is fragile, depending as it

does on the exact value of this or that probability.19

We end this section by noting that the strong influence condition, s-I, re-

quires that some particular change in the state of Ci (with other causes suitably

fixed) must change the probability of certain states of both E1 and of E2. It is a

consequence of s-I that (C1, C2) can satisfy s-I for E1, and also satisfy s-I for

E2, and yet fail to satisfy s-I for the pair (E1, E2) (we give an example shortly).

This raises a question: does Theorem 4 still hold if we replace the assump-

tion of strong influence with the assumption of weak influence? That is, does

the theorem go through if we assume only that each cause Ci influences the

probability of a state of E1 under one change in state in Ci (with other causes

suitably fixed) and that Ci influences the probability of a state of E2 by a

(possibly different) change in state of Ci (with other causes suitably re-fixed)?

This condition, weaker than s-I, is what we referred to as weak influence w-I

holding uniformly, and it is easily seen that Theorem 4 can fail under it. For

example, suppose that C1 and C2 are independent fair tosses of a coin, and that

E1 is a dichotomous event that occurs with probability p when both tosses are

heads and with probability q 6¼ p otherwise. Let E2 denote a second dichot-

omous event that occurs with probability p when both tosses are tails and with

probability q 6¼ p otherwise. Define the joint probability distributions for (E1,

E2) conditional on values for (C1, C2) so that (C1, C2) screens-off E1 from E2.

Then the weak influence condition, w-I, applies uniformly, and n-D also

holds, yet it is easily checked that all three of (C1, C2), C1, and C2 screen-off

19 Fragile screening-off involves a violation of what Spirtes et al. ([1993], [2000]) call ‘faithfulness’

and Pearl ([2009]) calls ‘stability’. Sprites et al. use the assumption of faithfulness to derive a

number of theorems. Cartwright ([2007], Chapter 6) and Hitchcock ([2010]) describe plausible

examples to argue that faithfulness is not a necessary condition for causal relations in nature.

Zhang and Spirtes ([2008]) discuss conditions under which faithfulness fails and how its failure

can be detected. Pearl and Hitchcock suggest an epistemic reason for wanting models to be

faithful—these models are more parsimonious (in that they deploy fewer adjustable parameters)

than models that permit or require faithfulness to be violated. A further form of fragile

screening-off is the notion of ‘context-specific independence’ (Boutilier et al. ([1996]).
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E1 from E2 (and so, by Theorem 4, s-I does not hold, as can easily be seen

directly).

4 A More General No-Go Theorem: Allowing Several Causes,

Possibly Non-dichotomous

In light of Theorems 5a and 5b, we turn to a new topic. If the composite cause

(C1, C2) screens-off E1 from E2, what new constraint can be introduced that

has consequences for whether the constituent causes also screen-off the effects

from each other, when all these events can take more than two possible values?

The new constraint we will explore is that of ordinal invariance.

Accordingly, we regard C1 and C2 as random variables taking values in

finite sets G and H, respectively, and E1 and E2 as random variables taking

values in sets J1 and J2, respectively. Let Cgh and Eij denote the conjunctive

events C1 ¼ g&C2 ¼ h and E1 ¼ i&E2 ¼ j, respectively, for all possible

combinations of states (i, j for E1, E2 and g, h for C1, C2, respectively). For

a state g in G and j1 in J1 and j2 in J2 we say that E1 and E2 satisfy ordinal

invariance relative to the ordered quintuple (C1, C2, g, j1, j2) if one of the

following holds:

For all states h and h0 of C2,

PrðE1 ¼ j1jCghÞ4PrðE1 ¼ j1jCgh0 Þ ) PrðE2 ¼ j2jCghÞ4PrðE2 ¼ j2jCgh0 Þ

or, for all states h and h0 of C2,

PrðE1 ¼ j1jCghÞ4PrðE1 ¼ j1jCgh0 Þ ) PrðE2 ¼ j2jCghÞ5PrðE2 ¼ j2jCgh0 Þ:

In other words, changing the value of C2 while holding fixed the value of C1 at

g always has the same directional effect on the probability of a state of E2 that

it has on the probability of some state of E1, or always has the opposite

directional effect.

We pause to describe a natural setting in which ordinal invariance always

applies when J1 ¼ J2 ¼ J. We say that E1 and E2 are conditionally exchange-

able (relative to C1, C2) precisely when

PrðEijjCghÞ ¼ PrðEjijCghÞ

holds for all values of i, j 2 J and g 2 G, h 2 H. For example, this exchange-

ability condition holds if E1 and E2 are the genotypes of two children born to

the same two parents where the parents have genotypes g and h.

Lemma 1

If E1, E2 are conditionally exchangeable relative to C1, C2, then E1

and E2 satisfy ordinal invariance relative to (C1, C2, g, j, j) for all g in G

and j 2 J.
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Proof

PrðE1 ¼ jjCghÞ ¼
X
j02J

PrðE1 ¼ j &E2 ¼ j0jCghÞ

¼
X
j02J

PrðE1 ¼ j0&E2 ¼ jjCghÞ ¼ PrðE2 ¼ jjCghÞ;

from which Lemma 1 follows. «

We now use the concept of ordinal invariance to state our next result:

Theorem 6 (No restriction to dichotomous events, and the influence condition

is weakened):

Suppose that C1 and C2 satisfy n-D and are common causes of effects E1 and E2,

which take states in sets J1 and J2, respectively. Suppose that C2 weakly influ-

ences E1, and for some associated revelatory state g of C1 for an influenced state

j of E1,20 the effects E1 and E2 satisfy ordinal invariance relative to

ðC1, C2, g, j, j0Þ. Then, if the composite (C1, C2) screens-off E1 from E2, C1

by itself fails to do so.21

The ordinal invariance of E1 and E2 (relative to the ordered quintuple) means

that changing C2 while holding the state of C1 fixed at g must have the same

(or the opposite) ordinal effect on E2 that it has on E1; this definition says

nothing about how changing C1 while holding fixed C2 must impact on both

E1 and E2. These asymmetries (in requiring w-I to apply only for C2 and in the

concept of ordinal invariance as so far defined) are reflected in the conclusion

drawn by Theorem 6, which is about C1’s failing to screen-off. In Corollary 3,

we describe the consequence of having the weak influence condition satisfied

by each cause and having ordinal invariance pertain to both sorts of manipu-

lations of C1 and C2; in addition, this new theorem generalizes to the case of

n � 2 causes.

