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abstract. In this paper we show that subsumption problems in many

lightweight description logics (including EL and EL+) can be expressed as

uniform word problems in classes of semilattices with monotone operators.

We use possibilities of efficient local reasoning in such classes of algebras, to

obtain uniform PTIME decision procedures for CBox subsumption in EL
and extensions thereof. These locality considerations allow us to present

a new family of (possibly many-sorted) logics which extend EL and EL+

with n-ary roles and/or numerical domains.
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1 Introduction

Description logics are logics for knowledge representation used in databases
and ontologies. They provide a logical basis for modeling and reasoning
about objects, classes (or concepts), and relationships (or links, or roles)
between them. Recently, tractable description logics such as EL [2] have
attracted much interest. Although they have relatively restricted expressiv-
ity, this expressivity is sufficient for formalizing the type of knowledge used
in widely used ontologies such as the medical ontology SNOMED [19, 20].
Several papers were dedicated to studying the properties of EL and of its ex-
tensions (e.g. EL+ [4]), especially to understanding the limits of tractability
in extensions of EL. Undecidability results in extensions of EL are obtained
in [1] using a reduction to the word problem for semi-Thue systems.

In this paper we show that the subsumption problem in EL and EL+ can
be expressed as satisfiability problems for ground clauses w.r.t. so-called lo-
cal (extensions of) theories, for which methods for efficient (PTIME) check-
ing of satisfiability of ground clauses exist. General results on local theories
allow us to uniformly present some extensions of EL and EL+ with n-ary
roles and/or numerical domains. The main contributions of the paper are:

• We show that the subsumption problem in EL (resp. EL+) can be ex-
pressed as uniform word problem in classes of semilattices with mono-
tone operators (possibly satisfying certain composition laws).

• We show that the corresponding classes of semilattices with operators
have local presentations and use methods for efficient reasoning in
local theories or in local theory extensions in order to obtain PTIME
decision procedures for EL and EL+.
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Table 1. Constructors and their semantics

Constructor name Syntax Semantics
negation ¬C DI\CI
conjunction C1 ⊓ C2 CI1 ∩ CI2
disjunction C1 ⊔ C2 CI1 ∪ CI2
existential restriction ∃r.C {x | ∃y((x, y) ∈ rI and y ∈ CI)}
universal restriction ∀r.C {x | ∀y((x, y) ∈ rI =⇒ y ∈ CI)}

• These locality considerations allow us to present new families of
PTIME logics with n-ary roles which extend EL and EL+, and a
PTIME extension of EL with two sorts, concept and num, where the
concepts of sort num are interpreted as elements in the ORD-Horn,
convex fragment of Allen’s interval algebra.

Structure of the paper. In Sect. 2 we present generalities on description
logic and introduce the description logics EL and EL+. In Sect. 3 we show
that CBox subsumption can be expressed as a uniform word problem in the
class of semilattices with monotone operators satisfying certain composition
axioms. In Sect. 4 we present general definitions and results on local and
stably local equational theories and in Sect. 5 we show that the algebraic
models of EL and EL+ have local resp. stably local presentations, thus
providing an alternative proof of the fact that CBox subsumption in EL
and EL+ is decidable in PTIME. Locality results for more general classes
of semilattice with operators are used in Sect. 6 for defining extensions of
EL and EL+ with a subsumption problem decidable in PTIME.

2 Description logics: generalities

The central notions in description logics are concepts and roles. In any de-
scription logic a set NC of concept names and a set NR of roles is assumed to
be given. Complex concepts are defined starting with the concept names in
NC , with the help of a set of concept constructors. The available construc-
tors determine the expressive power of a description logic. The semantics
of description logics is defined in terms of interpretations I = (DI , ·I),
where DI is a non-empty set, and the function ·I maps each concept name
C ∈ NC to a set CI ⊆ DI and each role name r ∈ NR to a binary relation
rI ⊆ DI × DI . Table 1 shows the constructor names used in ALC and
their semantics. The extension of ·I to concept descriptions is inductively
defined using the semantics of the constructors.

Terminology. A terminology (or TBox, for short) is a finite set consisting
of primitive concept definitions of the form C ≡ D, where C is a concept
name and D a concept description; and general concept inclusions (GCI) of
the form C ⊑ D, where C and D are concept descriptions.

Interpretations. An interpretation I is a model of a TBox T if it satisfies:
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• all concept definitions in T , i.e. CI=DI for all definitions C≡D ∈ T ;

• all general concept inclusions in T , i.e. CI⊆DI for every C⊑D ∈ T .

Since definitions can be expressed as double inclusions, in what follows we
will only refer to TBoxes consisting of general concept inclusions (GCI) only.

DEFINITION 1. Let T be a TBox, and C1, C2 two concept descriptions.
C1 is subsumed by C2 w.r.t. T (for short, C1 ⊑T C2) if and only if CI1 ⊆ CI2
for every model I of T .

2.1 The description logics EL and EL+

By restricting the type of allowed concept constructors less expressive but
tractable description logics can be defined. If we only allow intersection
and existential restriction as concept constructors, we obtain the descrip-
tion logic EL [2], a logic used in terminological reasoning in medicine [19, 20].
In [4], the extension EL+ of EL with role inclusion axioms is studied. Re-
lationships between concepts and roles are described using CBoxes.

Constraint box. A CBox consists of a terminology T and a set RI of
role inclusions of the form r1 ◦ · · · ◦ rn ⊑ s. (Since any terminology can be
expressed as a set of general concept inclusions, in what follows we will view
CBoxes as unions GCI ∪RI of a set GCI of general concept inclusions and
a set RI of role inclusions of the form r1 ◦ · · · ◦ rn ⊑ s.)
Interpretation. An interpretation I is a model of the CBox C = GCI∪RI
if it is a model of GCI and satisfies all role inclusions in C, i.e. rI1 ◦· · ·◦rIn ⊆
sI for all r1 ◦ · · · ◦ rn ⊆ s ∈ RI. If C is a CBox, and C1, C2 are concept
descriptions then C1 ⊑C C2 if and only if CI1 ⊆ CI2 for every model I of C.
In [4] it was shown that subsumption w.r.t. CBoxes in EL+ can be reduced
in linear time to subsumption w.r.t. normalized CBoxes, in which all GCIs
have one of the forms: C ⊑ D,C1 ⊓ C2 ⊑ D,C ⊑ ∃r.D,∃r.C ⊑ D, where
C,C1, C2,D are concept names, and all role inclusions are of the form r ⊑ s
or r1 ◦ r2 ⊑ r. Therefore, in what follows, we consider w.l.o.g. that CBoxes
only contain role inclusions of the form r ⊑ s and r1 ◦ r2 ⊑ r.