If w-I applies symmetrically to n � 2 causes, the conclusion of Theorem 6

can be strengthened to the statement that none of the individual causes

screen-off E1 from E2. But first, some notation: suppose that C1, C2, . . . ,Cn

are each common causes of the effects E1 and E2. For a state gi of Ci, and an

assignment, H, of states to the remaining n-1 causes, we will use the shorthand

CgiH
to denote the event that Ci is in state gi, and the remaining causes are in

states specified by H (this generalizes our earlier notation from two to n

causes).

20 Recall (footnote 12): a revelatory state of C1 for influenced state j of E1 is a state of C1 under

which some change to C2 alters the probability of the state j for E1.
21 In light of Lemma 1, Theorem 6 applies also if ordinal invariance is replaced by exchangeability.
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Corollary 3

Suppose that C1, C2, . . . ,Cn are common causes of effects E1 and E2, which

take states in sets J1 and J2, respectively (where these two sets may differ in

size), and that n-D applies. Suppose further that, for each Ci, there exists a

state gi, and there exist states ji for E1 and j0i for E2 to which the following

two conditions apply:

(w-I|Ci) (Influence on E1 when a state of Ci is held fixed): A change can be

made to one of the causes (different from Ci) while holding all of the other

causes fixed (with Ci set to gi) that changes the probability of the event

E1¼ ji.
22

(OI|Ci) (Ordinal Invariance when a state of Ci is held fixed) If Ci is in state gi,

then every change to the states H of the other causes that increases

Pr(E1 ¼ ji|CgiH
) must always increase PrðE2 ¼ j0i jCgiH Þ or every such change

must always decrease it.23

Then (C1, C2, . . . ,Cn) screens-off E1 from E2 only if none of the n component

causes screen-off.

As with Theorem 4, Theorems 6 and Corollary 3 also apply to the case of

intermediate links: Suppose that C causes I1 and I2, and each of these causes E.

Suppose that n-D is satisfied by I1 and I2, that the influence condition on E1

for fixed states of I1 and of I2 applies in the statement of Corollary 3 (taking

E1 ¼ E and E2 ¼ C), and that ordinal invariance holds in this setting. Then, if

the composite (I1, I2) screens-off C from E, each of the constituents I1 and I2

fails to do so.

Notice that the first and second parts of Theorem 4 are corollaries of

Theorem 6 and Corollary 3, respectively, since s-I implies (OI|Ci) when C2

is dichotomous. Also note that Theorem 6 and its corollary hold, whether the

states of the composite cause determine the state of each Ei or merely confer

nonextreme probabilities on them.

Theorem 6 and Corollary 3 describe a fairly generic type of situation in

which it is impossible for a composite cause and its constituent causes to all

screen-off one event from another. This clash between composite and con-

stituent screening-off is not inevitable; we had to assume non-degeneracy, the

22 Condition (w-I|Ci) implies the weaker condition that Pr(E1 ¼ ji|CgiH
) does not always take the

same value as H varies, and this is all we require in the proof.
23 Formally, we require that either

(a) for all H and H 0

PrðE1 ¼ jijCgi H Þ4PrðE1 ¼ jijCgi H 0 Þ ) PrðE2 ¼ j0i jCgi H Þ4PrðE2 ¼ j0i jCgi H 0 Þ;

or (b) for all H and H 0

PrðE1 ¼ jijCgi H Þ4PrðE1 ¼ jijCgi H 0 Þ ) PrðE2 ¼ j0i jCgi H Þ5PrðE2 ¼ j0i jCgi H 0 Þ:
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weak influence condition w-I and ordinal invariance to show that it exists. The

non-degeneracy condition is very widely satisfied; causes very often are less

than perfectly correlated and have probabilities that are strictly between 0 and

1. The weak influence condition w-I strikes us as a definition; if C is a direct

cause of E, then some change in the state of C must in some setting make some

difference to the probability of some state of E.24 The ordinal invariance

condition is widely satisfied, but it is not a definitional truth. It is the real

source of the conflict between composite and constituent causes screening-off.

Deny this assumption (as we did in the example used to illustrate Theorem 5a)

and it is possible for harmony to replace conflict. But possibility is not neces-

sity; we saw in that example that composite and constituent causes all

screen-off only when various probabilities are set just so (and so faithfulness

is violated). In the next section, we try to make it easier to understand the

concept of ordinal invariance.

5 Examples Illustrating Corollary 3 and Theorem 5a

To make Corollary 3 easier to grasp, we describe an example that illustrates

what it says when there are just two common causes. Table 3 provides condi-

tional probability values for one of the states of one of the effects (viz. E1¼ 1);

Table 4 provides values for the probability of a state of the other effect (viz. E2

¼ 2). In this example, each cause has three states.

The weak influence condition described in Corollary 3 concerns Table 3

taken by itself. It requires simply that there be a row in which the entries are

not all the same, and that the same be true for a column. Several rows and

columns in Table 3 satisfy this condition, but we will consider C1¼ 3 and C2¼

2 (which are in bold). We focus on this row and column because of what the

ordinal invariance condition, (OI|Ci), says; this condition concerns the rela-

tionship of Table 3 to Table 4.

A sufficient condition for (OI|Ci) to hold is that there is a row in Table 3 in

which not all entries are the same and a column that has the same property where

the entries in that row and column are mirrored (or countermirrored) by the

corresponding row and column in Table 4.25 Mirroring means that all inequal-

ities in a row and column in Table 3 are preserved in its counterpart row and

column in Table 4; equalities need not be preserved (and they are not for the

column C2 ¼ 2). Countermirroring means that all inequalities are reversed. The

bold row C1 ¼ 3 and column C2 ¼ 2 in Table 4 mirror those in Table 3.