3 Algebraic semantics for EL and EL+

We show that CBox subsumption for EL and EL+ can be expressed as a
uniform word problem for classes of semilattices with monotone operators.

3.1 Algebra: preliminaries

We assume known notions such as partially-ordered set and order filter/ideal
in a partially-ordered set. For further information cf. [13]. A structure
(L,∧) consisting of a non-empty set L together with a binary operation
∧ is called semilattice if ∧ is associative, commutative and idempotent.
A structure (L,∨,∧) consisting of a non-empty set L together with two
binary operations ∨ and ∧ on L is called lattice if ∨ and ∧ are associative,
commutative and idempotent and satisfy the absorption laws. A distributive
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lattice is a lattice that satisfies either of the distributive laws (D∧) or (D∨),
which are equivalent in a lattice.

(D∧) ∀x, y, z x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(D∨) ∀x, y, z x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A lattice having both a first and a last element is called bounded. A Boolean
algebra is a structure (B,∨,∧,¬, 0, 1), such that (B,∨,∧, 0, 1) is a bounded
distributive lattice and ¬ is a unary operation that satisfies:

(Complement) ∀x ¬x ∨ x = 1 ∀x ¬x ∧ x = 0

Let V be a class of algebras. The universal Horn theory of V is the collection
of those closed formulae valid in V which are of the form

∀x1 . . . ∀xn(
n∧
i=1

si1 = si2 → t1 = t2)(1)

The formula (1) above is valid in V if for each algebra A ∈ V and each
assignment v of values in A to the variables, if v(si1) = v(si2) for all i ∈
{1, . . . , n} then v(t1) = v(t2).1 The problem of deciding the validity of
universal Horn sentences in a class V of algebras is also called the uniform
word problem for V. It is known that the uniform word problem is decidable
for the classes: SL of semilattices (in PTIME), DL of distributive lattices
(NP-complete), and Bool of Boolean algebras (NP-complete).

3.2 An algebraic semantics for description logics
A translation of concept descriptions into terms in a signature naturally
associated with the set of constructors can be defined as follows. For ev-
ery role name r, we introduce unary function symbols, f∃r and f∀r. The
renaming is inductively defined by:

• C = C for every concept name C;

• ¬C = ¬C; C1 ⊓ C2 = C1 ∧ C2, C1 ⊔ C2 = C1 ∨ C2;

• ∃r.C = f∃r(C), ∀r.C = f∀r(C).

Set theoretical semantics. There exists a one-to-one correspondence
between interpretations of description logics, I = (D, ·I) and Boolean alge-
bras of sets (P(D),∪,∩,¬, ∅,D, {f∃r, f∀r}r∈NR

), together with valuations
v : NC → P(D), where f∃r, f∀r are defined, for every U ⊆ D, by:

f∃r(U) = {x | ∃y((x, y) ∈ rI and y ∈ U)}
f∀r(U) = {x | ∀y((x, y) ∈ rI ⇒ y ∈ U)}.

1If A is an algebra and v : X → A an assignment, then v extends in a canonical way
to a homomorphism v from the algebra of terms with variables X to A. For every term
t with variables in X we will, for the sake of simplicity, write v(t) instead of v(t).
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Let v : NC → P(D) with v(A) = AI for all A ∈ NC , and let v be the
(unique) homomorphic extension of v to terms. Let C be a concept descrip-
tion and C be its associated term. Then CI = v(C) (denoted by C

I
).

Boolean algebras with operators. Let BAONR
be the class of all

Boolean algebras with operators (B,∨,∧,¬, 0, 1, {f∃r, f∀r}r∈NR
), where

• f∃r is a join hemimorphism, i.e. f∃r(x∨y) = f∃r(x)∨f∃r(y), f∃r(0) = 0;

• f∀r is a meet hemimorphism, i.e. f∀r(x∧y)=f∀r(x)∧f∀r(y), f∀r(1)=1;

• f∀r(x) = ¬f∃r(¬x) for every x ∈ B.

It is known that the TBox subsumption problem for ALC can be expressed
as uniform word problem for Boolean algebras with suitable operators.

THEOREM 2. If T is an ALC TBox consisting of general concept
inclusions between concept terms formed from concept names NC =
{C1, . . . , Cn}, and D1,D2 are concept descriptions, the following are equiv-
alent:

(1) D1⊑TD2.

(2) P(D) |= ∀C1...Cn

((∧
C⊑D∈T C≤D

)
→ D1≤D2

)
for

all interpretations I = (D, ·I), where P(D) =
(P(D),∪,∩,¬, ∅,D, {f∃r, f∀r}r∈NR

).

(3) BAONR
|=∀C1...Cn

((∧
C⊑D∈T C≤D

)
→ D1≤D2

)
.

Proof : The equivalence of (1) and (2) follows from the definition of D1 ⊑T
D2. (3) ⇒ (2) is immediate. (2) ⇒ (3) follows from the fact that every
algebra in BAONR

homomorphically embeds into a Boolean algebra of sets.
2

3.3 An algebraic semantic for EL+

In [15] we studied the link between TBox subsumption in EL and uniform
word problems in the corresponding classes of semilattices with monotone
functions. We now show that these results naturally extend to the descrip-
tion logic EL+. Consider the following classes of algebras:

• BAO∃NR
the class of boolean algebras with operators

(B,∨,∧,¬, 0, 1, {f∃r}r∈NR
), such that f∃r is a join hemimorphism;

• DLO∃NR
the class of bounded distributive lattices with operators

(L,∨,∧, 0, 1, {f∃r}r∈NR
), such that f∃r is a join hemimorphism;

• SLO∃NR
the class of all bounded ∧-semilattices with operators

(S,∧, 0, 1, {f∃R}R∈NR
), such that f∃R is monotone and f∃R(0) = 0.2

2For the sake of simplicity, in what follows we assume that the description logics EL
and EL+ contain the additional constructors ⊥,⊤, which will be interpreted as 0 and 1.
Similar considerations can be used to show that the algebraic semantics for variants of
EL and EL+ having only ⊤ (or ⊥) is given by semilattices with 1 (resp. 0).
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Assume given a set RI of axioms of the form r ⊑ s and r1 ◦ r2 ⊑ r, with
r1, r2, r ∈ NR. We associate with RI the following set of axioms:

RIa = {∀x (f∃r2 ◦ f∃r1)(x) ≤ f∃r(x) | r1 ◦ r2 ⊑ r ∈ RI} ∪
{∀x f∃r(x) ≤ f∃s(x) | r ⊑ s ∈ RI}.