24 As noted earlier, the weak influence condition w-I used in Corollary 3 is weaker than the strong

influence condition s-I used in earlier theorems. However, strong influence s-I is entailed by the

conjunction of n-D, w-I, and (OIjC). Corollary 3 has a stronger antecedent and a stronger

consequent than Theorem 4 does.
25 This condition is not necessary, since Corollary 3 allows for j1 6¼ j2 and j01 6¼ j02.
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In summary: In the statement of Corollary 3, if we take g1 ¼ 3 and g2 ¼ 2

(and take j1¼ j2¼ j¼ 1 and j01 ¼ j02 ¼ j0 ¼ 2), then the two conditions (w-I|Ci)

and (OI|Ci) are simultaneously satisfied for each of the two causes (i¼ 1, 2).

This is true even though the column C2 ¼ 3 in Table 4 neither mirrors nor

countermirrors its counterpart in Table 3. Notice also that ordinal invariance

means that there are inequalities in the table for a state of E1 that are mirrored

or countermirrored in the table for a state of E2; the condition does not say

that there are inequalities in the table for a state of E2 that are mirrored or

countermirrored in the table for a state of E1. So our notion of ordinal invari-

ance is weaker than one that requires full symmetry between the two effects.

Theorem 6 and Corollary 3 place no restrictions on how many states E1 and

E2 have (nor do these results require that E1 and E2 have the same number of

states). If there are more than two effects, Theorem 6 and its corollary apply

directly since the screening-off of three or more effects from each other by

causes means just that any two effects are screened-off from each other by

those same causes. Theorem 6 and its corollary also impose no requirement

that C1 and C2 have the same number of states, though this happens to be true

in the above example.

Given Corollary 3 (which describes a situation in which the composite cause

screens-off only if no constituent cause screens-off), how can Theorem 5a

(which describes a situation in which composite and constituent causes all

screen-off) be true? The answer is that Theorem 5a is true because there are

cases in which ordinal invariance is violated, whereas Corollary 3 describes a

consequence of ordinal invariance. Ordinal invariance is violated in the ex-

ample used to illustrate Theorem 5a; it is clear from Tables 1 and 2 that there is

no mirroring or counter-mirroring.

Table 3. Pr(E1¼ jjC1¼ g & C2¼ h) where suppose j¼ 1

C2¼ 1 C2¼ 2 C2¼ 3

C1¼ 1 0.1 0.1 0.1

C1¼ 2 0.2 0.1 0.5

C1¼ 3 0.1 0.3 0.2

Table 4. Pr(E2¼ j 0jC1¼ g & C2¼ h) where suppose j 0 ¼ 2

C2¼ 1 C2¼ 2 C2¼ 3

C1¼ 1 0.3 0.2 0.2

C1¼ 2 0.1 0.3 0.2

C1¼ 3 0.2 0.7 0.4
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Our last no-go results (Theorem 6 and Corollary 3), and some of the the-

orems that preceed them, are fruitfully compared with an elegant no-go the-

orem derived by Hofer-Szabó and Rédei ([2004]). Their result concerns what

they call a ‘Reichenbachian common cause system’ (RCCS) for two events

(E1, E2). Such a system involves a common cause, C, (whether individual or

composite) and two of its effects, E1 and E2, such that (i) C screens-off E1 from

E2 and (ii) if the state of C is changed in any way, this alters the probabilities of

E1 and of E2 (and the alteration increases the probability of E1 precisely when

it also increases the probability of E2). Proposition 4 of Hofer-Szabó and

Rédei ([2004]) states that if C is an RCCS for (E1, E2), then any cause C0

that is coarser or finer than C must fail to form an RCCS for (E1, E2). Here a

cause C 0 is ‘coarser’ than C precisely if the states of C 0 correspond to disjoint

subsets of the states of C, and the event that C0 ¼ s is the event that C2s. For

example, if C is the composite cause ðC1; . . . ;CnÞ then C1 is coarser than C. To

say that C 0 is finer than C simply means that C is coarser than C 0.

We note that, by taking C ¼ ðC1; . . . ;CnÞ and C 0 ¼ C1 (so C is finer than

C 0), our no-go results (Theorems 4 and 6 and their corollaries) do not follow

directly from Proposition 4 of Hofer-Szabó and Rédei ([2004]), which requires

a stronger antecedent and delivers a weaker consequent in our setting.26

Regarding the antecedent, observe that condition (ii) in the definition of an

RCCS is considerably stronger than our ‘influence conditions’. As noted in

connection with Table 3, our weak influence condition, w-I, requires only that

there be one row and one column in which entries differ. Condition (ii) re-

quires that all nine entries in the table differ. Condition (ii) is also stronger

than the conjunction of weak influence and ordinal invariance, OI, as can be

seen from Tables 3 and 4, which violate (ii) but satisfy both w-I and OI. With

respect to strong influence (s-I), our Theorem 5a says that it is possible for

composite and component common causes to all screen-off when non-degen-

eracy (n-D) and strong influence s-I obtain; however, this is impossible under

condition (ii). Turning to our claim that Proposition 4 of Hofer-Szabó and

Rédei provides a weaker consequent in this setting than our no-go results

(Theorems 4 and 6), we note that if the stronger condition (ii) required for

an RCCS is assumed, then their Proposition 4 implies that C1 fails to be an

RCCS for (E1, E2); this does not, however, entail that C1 fails to screen-off E1

from E2, as the RCCS condition (ii) for C1 might fail instead.

Hofer-Szabó and Rédei ([2004]) constructed their concept of an RCCS to

generalize a result that Reichenbach (1956) derived. Reichenbach showed that

if (i) a dichotomous common cause, C, screens-off E1 from E2 (both of which

are dichotomous), and (ii) changing from C ¼ 0 to C ¼ 1 has the same dir-

ectional effect on E1¼ 1 that it has on E2¼ 1, then it follows that dichotomous

26 Similar obstacles arise if we take C ¼ C1 and C 0 ¼ ðC1; . . . ;CnÞ, so that C is coarser than C 0.
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effects E1 and E2 will be positively correlated. Reichenbach’s goal was to

explain an observed correlation by showing how it can be derived from a

set of assumptions about a common cause. Hofer-Szabó and Rédei move

from a single dichotomous common cause to a general cause C (which may

be individual or composite, and is not required to be dichotomous) and ask

how Reichenbach’s model can be generalized so as to allow one to deduce the

observed correlation of events E1 and E2. This is the motivation behind view-

ing their conditions (i) and (ii) as defining an RCCS.

Taking our cue from Hofer-Szabó and Rédei, we note that our

weak-influence (w-I), combined with a strengthened form of ordinal invari-

ance, suffices to derive a positive correlation between E1 and E2:

Theorem 7

Suppose that (C1, C2) screens-off dichotomous effects E1 from E2, and satisfies

n-D, w-I holds for C1, and the following strengthening of the OI condition

holds:

for all states g; g0 of C1 and h; h0 of C2,

PrðE1jCghÞ4PrðE1jCg0h0 Þ ) PrðE2jCghÞ4PrðE2jCg0h0 Þ:

Then E1 and E2 are positively correlated.

See the Appendix for the proof.27 Notice that C1 and C2 can be dichotomous,

but they need not be. Notice also that the concept of ordinal invariance used in

this theorem is considerably stronger than the concept of ordinal invariance

used in Theorem 6, or even in the stronger (symmetric) form required for

Corollary 3. In terms of our example based on Tables 3 and 4, OI in our

Corollary 3 requires just that there is some row and column in Table 3,

each containing values that are not all the same, that get mirrored or counter-

mirrored in Table 4. The stronger notion of OI that is used in Theorem 7 says

that every inequality between pairs of entries in Table 3 must get reproduced

in Table 4.

6 Determinism and Screening-Off: Disanalogy and Analogy

It is tempting to think that there is an analogy between screening-off and

determinism, one that ought to guide our view of how screening-off by a

composite cause is related to screening-off by a constituent cause. Consider

the following thought about determinism:

D-1: If PrðEjCÞ ¼ 1, then PrðEjC &X Þ ¼ 1, for any proposition X,

provided that the second probability is well-defined.

27 Theorem 7 applies to settings in which (C1, C2) do not form an RCCS for E1, E2, and so is not a

direct corollary of Proposition 2 of Hofer-Szabó and Rédei ([2004]). Theorem 7 can also be

extended to allow E1 and E2 to be non-dichotomous.
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As noted at the outset, this proposition is true because probabilities of 0 and 1

are sticky. Reasoning by analogy, one might conjecture that screening-off also

is sticky:

SO-1: If C screens-off E1 from E2, then C &X also screens-off E1 from

E2, for any proposition X, provided that PrðEijC &XÞ is well-defined.

Another fact about determinism is that the converse of D-1 is false. What is

true is that

D-2: If PrðEjC &XÞ ¼ 1, this leaves open whether PrðEjCÞ ¼ 1,

and so the analogy with determinism may further suggest that

SO-2: If (C & X) screens-off E1 from E2, this leaves open whether C also

screens-off E1 from E2.

This analogy between determinism and screening-off goes awry; D-1 and D-2

are true, but SO-1 is false and SO-2, though true, is misleading. If a less

complete cause screens-off, it does not follow that a more complete cause

also screens-off (Theorem 5b).28 If a more complete cause screens-off, this

often does not leave open whether a less complete cause will do so

(Corollary 3).

There is a third formal analogy between determinism and screening-off that

we should consider. Reichenbach ([1965], pp. 2–3) describes, but does not

endorse, ‘a law of causality’ that says that the probability that an event, E,

will occur will asymptote to 1 or to 0 as one conditionalizes on more and more

complete sets of causes. The suggestion is that ever more inclusive sets of

common causes will increase the degree to which those common causes

screen-off one effect from the other. To make this idea about monotonicity

precise, we need to define what ‘degree of screening-off’ means. A natural

choice is to use the notion of mutual information (Cover and Thomas

[1991]). Given a cause, C, and two effects, E1 and E2, the conditional

mutual information I(E1; E2|C) is non-negative, and it is zero precisely when

C screens-off E1 from E2. Understood in this way, the monotonicity thesis is

false, as one can see from our Theorem 5b.29

Although the formal analogy between screening-off and determinism is

misguided, there is an epistemic parallel that is worth pondering. Once

upon a time, determinism had the status of an a priori principle: if a causal

model fails to be deterministic, then it must be incomplete. Stated in this way,

28 The falsehood of SO-1 can be seen by considering the case in which C is a tautology and J is a

joint effect of E1 and E2. If E1 and E2 are unconditionally independent, a tautology will

screen-off E1 from E2. However, J will render the two events conditionally dependent.
29 Note, however, that if we replace the notion of screening-off with the stronger notion of d-sep-

aration, then monotonicity is restored; in particular, if a less complete cause d-separates two

effects, then a more complete cause will also.
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determinism is a metaphysical thesis, but there is a long tradition of regarding

it as a ‘regulative ideal’, the claim being that inquiry benefits from assuming

determinism, whether or not determinism is true in fact. Kantians often incline

to something stronger—that determinism is a necessary presupposition of

rational inquiry. All this changed with the advent of the quantum theory.

Not that we now know that determinism is false (Earman [2005]). The point

is that we no longer regard determinism as an indispensable assumption. If

quantum mechanics or some probabilistic successor theory, is true, we have to

acknowledge the possibility that this theory is not just true but causally com-

plete. Of course scientists still need to ponder whether there are hidden causes,

but an alertness to the possibility that our models may be causally incomplete

in no way requires a commitment to determinism.

A similar dynamic is now underway with respect to the intermediate link,

(IL) and the common cause (CC) principles, but it has not gone as far as it

should. As noted at the outset, quantum mechanics has led some to doubt CC,

but those doubts have rarely reached into other parts of science. With respect

to IL, this assumption rarely gets challenged, either inside of quantum mech-

anics or out. CC and IL, as noted earlier, are consequences of the causal

Markov principle. That principle characterizes what will be true in a model

that is ‘suitable’, but the principle plays a role in the causal modelling litera-

ture that goes beyond this. For example, Spirtes et al. ([1993/2000]) (see also

Verma and Pearl [1990], [1992]; Cooper and Herskovits [1992]) develop algo-

rithms for using probabilistic facts to discover the causal relationships that

obtain among a set of variables; these algorithms are derived in part by assum-

ing the causal Markov condition. Paying the cost of assuming the causal

Markov condition buys you the benefit of being assured that the model you

say is best really is best.