Let BAO∃NR
(RI) (resp.DLO∃NR

(RI), SLO∃NR
(RI)) be the subclass of BAO∃NR

(resp. DLO∃NR
, SLO∃NR

) consisting of those algebras which satisfy RIa.

LEMMA 3. Let I = (D, ·I) be a model of an EL+ CBox, C = GCI ∪ RI.
Then (P(D),∩, {f∃r}r∈NR

) ∈ SLO∃NR
(RI).

Proof : Clearly, (P(D),∩, {f∃r}r∈NR
) ∈ SLO∃NR

. Let r1, r2, r∈NR and
U∈P(D).

f∃r1(U) = {x | ∃y ∈ U s.t. (x, y) ∈ rI1 } ⊆ f∃r(U) if r1 ⊑ r ∈ RI
f∃r2(f∃r1(U)) = {x | ∃y s.t. (x, y) ∈ rI2 and y ∈ f∃r1(U)}

= {x | ∃y s.t. (x, y) ∈ rI2 and ∃z ∈ U with (y, z) ∈ rI1 }
= {x | ∃z ∈ U s.t. (x, z) ∈ (r1 ◦ r2)I}
⊆ f∃r(U) if r1 ◦ r2 ⊑ r ∈ RI.

LEMMA 4. Every S ∈ SLO∃NR
(RI) embeds into a lattice in DLO∃NR

(RI).
Every lattice in DLO∃NR

(RI) embeds (as a lattice) into a lattice in
BAO∃NR

(RI).

Proof : Let S = (S,∧, 0, 1, {fS}f∈Σ) be a semilattice with 0, 1, and with
monotone operators in Σ such that fS(0) = 0. Consider the the lattice of all
order-ideals of S, OI(S) = (OI(S),∩,∪, {0}, S, {fS}f∈Σ), where join is set
union, meet is set intersection, and the additional operators in Σ are defined,
for every order ideal U of S, by fS(U) = ↓fS(U). Note that f({0}) = {0}
and f(U1 ∨ U2) = ↓f(U1 ∨ U2) = ↓(f(U1) ∪ f(U2)) = ↓f(U1) ∪ ↓f(U2).
Thus, OI(S) ∈ DLO∃NR

.3 Moreover, η : S→ OI(S) defined by η(x) := ↓x is
an injective homomorphism w.r.t. the operations in SLONR

, i.e. η(fS(x)) =
↓fS(x) = fS(↓x). Let r1 ◦ · · · ◦ rn ⊑ r ∈ RI, and let U ∈ OI(S). Then:

f∃r1(U) = ↓f∃r1(U),

f∃r2(f∃r1(U)) = f∃r2(↓f∃r1(U)) = ↓f∃r2(f∃r1(U)).

The second statement is a consequence of Priestley duality for distributive
lattices. Let L ∈ DLO∃NR

(RI). Let Fp be the set of prime filters of L, and
B(L) = (P(Fp),∪,∩, {f∃r}r∈Nr

), where for r ∈ R, f∃r is defined by

f∃r(U) = {F ∈ Fp | ∃G ∈ U : f∃r(G) ⊆ F}.
3A similar construction can be made starting from ∧-semilattices with monotone op-

erators which have only 1 (resp. 0) or neither 0 nor 1.
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Let i : L→ B(L) be defined by i(x) = {F ∈ Fp | x ∈ F}. Obviously, i is a
lattice homomorphism. We show that i(f∃r(x)) = f∃r(i(x)).

f∃r(i(x)) = {F ∈ Fp | ∃G ∈ i(x) : f∃r(G) ⊆ F}
= {F ∈ Fp | ∃G : x ∈ G and f∃r(G) ⊆ F}
⊆ {F ∈ Fp | f∃r(x) ⊆ F} = i(f∃r(x)).

To prove the converse inclusion, let F ∈ i(f∃r(x)). Then F ∈ Fp and
f∃r(x) ∈ F . Then x ∈ G = f−1

∃r (F ). As F is a prime filter, and f∃r is a join
hemimorphism, G = f−1

∃r (F ) is a prime filter with x ∈ G and f∃r(G) ⊆ F ,
so F ∈ f∃r(i(x)). Finally, we show that B(L) satisfies the axioms in RIa.
Let U ∈ B(L). By definition,

f∃r1(U) = {F ∈ Fp | ∃G1 ∈ U : f∃r1(G1) ⊆ F},
f∃r2(f∃r1(U)) = {F ∈ Fp | ∃G1 ∈ f∃r1(U) : f∃r2(G1) ⊆ F}

= {F ∈ Fp | ∃G1,∃G2 ∈ U : f∃r1(G2) ⊆ G1

and f∃r2(G1) ⊆ F}
⊆ {F ∈ Fp | ∃G2 ∈ U : f∃r2(f∃r1(G2)) ⊆ F}.

Assume that r1 ⊑ r ∈ RI. Then for all x, f∃r1(x) ≤ f∃r(x). Let F ∈
f∃r1(U). Then f∃r1(G1) ⊆ F for some G1 ∈ U , so also f∃r(G1) ⊆ F .
Hence, f∃r1(U) ⊆ f∃r(U). Similarly we can prove that if r1 ◦ r2 ⊑ r ∈ RI
then f∃r2(f∃r1(U)) ⊆ f∃r(U). 2

THEOREM 5. If the only concept constructors are intersection and exis-
tential restriction, then for all concept descriptions D1,D2 and every EL+

CBox C=GCI∪RI, with concept names NC = {C1, . . . , Cn} the following
are equivalent:

(1) D1⊑CD2.

(2) SLO∃NR
(RI) |= ∀C1 . . . Cn

((∧
C⊑D∈GCI C≤D

)
→ D1≤D2

)
.

Proof : We know that C1⊑CC2 iff CI1⊆CI2 for every model I of the CBox C.
Assume first that (2) holds. Let I=(D, ·I) be an interpretation
that satisfies C. Then (P(D),∩, {f∃r}r∈NR

) ∈ SLO∃NR
(RI), hence

(P(D),∩, {f∃r}r∈NR
) |=

(∧
C⊑D∈GCI C ≤ D

)
→ D1 ≤ D2. As I is a model

of GCI, C
I ⊆ D

I
for all C ⊑ D ∈ GCI, so DI

1 =D1
I ⊆D2

I
=DI

2 . To
prove (1) ⇒ (2) note that, by Thm. 2, if D1 ⊑T D2 then BAONR

|=(∧
C⊑D∈C C ≤ D

)
→ D1 ≤ D2. Let S ∈ SLO∃NR

(RI). By Lemma 4,

S embeds into an algebra in BAO∃NR
which satisfies RIa. Therefore,

S |=
(∧

C⊑D∈GCI C ≤ D
)
→ C1 ≤ C2. 2

We will show that the word problem for the class of algebras SLO∃NR
(RI)

is decidable in PTIME. For this we will prove that SLO∃NR
(RI) has a “lo-

cal” presentation. The general locality definitions, as well as methods for
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recognizing local presentations are given in Sect. 4. The application to the
class of models for EL and EL+ are given in Sect. 5.

4 Local theories; local theory extensions

First-order theories are sets of formulae (closed under logical consequence),
typically the set of all consequences of a set of axioms. Alternatively, we
may consider the set of all models of a theory. In this paper we consider
theories specified by their sets of axioms. (At places, however, we will refer
to a theory, and mean the set of all its models.)

Before defining the notion of local theory and local theory extension we
will introduce some preliminary notions on partial models of a theory.

Partial and total models. A partial model is a model in which some
function symbols may be partial. In this paper the models we consider are
partially ordered algebraic structures, i.e. the only predicates are ≤ and =.

A weak Π-embedding between the partial structures A = ({As}s∈S ,
{fA}f∈Σ, {PA}P∈Pred) and B = ({Bs}s∈S , {fB}f∈Σ, {PB}P∈Pred) is a
(many-sorted) family i = (is)s∈S of total maps is : As → Bs such that

• if fA(a1, . . . , an) is defined then also fB(is1(a1), . . . , isn
(an)) is defined

and is(fA(a1, . . . , an)) = fB(is1(a1), . . . , isn
(an));

• for each s, is is injective and an embedding w.r.t. Pred i.e. for every
P ∈ Pred with arity s1 . . . sn and every a1, . . . , an where ai ∈ Asi

,
PA(a1, . . . , an) if and only if PB(is1(a1), . . . , isn

(an)).

In this case we say that A weakly embeds into B.
If A is a partial structure and β : X → A is a valuation we say that

(A, β) |= t1 = t2 iff at least one of the following conditions holds:

(a) β(t1), β(t2) are defined and β(t1) = β(t2), or

(b) β(t1) and β(t2) are undefined, or

(c) β(t1) is defined, t2=f(s1, . . . , sn) and β(si) is undefined for some i, or

(d) if β(t1) is defined, t2 = f(s1, . . . , sn) and β(si) is defined for all i then
β(t2) has to be defined and β(t1) = β(t2).

(A, β) |= t1 ≤ t2 is defined similarly, replacing “=” with “≤” in (a)–(d). We
say that (A, β) |= t1 6= t2 if at least one of the following conditions holds:

(a’) β(t1), β(t2) are defined and β(t1) 6= β(t2), or

(b’) β(t1) or β(t2) are undefined.

(A, β) satisfies a clause C (notation: (A, β) |= C) if it satisfies at least one
literal in C. A is an (Evans) partial model of a set of clauses K if (A, β) |= C
for every valuation β and every clause C in K.

We say that (A, β) |=w (¬)P (t1, . . . , tn), with P ∈ Pred∪{=} if either
β(ti) are all defined and (¬)PA(β(t1), . . . , β(tn)) is true in A, or β(ti) is not
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defined for some argument ti of P . Weak satisfaction of clauses ((A, β) |=w

C) can then be defined in the usual way. We say that A is a weak partial
model of a set of clauses K if (A, β) |=w C for every β : X → A and C ∈ K.

4.1 Local theories
The notion of local theory was introduced by Givan and McAllester [9, 10].
They studied sets of Horn clauses K with the property that, for any ground
Horn clause C, K |= C only if already K[C] |= C (where K[C] is the set of
instances of K in which all terms are subterms of ground terms in either K
or C). Since the size of K[C] is polynomial in the size of C for a fixed K and
satisfiability of sets of ground Horn clauses can be checked in linear time
[7], it follows that for local theories, validity of ground Horn clauses can
be checked in polynomial time. Givan and McAllester proved that every
problem which is decidable in PTIME can be encoded as an entailment
problem of ground clauses w.r.t. a local theory [10]. The property above can
be easily generalized to the notion of locality of a set of (Horn) clauses:

DEFINITION 6. A local theory is a set of Horn clauses K such that, for any
set G of ground Horn clauses, K∧G |=⊥ if and only if already K[G]∧G |=⊥,
where K[G] is the set of instances of K in which all terms are subterms of
ground terms in either K or G.

The same considerations as above can be used to show that in any lo-
cal theory satisfiability of sets of ground Horn clauses can be checked in
polynomial time. In [8], Ganzinger established a link between proof the-
oretic and semantic concepts for polynomial time decidability of uniform
word problems which had already been studied in algebra [14, 6]. In the
course of this work he introduced and studied, besides locality, also the less
restrictive notion of stable locality for equational Horn theories.

DEFINITION 7. A set K of Horn clauses is stably local if for every set G
of ground clauses, if K ∧ G |=⊥ then G can be refuted using the set K[G]

of all instances of K obtained by instantiating the variables with (ground)
subterms of G, i.e. if

K ∧G |=⊥ if and only if K[G] ∧G |=⊥ .