This raises the question of what one should do if CC and IL (and the causal

Markov condition that entails both of them) are set to one side. Must causal

inquiry grind to a halt? Not at all. Various models can be tested against each

other using frequency data; it is frequency data, not a probability distribution

over causal variables, that constitute our observations. Some of these models

may assume screening-off whereas others do not, and these models may differ

in how well they fit the data at hand. Testing models for their fit to data does

not require any assumption about what properties a causally complete model

must have. But there is more to testing models than checking for fit. In general,

a model that assumes screening-off will have fewer adjustable parameters than

a model that is otherwise similar but which denies screening-off or leaves open

whether screening-off obtains. This matters to model selection criteria like

AIC (the Akaike Information Criterion) that take account of both parsimony

and fit-to-data (see Forster and Sober [1994] and Sober [2008] for discussion).
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However, the greater parsimoniousness of models that assume screening-off is

not a reason to ignore models that do not commit to that assumption.30

It may be suggested that scientists should assume the CMC (and the CC and

IL principles that it entails) until a concrete empirical example is discovered

that refutes it. Surely it would be a mistake to reject the principle just because

it is logically possible that it is false. In reply, we note that we are not sug-

gesting that the CMC is false. Rather, we are questioning the idea that it

should be assumed. Just as is true of determinism, it is a mistake to think

that the principle should be assumed innocent until observations prove that it

is guilty.

Our Theorem 6 says that if the common causes mentioned in model M

screen-off their effects from each other, then a supermodel that subsumes

those causes will do the same only if that supermodel violates faithfulness.

Believers in faithfulness can then conclude that M must be causally complete

just because it induces screening-off. We recommend agnosticism with respect

to faithfulness just as we do with respect to CMC. It may be a reasonable rule

of thumb, but we know of no compelling reason to think it must be true

without exception. Scientific inquiry has no need of such a hypothesis. We

should note that we are not impressed by the fact that violations of faithful-

ness involve set-ups that have measure zero on the standard measure. The

same is true of screening-off, but that is no reason to reject the CMC.

Even if one abandons an a priori allegiance to IL and CC, the thought may

linger that there is abundant empirical evidence that both these principles are

true.31 Consider the Mendelian example of a parental pair that screens-off one

offspring’s genotype from the others. If Mendelism is empirically successful,

doesn’t that provide evidence that CC is true? Our no-go results (Theorem 6

and Corollary 3) constitute a reason to be sceptical. The fact that C screens-off

E1 from E2 does not provide evidence that a causally complete model that

includes C will also screen-off. What is true is that if C screens-off and is causal

complete, then this is ‘instance confirmation’ of the general CC principle. But

what if C is causally incomplete? What does the fact that C screens-off say

about a causally complete model M that subsumes C? The answer (according

to Corollary 3) is that the composite cause described in M must fail to

screen-off E1 from E2 if the component causes in M obey non-degeneracy,

the weak influence condition (w-I), and ordinal invariance. If the components

30 A similar argument can be constructed concerning the requirement that a causal model should

obey the constraint of faithfulness, but we lack the space to develop that argument here.
31 Spirtes et al. ([1993/2000], p. 38) offer two defences of the causal Markov condition: ‘the basis

for the CMC is first, that it is necessarily true of populations of structurally alike pseudo-

indeterministic systems whose exogenous variables are distributed independently, and second,

it is supported by almost all of our experience with systems that can be put through repetitive

processes and whose fundamental propensities can be tested’. They make the same two-part

argument on page 32. Our disagreement is with the second reason; we will not discuss the first.
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obey non-degeneracy and weak influence, but violate ordinal invariance, then

it is possible for the composite cause in M to screen-off, but for this to be true,

various probabilities must have their values set just so.32 A similar point

applies if the weak-influence condition is violated by the component causes

in M.33 Of course, if we think that C is true but incomplete, we probably don’t

know what the other causes are that need to be added to C to obtain a com-

plete causal model. If we don’t know what these other causes are, it is hard to

see how we can say, one way or the other, whether that complete set of causes

will obey ordinal invariance. This is why we think the CC and IL principles are

not confirmed by finding causes that screen-off that one thinks may be

incomplete.

Our argument concerns the relationship of a cause that is found to

screen-off and a superset of causes. This invites the reply that the causes we

discover are not just incomplete, but stand in need of replacement. For ex-

ample, if C is an incomplete common cause that screens-off, perhaps C should

be removed and replaced by a set of common causes that fails to include C.

Maybe CC concerns this replacement set. Perhaps so. But this is no argument

for the truth of CC or IL, nor does it show that C’s screening-off provides

evidence that this replacement set of common causes will do so as well.

This lesson concerning CC and IL applies to any similar principle that says

that some suitably specified set of composite common causes (or of intermedi-

ate links), must induce screening-off. Corollary 3 shows that finding an em-

pirical example of screening-off (where one has no assurance that the model

one has constructed is causally complete) cannot be regarded as evidence for

any such principle.

Just as a model that asserts screening-off is more parsimonious than a

model that is otherwise similar except that screening-off is not assumed, so

a deterministic model is more parsimonious than a model that is otherwise

similar except that it leaves open what probabilities causes assign to effects.