The more general notion of Ψ-stably local theory (in which the instances to
be considered are described by a closure operation Ψ) is introduced in [11].
Let K be a set of clauses. Let ΨK be a function associating with any set T
of ground terms a set ΨK(T ) of ground terms such that

(i) all ground subterms in K and T are in ΨK(T );

(ii) for all sets of ground terms T, T ′ if T ⊆ T ′ then ΨK(T ) ⊆ ΨK(T ′);

(iii) for all sets of ground terms T , ΨK(ΨK(T )) ⊆ ΨK(T );

(iv) Ψ is compatible with any map h between constants, i.e. for any map
h : C → C, ΨK(h(T )) = h(ΨK(T )), where h is the unique extension
of h to terms.
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Let K[ΨK(G)] be the set of instances of K where the variables are instantiated
with terms in ΨK(st(K, G)) (set denoted in what follows by ΨK(G)), where
st(K, G) is the set of all ground terms occurring in K or G. We say that K
is Ψ-stably local if it satisfies:

(SLocΨ) for every finite set G of ground clauses, K∪G|= ⊥ iff K[ΨK(G)]∪G
has no partial model in which all terms in ΨK(G) are defined.

In the particular case when ΨK(G) = st(K, G) we refer to stable locality of
the extension. The corresponding condition is denoted SLoc.

Complexity. If a set K of Horn clauses satisfies (SLocΨ) then satisfiability
of any set G of Horn clauses w.r.t. K is decidable in polynomial time in the
size of ΨK(G). This follows from the fact that K[ΨK(G)]∪G is a set of ground
Horn clauses of size polynomial in the size of ΨK(G), and satisfiability of
sets of ground Horn clauses (in a relational encoding, taking into account
only suitable instances of the congruence axioms – which are also Horn and
not more than |ΨK(G)|2) can be checked in linear time ([7], see also [8]).

Recognizing stably local theories. Locality can be recognized by prov-
ing embeddability of partial into total models [16, 18, 11]. Theories satisfy-
ing (SLocΨ) can be recognized by showing that Evans partial models of T1
embed into total models.

THEOREM 8. Let K be a set of clauses. Assume ΨK satisfies condi-
tions (i)–(iv) above, and that every Evans partial model of K with the prop-
erty that the set of defined terms is closed under ΨK weakly embeds into a
total model of K. Then K satisfies SLocΨ.

Proof : Let G be a set of ground clauses. We show that, under the given
assumptions, if K∪G |=⊥ then K[ΨK(G)]∪G has no partial algebra model in
which all (ground) terms in ΨK(G) are defined. Assume that K[ΨK(G)] ∪G
has a partial Evans model P in which all (ground) terms occurring in ΨK(G)
are defined. We construct a partial model A of K ∪ G as follows. Let
A = {tP | t ∈ ΨK(G)}. As we want A to be a model of K∪G in Evans’ sense,
we need to make sure that if f is an n-ary function and t1P , . . . , t

n
P ∈ A and

(f(t1, . . . , tn))P is defined and equal to, say, tP ∈ A, then fA(t1P , . . . , t
n
P ) is

defined in A and equal to tP . Thus, we impose that fA(t1P , . . . , t
n
P ) is defined

and yields tP as a result iff tP = f(t1, . . . , tn)P ∈ A. We show that the set
of defined terms in A is closed under ΨK. Note first that, by definition of
A, for any ground term t, tA is defined if and only if there exists t′ ∈ ΨK(G)
such that tA = t′A. Thus,

Def(A) = {t | t ground term , tA defined} = h(ΨK(G)),

where h is the unique homomorphism which extends the map h with h(c) =
cP for every constant c occurring in ΨK(G). Then:

ΨK(Def(A)) = ΨK(h(ΨK(G))) = h(ΨK(ΨK(G))) ⊆ h(ΨK(G)) = Def(A).
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By condition (i), all ground literals occurring in G are defined in P and
(by construction) also in A. Therefore, A satisfies a ground literal L which
occurs in G iff P satisfies L. Hence, A satisfies all clauses in G.

It remains to show that A satisfies K. Let D ∈ K, and β : X → A. For
every x ∈ X there exists at least one t ∈ ΨK(G) with β(x) = tP . Thus, there
exists at least one substitution σ : X → ΨK(G) such that h(σ(t)) = β(t)
for all terms t, where h is the canonical projection which associates with
every term t its interpretation tP in P . Then σ(D) is an instance of D in
K[ΨK(G)]. We know that P is a model of K [ΨK(G)], hence (P, h) |= σ(D).
Therefore (A, β) |= D.

Thus, A satisfies K ∪G. Therefore, A weakly embeds into a total model
B of K. It is easy to see that B satisfies the same ground literals as A, so
B satisfies all clauses in G. Thus, B is a model of K ∪G, so K ∪G 6|=⊥. 2

4.2 Local theory extensions
We will also consider extensions of theories, in which the signature is ex-
tended by new function symbols (i.e. we assume that the set of predicate
symbols remains unchanged in the extension). Let T0 be an arbitrary the-
ory with signature Π0 = (S0,Σ0,Pred), where S0 is a set of sorts, Σ0 a
set of function symbols, and Pred a set of predicate symbols. We consider
extensions T1 of T0 with signature Π = (S,Σ,Pred), where the set of sorts
is S = S0 ∪ S1 and the set of function symbols is Σ = Σ0 ∪ Σ1 (i.e. the
signature is extended by new sorts and function symbols). We assume that
T1 is obtained from T0 by adding a set K of (universally quantified) clauses
in the signature Π. Thus, Mod(T1) consists of all Π-structures which are
models of K and whose reduct to Π0 is a model of T0. In what follows, when
referring to (weak) partial models of T0∪K′, we mean (weak) partial models
of K′ whose reduct to Π0 is a total model of T0.
Locality. In what follows, when we refer to sets G of ground clauses we
assume that they are in the signature Πc = (S,Σ∪Σc,Pred), where Σc is a
set of new constants.

We will focus on the following type of locality of a theory extension T0 ⊆ T1,
where T1 = T0 ∪ K with K a set of (universally quantified) clauses:

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G
has no weak partial model with all terms in st(K, G) defined.

We say that an extension T0 ⊆ T1 is local if it satisfies condition (Loc).
(Note that a local equational theory [8] is a local extension of the pure
theory of equality (with no function symbols).) Notions of stable locality,
and Ψ-(stable) locality can be defined as in the case of local theories [16, 11].
In Ψ-(stably) local theories and theory extensions hierarchical reasoning is
possible. We present the ideas for the case of local theories.

Hierarchical reasoning. Consider a local theory extension T0 ⊆ T0 ∪ K.
The locality conditions defined above require that, for every set G of ground
clauses, T1 ∪G is satisfiable if and only if T0 ∪K[G] ∪G has a weak partial
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model with additional properties. All clauses in K[G]∪G have the property
that the function symbols in Σ1 have as arguments only ground terms.
Therefore, K[G]∪G can be flattened and purified (i.e. the function symbols
in Σ1 are separated from the other symbols) by introducing, in a bottom-
up manner, new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ1,
gi ground Σ0 ∪ Σc-terms (where Σc is a set of constants which contains
the constants introduced by flattening, resp. purification), together with
corresponding definitions ct = t. The set of clauses thus obtained has the
form K0 ∪ G0 ∪ D, where D is a set of ground unit clauses of the form
f(g1, . . . , gn) = c, where f ∈ Σ1, c is a constant, g1, . . . , gn are ground terms
without function symbols in Σ1, and K0 and G0 are clauses without function
symbols in Σ1. Flattening and purification preserve both satisfiability and
unsatisfiability w.r.t. total algebras, and also w.r.t. partial algebras in which
all ground subterms which are flattened are defined [16].

For the sake of simplicity in what follows we will always flatten and then
purify K[G] ∪G. Thus we ensure that D consists of ground unit clauses of
the form f(c1, . . . , cn) = c, where f ∈ Σ1, and c1, . . . , cn, c are constants.

LEMMA 9 ([16]). Let K be a set of clauses. Assume that T0 ⊆ T0 ∪ K is a
local theory extension. For any set G of ground clauses, let K0 ∪G0 ∪D be
obtained from K[G] ∪ G by flattening and purification, as explained above.
Then the following are equivalent:

(1) T0∪K[G]∪G has a partial model with all terms in st(K, G) defined.

(2) T0∪K0∪G0∪D has a partial model with all terms in st(K, G) defined.

(3) T0 ∪ K0 ∪G0 ∪N0 has a (total) model, where

N0 = {
n∧
i=1

ci = di → c = d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.

THEOREM 10 ([16]). Assume that the theory extension T0 ⊆ T1 satisfies
condition (Loc). If all variables in the clauses in K occur below some func-
tion symbol from Σ1 and if testing satisfiability of ground clauses in T0 is
decidable, then testing satisfiability of ground clauses in T1 is decidable.

Recognizing local theory extensions. The locality of an extension can
be recognized by proving embeddability of partial into total models [16, 18,
11]. We will use the following notation:

PModfd
w (Σ1, T1) is the class of all weak partial models of T1 in which the

Σ1-functions are partial and have a finite domain of
definition and all the other function symbols are total.

For theory extensions T0 ⊆ T1 = T0 ∪ K, where K is a set of clauses, we
consider the following condition:

(Embfd
w ) Every A ∈ PModfd

w (Σ1, T1) weakly embeds into a total model of T1.
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In what follows we say that a non-ground clause is Σ1-flat if function
symbols (including constants) do not occur as arguments of function sym-
bols in Σ1. A Σ1-flat non-ground clause is called Σ1-linear if whenever a
variable occurs in two terms in the clause which start with function sym-
bols in Σ1, the two terms are identical, and if no term which starts with a
function symbol in Σ1 contains two occurrences of the same variable.

THEOREM 11 ([16, 18]). Let K be a set of Σ-flat and Σ-linear clauses. If
the extension T0 ⊆ T1 satisfies (Embfd

w ) then it satisfies (Loc).

Similar results hold also for stable locality or Ψ-locality of an extension
(cf. e.g. [16, 11]).

5 Locality and complexity of EL+ and EL
We now show that the classes of algebraic models of EL+ and of EL have
presentations which satisfy certain locality properties. This gives an alter-
native, algebraic explanation of the fact that CBox subsumption in these
logics is decidable in PTIME and makes generalizations possible.

5.1 Locality and EL+

In this section we prove that the class SLOΣ(RI) of semilattices with mono-
tone operators in a set Σ satisfying a family RIa of axioms of the form

∀x (f1 ◦ · · · ◦ fn)(x) ≤ f(x)

has a local presentation, and therefore the uniform word problem w.r.t.
this class can be decided in polynomial time. For the sake of simplicity we
restrict, w.l.o.g., to axioms as above with n ∈ {1, 2}.

It is known that the theory of lattices allows a local Horn axiomatization
(cf. e.g. [14, 6]). Let SL be such an axiomatization for the theory of lattices.
We denote by Mon(Σ) the set {Mon(f) | f ∈ Σ}, where

Mon(f) ∀x, y(x ≤ y → f(x) ≤ f(y)).

THEOREM 12. The set of Horn clauses SL∪Mon(Σ)∪RIa has the property
that every Evans partial model A with the properties:

(i) for every f ∈ Σ, fA is a partial function with finite definiton domain;

(ii) for each axiom in RIa of the form (f1 ◦ f2)(x) ≤ f(x), and every
a ∈ A, if f(a) is defined then f2(a) is defined in A;

(iii) A |= SL ∪Mon(Σ) ∪RIa;
weakly embeds into a total model of SL ∪Mon(Σ) ∪RIa.
Proof : Let A be an Evans partial model of SL ∪Mon(Σ) ∪RIa with prop-
erties (i)–(iii). In particular, A is a poset, hence it embeds into a complete
(semi)lattice S such that the meets that exist in A are preserved. (We will
think of A as a subset of S.) For every f ∈ Σ we define f : S → S by

f(a) =
∧
{f(c) | a ≤ c, c ∈ A, fA(c) is defined}.
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For every f ∈ Σ, f is monotone (see e.g. also [18]). We show that the
axioms in RIa are satisfied by these extensions. Let f1(x) ≤ f2(x) ∈ RIa
and a ∈ S. Then f i(a) =

∧{fi(c) | a ≤ c, c ∈ A, fi(c) is defined}. Let
d ∈ A with a ≤ d and f2(d) defined. Then f1(d) is also defined and f1(d) ≤
f2(d). Thus, f1(a) ≤ f2(d) for all d ∈ A with a ≤ d and f2(d) defined,
so f1(a) ≤ f2(a). Let now (f1 ◦ f2)(x) ≤ f(x) ∈ RIa and a ∈ S. Then
f2(a) =

∧{f2(c) | a ≤ c, c ∈ A, f2(c) is defined}. Then for every a ≤ c, if
f2(c) is defined then f2(a) ≤ f2(c). We prove that f1(f2(a)) ≤ f(a).