This modest epistemic point is what gives determinism and screening-off their

special status. But acknowledging this does not bring with it a commitment to

the truth of determinism or to the truth of IL and CC.34

32 If M and C both screen-off, M will violate faithfulness. This gives fans of faithfulness an add-

itional reason for thinking that C’s screening-off is not evidence that CC is true.
33 Consider Figure 1 and suppose that Cd and Cp constitute a complete set of common causes of E1

and E2. These two causes will violate weak-influence if Cp screens-off Cd.
34 There is another way to argue that parsimony helps justify screening-off principles. In the

Principles of Philosophy (Section 39), Descartes ([1644]) states his second law of nature and

asks why it is true. The law says that ‘all motion is in itself rectilinear’; this means that rectilinear

motion will occur if no outside cause impinges. Descartes says this law owes its truth to ‘the

immutability and simplicity of the operation by which God preserves motion in matter. For he

always preserves the motion in the precise form in which it is occurring at the very moment when

he preserves it, without taking any account of the motion which was occurring a little while

earlier’.
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Appendix: Proofs of Theorems 2–6 and Corollaries 2 and 3

Proof of Theorem 2 (first claim in part (ii)):

We write +Cp and �Cp for events Cp ¼ 1 and Cp ¼ 0, respectively, and use

analogous notation for ±Cd and for ±Ei. The value of Cd is chosen by tossing a

fair coin, and the value of Cp depends on Cd as follows: PrðþCpjþCd Þ ¼ 2=3

and PrðþCpj � CdÞ ¼ 1=3, which gives PrðþCpÞ ¼ 1=2. For Cp to screen-off E1

from E2 means that:

PrðþE1 & þ E2jþCpÞ ¼ PrðþE1jþCpÞ � PrðþE2jþCpÞ ðA:1Þ

and

PrðþE1 & þ E2j�CpÞ ¼ PrðþE1j�CpÞ � PrðþE2j�CpÞ; ðA:2Þ

and it will simplify the calculations to also impose the constraint:

PrðþE1 & � E2j�Cp &�Cd Þ ¼ Prð�E1 & þ E2j�Cp &�CdÞ; ðA:3Þ

so

PrðþE1j�Cp &�Cd Þ ¼ PrðþE2j�Cp &�CdÞ: ðA:4Þ
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We will also insist that no probability (conditional and absolute) equals 0 or 1

and that, for i ¼ 1, 2,

PrðþEijþCpÞ4PrðþEiÞ: ðA:5Þ

Finally, we require that Cp does not screen-off Cd from Ei (i¼ 1, 2) for which a

sufficient condition is that, for i ¼ 1 and i ¼ 2:

PrðþEijþCp &þCdÞ4PrðþEijþCpÞ: ðA:6Þ

To satisfy all these conditions, we let (for x, y 2 f0, 1}):

axy :¼ PrðCd ¼ x & Cp ¼ yÞ;

pxy :¼ PrðþE1jCd ¼ x & Cp ¼ yÞ ¼ PrðþE2jCd ¼ x & Cp ¼ yÞ; and

qxy :¼ PrðþE1 & þE2jCd ¼ x & Cp ¼ yÞ;

where the second equality is by exchangeability. Note that a00 ¼ a11 ¼ 1=3, a01

¼ a10 ¼ 1=6. We now specify pxy and qxy values:

p11 ¼
1

2
; p01 ¼ p10 ¼

1

3
; p00 ¼

1

4
;

q11 ¼
5

18
; q01 ¼ q10 ¼

1

27
; q00 ¼

7

72
:

To check Equation (A.1) we have

PrðþE1 & þE2jþCpÞ ¼

PrðþE1 & E2jþCd & þCpÞ � PrðþCd jþCpÞ

þ PrðþE1 & þE2j�Cd & þCpÞ � Prð�Cd jþCpÞ;

and, by Bayes’ formula, PrðþCd jþCpÞ ¼ PrðþCpjþCdÞ � PrðþCd Þ=PrðþCpÞ

¼ 2=3. Thus,

PrðþE1 & þE2jþCpÞ ¼
2

3
q11 þ

1

3
q01; ðA:7Þ

while, for i ¼ 1, 2:

PrðþEijþCpÞ ¼PrðþEijþCd & þCpÞ � PrðþCd jþCpÞ

þ PrðþEij�Cd & þ CpÞ � Prð�Cd jþCpÞ:

Thus,

PrðþEijþCpÞ ¼
2

3
p11 þ

1

3
p01: ðA:8Þ

Equation (A.1) now follows from Equations (A.7) and (A.8) since
2
3

q11 þ
1
3

q01 ¼
2
3

p11 þ
1
3

p01

� �2
. Similarly, Equation (A.2), corresponding to

the condition 1
3

q10 þ
2
3

q00 ¼
2
3

p00 þ
1
3

p01

� �
,2 also holds. Regarding inequality

(A.5), we have PrðþEijþCpÞ ¼
2
3

p11 þ
1
3

p01 from Equation (A.8). Using a

similar expansion for PrðþEiÞ, inequality (A.5) becomes equivalent to
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2
3

p11 þ
1
3

p01 4 1
3

p11 þ
1
6

p01 þ
1
6

p10 þ
1
3

p00, which holds; whereas inequality

(A.6) corresponds to p11 4 2
3

p11 þ
1
3

p01, which also holds.

It remains to show that there exists a probability distribution for the

16 values (±E1, ±E2, ±Cp, ±Cd) that provides the pxy, qxy, and axy values

described. Actually, we have no choice as to what this distribution must be,

since from pxy and qxy we can determine for each x, y, the four values

Prð�E1 &�E2jCd ¼ x;Cp ¼ yÞ. In particular,

PrðþE1 &þE2jCd ¼ x & Cp ¼ yÞ ¼ qxy;

PrðþE1& �E2jCd¼ x & Cp¼ yÞ ¼ pxy�qxy ¼Prð�E1& þE2jCd¼ x & Cp¼yÞ;

Prð�E1 & �E2jCd ¼ x & Cp ¼ yÞ ¼ 1þqxy � 2pxy:

It is easily checked that these four values (for each x, y) are non-negative,

and sum to 1; from this we obtain the unique joint probability

distribution for the 16 values (±E1, ±E2, ±Cp, ±Cd) since, for each e1, e2 2

f0,1}, we have:

PrðE1 ¼ e1 &E2 ¼ e2 &Cd ¼ x&Cp ¼ yÞ

¼ PrðE1 ¼ e1 &E2 ¼ e2jCd ¼ x&Cd ¼ yÞ � axy:

This completes the proof. We note that, in our construction, Cd also screens-

off E1 from E2 (as does Cp), yet the conjunctive pair fails to, since

PrðþE1 &þE2jþCd &þCpÞ ¼ q11 6¼ p2
11

¼ PrðþE1jþCd &þCpÞ � PrðþE2jþCd & þCpÞ:

«

Proof of Theorem 3a

Suppose that C 0 satisfies both n-D and w-I. Write C 0 ¼ ðC;DÞ where D is the

additional event(s) in C 0 that are not in C (note that both C and D can be

composite events). Then the w-I assumption implies the existence of a state c

of C and states d; d 0 of D for which:

PrðEjC ¼ c&D ¼ dÞ 6¼ PrðEjC ¼ c&D ¼ d 0Þ:

Now, since C is deterministic, one of the values in this inequality is 0 and

the other is 1; without loss of generality we may suppose that

PrðEjC ¼ c&D ¼ dÞ ¼ 0. Consider now PrðEjC ¼ cÞ. By the law of total

probability, this can be written:

PrðEjC ¼ cÞ ¼
X

x

PrðEjC ¼ c&D ¼ xÞPrðD ¼ xjC ¼ cÞ; ðA:9Þ

where the summation is over all states, x, that D can take. The n-D

assumption implies that PrðD ¼ xjC ¼ cÞ4 0 for all states x of D.
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Now, since PrðEjC ¼ c&D ¼ dÞ ¼ 0, Equation (A.9) implies that

PrðEjC ¼ cÞ equals:X
x6¼d

PrðEjC ¼ c&D ¼ xÞPrðD ¼ xjC ¼ cÞ �
X
x 6¼d

PrðD ¼ xjC ¼ cÞ

¼ 1� PrðD ¼ djC ¼ cÞ

and so, by n-D, PrðEjC ¼ cÞ5 1, which implies (since C is deterministic) that:

PrðEjC ¼ cÞ ¼ 0: ðA:10Þ

But Equation (A.9) and n-D also implies that:

PrðEjC¼ cÞ � PrðEjC ¼ c & D ¼ d 0ÞPrðD ¼ d 0jC ¼ cÞ ¼ PrðD ¼ d 0jC ¼ cÞ40;

which contradicts Equation (A.10). This contradiction ensure that C0 cannot

satisfy both n-D and w-I, as claimed. «

Proof of Theorem 3b

If C has m states and screens-off E1 from E2 then:

PrðE1 ¼ i &E2 ¼ jÞ ¼
Xm

g¼1

PrðE1 ¼ ijC ¼ gÞPrðE2 ¼ jjC ¼ gÞPrðC ¼ gÞ:

Let v1
g and v2

g be the row vectors of dimension k whose i-th coordinate is

Pr(E1¼ i|C¼g) and Pr(E2¼ i|C¼g), respectively, and let pg¼Pr(C¼ g) then:

P ¼
Xm

g¼1

pg � v
1
gðv

2
gÞ

T;

where T denotes transpose. Now, each matrix pg � v
1
gðv

2
gÞ

T has rank 1. By the

subadditivity property of matrix rank, rankðPÞ � ð1þ 1þ � � � þ 1Þ ¼ m.

Finally, detðPÞ 6¼ 0 implies rank(P) ¼ k so m � k as claimed. «

Proof of Theorem 4

Assume that n-D holds, and that (C1, C2) screens-off E1 from E2, that C1 does

so also, and that C2 is dichotomous. We will show that the strong influence

property (s-I) fails for any arbitrarily selected state of C1, which we may

take as state 1. Consider the conditional probabilities PrðEijjCghÞ (which

exist by n-D) defined as follows:

x1 ¼ PrðE11jC11Þ; x2 ¼ PrðE11jC10Þ;

y1 ¼ PrðE10jC11Þ; y2 ¼ PrðE10jC10Þ;

y01 ¼ PrðE01jC11Þ; y02 ¼ PrðE01jC10Þ:

For i ¼ 1, 2, let Si ¼ xi + yi and S0i ¼ xi þ y0i. Thus,

S1 ¼ PrðE1 ¼ 1jC11Þ ; S01 ¼ PrðE2 ¼ 1jC11Þ;

Screening-Off and Causal Incompleteness 545

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article/64/3/513/1470585 by Serials D

epartm
ent user on 06 Septem

ber 2020



and

S2 ¼ PrðE1 ¼ 1jC10Þ ; S02 ¼ PrðE2 ¼ 1jC10Þ:

The requirement that E1 ¼ 1 and E2 ¼ 1 are conditionally independent given

C11 means that:

x1 ¼ ðx1 þ y1Þ � ðx1þy01Þ ¼ S1S01: ðA:11Þ

Similarly, conditional independence of E1 and E2 given C10 means that:

x2 ¼ S2S02: ðA:12Þ

We now turn to the consequence of C1 ¼ 1 screening off E1 from E2. This

gives:

x1cþ x2ð1� cÞ ¼ ðS1cþ S2ð1� cÞÞ � ðS01cþS02ð1� cÞÞ; ðA:13Þ

where c¼Pr(C2 ¼ 1|C1 ¼ 1). Expanding Equation (A.13), simplifying, and

dividing both sides by c(1�c) (noting that 05 c5 1, by n-D) and invoking

Equations (A.11) and (A.12) to replace x1 and x2 by S1S01 and S2S02, respec-

tively, gives

ðS1 � S2ÞðS
0
1 � S02Þ ¼ 0;

from which we conclude that

S1 ¼ S2 or S01 ¼ S02:

The first of these equalities states that Pr(E1¼ 1|C11)¼Pr(E1¼ 1|C10),

which violates the strong influence condition (s-I); the second states that

Pr(E2¼ 1|C11)¼Pr(E2¼ 1|C10), which also violates s-I. An analogous argu-

ment applies if C2 screens-off E1 from E2. This completes the proof of the first

part of the Theorem; the second part follows immediately by two applications

of the first part. «

Proof of Corollary 2

Let C01 ¼ ðC1;C2; . . . ;Ck�1Þ and C 02 ¼ Ck. Then C 01;C
0
2;E1, and E2 also satisfy

conditions n-D and s-I, and C 02 is dichotomous. So Theorem 4 implies that

either ðC 01;C
0
2Þ or C01 fails to screen-off E1 from E2. But the first alternative is

excluded since ðC01;C02Þ ¼ ðC1;C2; . . . ;CkÞ, which we are assuming screens-off

E1 from E2. «

Proof of Theorem 6

Suppose that (C1, C2) screens-off E1 from E2. For the fixed states g and j in the

statement of Theorem 6, and any h 2 H, let

xgh :¼ PrðE1 ¼ j & E2 ¼ j0jCghÞ

ygh :¼
X

k2J2�fj0g

PrðE1 ¼ j & E2 ¼ kjCghÞ
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and

y0gh :¼
X

k2J1�fjg

PrðE1 ¼ k & E2 ¼ j0jCghÞ

In addition, let

Sgh :¼ xgh þ ygh; S0gh ¼ xgh þ y0gh; and cgh :¼ PrðC2 ¼ hjC1 ¼ gÞ:

By definition:

Sgh ¼ PrðE1 ¼ jjCghÞ; S0gh ¼ PrðE2 ¼ j0jCghÞ; ðA:14Þ

and

PrðE1 ¼ j & E2 ¼ j0jC1 ¼ gÞ ¼
X
h2H

xgh � cgh

The assumption that Cgh screens-off E1 from E2 for all g, h gives:

xgh ¼ Sgh � S
0
gh; ðA:15Þ

The condition that C1 screens-off E1 ¼ j from E2 ¼ j0 is equivalent to the

condition that for all g 2 G:

PrðE1 ¼ j & E2 ¼ j0jC1 ¼ gÞ ¼ PrðE1 ¼ jjC1 ¼ gÞPrðE2 ¼ j0jC1 ¼ gÞ;

which, in view of the previous equations, becomes:

X
h2H

xgh � cgh ¼
X
h2H

Sgh � cgh

 !
�
X
h2H

S0gh � cgh

 !
:

Applying Equation (A.15), this is further equivalent to the condition:

X
h2H

Sgh � S
0
gh � cgh ¼

X
h2H

Sgh � cgh

 !
�
X
h2H

S0gh � cgh

 !
: ðA:16Þ

We now invoke a standard trick used to establish correlation inequalities like

the Chebyshev order inequality (see, for example Steele [2004]). Consider the

double sum:

�g :¼
X

h2H; k2H

ðSgh � SgkÞ � ðS
0
gh � S0gkÞ � cgh � cgk: ðA:17Þ

Expanding out �g as

�g ¼ 2
X
h2H

Sgh � S
0
gh � cgh �

X
k2H

cgk �
X
h2H

Sgh � cgh

 !
�
X
k2H

S0gk � cgk

 !

and, noting that
P

k2H

cgk ¼ 1, it follows that �g is zero for all g 2G if and only if

C1 screens-off E1 ¼ j from E2 ¼ j0.
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Now, by ordinal invariance, all the summation terms in this expression for

�g given by Equation (A.17) have the same sign. Moreover, since C2 weakly

influences E1 with revelatory state g for C1, and influenced state j for E1, and

since cgh; cgk 6¼ 0 by n-D, at least one term in Equation (A.17) non-zero and so

the sum is non-zero. Since �g 6¼ 0, this implies that C1 fails to screen-off E1¼ j

from E2 ¼ j0. «

Proof of Theorem 5a

The previous proof (of Theorem 6) shows that if (C1, C2) screens off E1 from

E2 (both dichotomous), then C1 does also, provided that �g ¼ 0 for each of

the states g¼ 1, 2, 3 for C1, where �g is defined by (18). Since the causes in the

example associated with Theorem 5a are independent, we also have

cgh ¼ PrðC2 ¼ hÞ, which we will denote by ch. The equations �g ¼ 0 for the

three values of g are exactly the same equation, which can be rescaled and

written as:

2c1c2 þ 2c1c3 � c2c3 ¼ 0:

Noting that c1 + c2 + c3 ¼ 1 we can write this as 2c1(1�c1) ¼ c2c3, which

has many solutions, including one in which c2 ¼ c3 in which case c1 ¼ 1=9, c2 ¼

c3 ¼ 4=9. «

Proof of Corollary 3

Apply Theorem 6, by considering two causes D1 and D2 for E1, E2, where D1¼

Ci, and D2 is the conjunction of the remaining n � 1 causes. Observe that the

assumption of n-D for C1, C2, . . . ,Cn implies that n-D also holds for D1, D2.

Moreover, condition (Ij D1) applies if we take j ¼ ji, j0 ¼ j0i and g ¼ gi, and E1

and E2 satisfy ordinal invariance relative to ðD1;D2; g; j; j0Þ. Now, if (C1,

C2, . . . ,Cn) screens-off E1 from E2 then (D1, D2) does also, and so, by

Theorem 6, D1 ¼ Ci fails to screen-off E1 from E2. Since this holds for all

values of i, this establishes Corollary 3. «

Proof of Theorem 7

For states g and h for C1 and C2, respectively, let Cgh denote the event

C1 ¼ g & C2 ¼ h, and let ugh :¼ PrðE1jCghÞ; vgh :¼ PrðE2jCghÞ, and

wgh :¼ PrðCghÞ. Then

PrðE1 &E2Þ ¼
X
g; h

PrðE1 &E2jCghÞPrðCghÞ ¼
X
g; h

ughvghwgh;

(the second equality holds by the assumption that (C1, C2) screens-off E1 from

E2). Similarly,

PrðE1Þ ¼
X
g; h

ughwgh and PrðE2Þ ¼
X
g; h

vghwgh:
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Thus, if we let � :¼ PrðE1 &E2Þ � PrðE1ÞPrðE2Þ denote the (unscaled) correla-

tion between E1 and E2, then:

� ¼
X
g; h

ughvghwgh �
X
g; h

ughwgh �
X
g; h

vghwgh:

Consider the quantity:X
g; g0

X
h; h0

ugh � ug0h0
� �

� vgh � vg0h0
� �

wghwg0h0 :

This sum is non-negative, due to the the stronger form of OI in Theorem 7;

moreover, it is non-zero by w-I and n-D, and so it is strictly positive. However,

expansion of this expression and gathering like terms shows that it is just 2d.

Thus �4 0, as claimed. «
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