Note first that if a ≤ c and f1(f2(c)) is defined then f2(a) ≤
f2(c). Therefore, f1(f2(c)) ∈ {f1(c1) | f2(a) ≤ c1, and f1(c1) defined}.
Hence, {f1(f2(c)) | a ≤ c, f1(f2(c)) defined} ⊆ {f1(c1) | f2(a) ≤
c1, f1(c1) defined}. Therefore, the infimum of the first set is larger than
the infimum of the second set. Hence:

f1(f2(a)) =
∧
{f1(c1) | f2(a) ≤ c1, f1(c1) is defined}

≤
∧
{f1(f2(c)) | a ≤ c and f1(f2(c)) defined}

≤
∧
{f(c) | a ≤ c and f(c) defined} = f(a).

The last inequality is a consequence of the fact that if f(d) is defined in A
then f2(d) is defined in A, and since A |= RIa, f1(f2(d)) is defined in A
and f1(f2(d)) ≤ f(d). Hence,

∧{f1(f2(c)) | a ≤ c and f1(f2(c)) defined} ≤
f1(f2(d)) ≤ f(d). 2

COROLLARY 13. The following are equivalent:

(1) SL ∪Mon(Σ) ∪RIa |= ∀x
∧n
i=1 si(x) ≤ s′i(x)→ s(x) ≤ s′(x);

(2) SL ∪Mon(Σ) ∪RIa∧G|= ⊥, where G =
∧n
i=1 si(c)≤s′i(c)∧s(c)6≤s′(c);

(3) (SL∪Mon(Σ)∪RIa)[ΨRI(G)]∧G |=⊥ where ΨRI(G) =
⋃
i≥0 Ψi

RI , with
Ψ0
RI=st(G), and Ψi+1

RI ={f2(d) | f(d) ∈ Ψi
RI , (f1◦f2)(x)≤f(x) ∈ RIa}.

Here st(G) is the set of all (ground) subterms occurring in G. Note that
ΨRI(G) can have at most |st(G)| · |NR| elements. Thus, its size is poly-
nomial in the size of G. On the other hand, the number of clauses in
(SL ∪Mon(Σ) ∪ RIa)[ΨRI(G)] is polynomial in |ΨRI(G)|, and satisfiability
of any set of ground clauses can be tested in polynomial time. This shows
that the uniform word problem for the class SLOΣ(RI) (and thus also for
SLO∃NR(RI)) is decidable in polynomial time.

EXAMPLE 14. We illustrate the ideas on an example presented in [4] (here
slightly simplified). Consider the CBox C consisting of the following GCI:

Endocard⊑Tissue ⊓ ∃cont-in.HeartWall ⊓ ∃cont-in.HeartValve
HeartWall⊑∃part-of.Heart

HeartValve⊑∃part-of.Heart
Endocarditis⊑ Inflammation ⊓ ∃has-loc.Endocard

Inflammation⊑Disease
Heartdisease = Disease ⊓ ∃has-loc.Heart
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and the following role inclusions RI:

part-of ◦ part-of ⊑ part-of
part-of ⊑ cont-in

has-loc ◦ cont-in⊑ has-loc

We want to check whether Endocarditis ⊑C Heartdisease. This is the case iff
(with some abbreviations – e.g. fci stands for f∃cont-in and fpo for f∃part-of ,
hw and hv for HeartWall resp. HeartValve, e for Endocard, h for Heart, etc.):

SL ∪ Mon(fci, fhl, fpo) ∪ {∀x fci(fci(x))≤fci(x),
∀x fpo(x)≤fci(x),
∀x fhl(fci(x))≤fhl(x)}

∪ {e ≤ t ∧ fci(hw) ∧ fci(hv), hw ≤ fpo(h), hv ≤ fpo(h),
Endocarditis ≤ i ∧ fhl(e), i ≤ d, Heartdisease = d ∧ fhl(h),
Endocarditis 6≤ Heartdisease} |= ⊥ .

Then st(K, G) = {fci(hw), fci(hv), fpo(h), fhl(e), fhl(h)}. To compute
ΨK(G), note that Ψ0

RI = st(K, G), Ψ1
RI = {fci(e), fci(h)}, and Ψ2

RI = Ψ1
RI .

Thus, ΨK(G) = {fci(hw), fci(hv), fci(e), fci(h), fpo(h), fhl(e), fhl(h)}. Af-
ter computing (RIa ∪Mon(fci, fhl, fpo) ∪ Con)[Ψ(G)] and SL[Ψ(G)] we obtain
the following conjunction of (Horn) ground clauses:

G (RIa ∧Mon ∧ Con)[Ψ(G)]∧SL[Ψ(G)]

e ≤ t ∧ fci(hw) ∧ fci(hv) fci(fci(x)) ≤ fci(x) for x ∈ ΨK(G)
hw ≤ fpo(h) fpo(x) ≤ fci(x) for x ∈ ΨK(G)
hv ≤ fpo(h) fhl(fci(x)) ≤ fhl(x) for x ∈ ΨK(G)
Endocarditis ≤ i ∧ fhl(e)
i ≤ d xRy → fci(x)Rfci(y) for x, y ∈ ΨK(G)
Heartdisease = d ∧ fhl(h) xRy → fpo(x)Rfpo(y) for x, y ∈ ΨK(G)
Endocarditis 6≤ Heartdisease xRy → fhl(x)Rfhl(y) for x, y ∈ ΨK(G)

R ∈ {≤,≥,=}
SL[Ψ(G)]

By Corollary 13, Endocarditis ⊑C Heartdisease iff φ = G ∧ (RIa ∧ Mon ∧
Con)[Ψ(G)] ∧SL[Ψ(G)] is unsatisfiable. Note that φ is a set of ground clauses
in first-order logic with equality, containing all instances of the congruence
axioms corresponding to the (ground) terms which occur in φ. A translation
to Datalog can easily be obtained by replacing the function symbols with
binary predicate symbols. Alternatively, we can process the instances in φ
by replacing, in a bottom-up fashion, all the terms starting with function
symbols (which are all ground) with new constants (and adding, separately,
the corresponding definitions) (cf. e.g. the remarks in [8, 6]). The satisfia-
bility of φ can therefore be checked automatically in polynomial time in the
size of φ which in its turn is polynomial in the size of ΨK(G). Hence, in
this case, the size of φ is polynomial in the size of G.
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Unsatisfiability can also be proved directly: G entails the inequalities:

(1) Endocarditis ≤ (d ∧ fhl(e)); (2) e ≤ (fci(hw) ∧ fci(hv));
(3) (hw ≤ fpo(h)); (4) (hv ≤ fpo(h)).

Hence G ∧ (RIa ∧Mon ∧ Con)[Ψ(G)] |= e ≤ fci(fpo(h)) ≤ fci(fci(h)) ≤ fci(h).
Thus, G ∧ (RIa ∧ Mon ∧ Con)[Ψ(G)] |= fhl(e) ≤ fhl(fci(h)) ≤ fhl(h), so
G ∧ (RIa ∧ Mon ∧ Con)[Ψ(G)] |= Endocarditis ≤ d ∧ fhl(h), which together
with d ∧ fhl(h) = Heartdisease and Endocarditis 6≤ Heartdisease leads to a
contradiction.

5.2 Locality and EL
In [15] we proved that the algebraic counterpart of the description logic EL,
namely the class of semilattices with monotone operators – axiomatized by
SL∪Mon(Σ) – has an even stronger locality property, namely for every set
G of ground clauses

SL ∪Mon(Σ) ∧G |=⊥ if and only if (SL ∪Mon(Σ))[G] ∧G |=⊥

where K[G] is the set of instances of K containing only ground terms oc-
curring in G. In fact, we showed that the extension of the theory SL of
semilattices with a family of monotone functions is local in the sense de-
fined in [16].

THEOREM 15 ([18]). Let G be a set of ground clauses. The following are
equivalent:

(1) SL ∪Mon(Σ) ∧G |=⊥.

(2) SL∪Mon(Σ)[G]∧G has no partial model A such that its {∧}-reduct is
a (total) semilattice and the functions in Σ are partially defined, their
domain of definition is finite and all terms in G are defined in A.

Let Mon(Σ)[G]0 ∧G0 ∧Def be obtained from Mon(Σ)[G]∧G by purification,
i.e. by replacing, in a bottom-up manner, all subterms f(g) with f ∈ Σ, with
newly introduced constants cf(g) and adding the definitions f(g) = ct to the
set Def. The following are equivalent (and equivalent to (1) and (2)):

(3) Mon(Σ)[G]0∧G0∧Def has no partial model (A,∧, {fA}f∈Σ) such that
(A,∧) is a semilattice and for all f∈Σ, fA is partially defined, its
domain of definition is finite and all terms in Def are defined in A;

(4) Mon(Σ)[G]0 ∧G0 is unsatisfiable in SL.

(Note that in the presence of Mon(Σ) the instances Con[G]0 of the
congruence axioms for the functions in Σ are not necessary.)

Con[G]0 = {g=g′ → cf(g)=cf(g′) | f(g)=cf(g), f(g′)=cf(g′) ∈ Def}.
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This equivalence allows us to hierarchically reduce, in polynomial time,
proof tasks in SL ∪Mon(Σ) to proof tasks in SL (cf. e.g. [18]) which can
then be solved in polynomial time. 4

EXAMPLE 16. We illustrate the method on an example first considered in
[2]. Consider the EL TBox T consisting of the following definitions:

A1 = P1 ⊓A2 ⊓ ∃r1.∃r2.A3

A2 = P2 ⊓A3 ⊓ ∃r2.∃r1.A1

A3 = P3 ⊓A2 ⊓ ∃r1.(P1 ⊓ P2)

We want to prove that P3 ⊓ A2 ⊓ ∃r1.(A1 ⊓ A2) ⊑T A3. We translate this
subsumption problem to the following satisfiability problem:

SL ∪Mon(f1, f2) ∪ { a1 = (p1 ∧ a2 ∧ f1(f2(a3))),
a2 = (p2 ∧ a3 ∧ f2(f1(a1))),
a3 = (p3 ∧ a2 ∧ f1(p1 ∧ p2)),
¬(p3 ∧ a2 ∧ f1(a1 ∧ a2) ≤ a3)} |=⊥ .

We proceed as follows: We flatten and purify the set G of ground clauses
by introducing new names for the terms starting with the function symbols
f1 or f2. Let Def be the corresponding set of definitions. We then take into
account only those instances of the monotonicity and congruence axioms
for f1 and f2 which correspond to the instances in Def, and purify them
as well, by replacing the terms themselves with the constants which denote
them. We obtain the following separated set of formulae:

Def G0∧ (Mon(f1, f2)[G])0 ∧ Con[G]0
f2(a3) = c1 (a1 = p1 ∧ a2 ∧ c2) a1Rc1 → c3Rc2, R ∈ {≤,≥,=}
f1(c1) = c2 (a2 = p2 ∧ a3 ∧ c4) a3Rc3 → c1Rc4, R ∈ {≤,≥,=}
f1(a1) = c3 (a3 = p3 ∧ a2 ∧ d1) a1Re1 → c3Rd1, R ∈ {≤,≥,=}
f2(c3) = c4 (p3 ∧ a2 ∧ d2 6≤ a3) a1Re2 → c3Rd2, R ∈ {≤,≥,=}
f1(e1) = d1 p1 ∧ p2 = e1 c1Re1 → c2Rd1, R ∈ {≤,≥,=}
f1(e2) = d2 a1 ∧ a2 = e2 c1Re2 → c2Rd2, R ∈ {≤,≥,=}

e1Re2 → d1Rd2, R ∈ {≤,≥,=}

The subsumption is true iff G0∧ (Mon(f1, f2)[G])0∧Con[G]0 is unsatisfiable
in the theory of semilattices. We can see this as follows: note that a1∧a2 ≤
p1 ∧ p2, i.e. e2 ≤ e1. Then (using an instance of monotonicity) d2 ≤ d1, so
p3 ∧ a2 ∧ d2 ≤ p3 ∧ a2 ∧ d1 = a3.

This can also be checked automatically in PTIME either by using the
fact that there exists a local presentation of SL or using the fact that SL =
ISP (S2) (i.e. every semilattice is isomorphic with a sublattice of a power

4We could prove a similar theorem in the presence of role inclusion axioms for certain
types of role inclusions. An extension to general role inclusions – which would provide
more efficient instantiations, and therefore more efficient algorithms than those provided
by Corollary 13 – is subject of work in progress.
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Table 2. Constructors for EL with n-ary roles and their semantics

Constructor Syntax Semantics

conjunction C1 ⊓ C2 CI1 ∩ CI2
existential ∃R.(C1, . . . Cn) {x | ∃y1, . . . , yn (x, y1, . . . , yn) ∈ RI

and yi ∈ CIi }

of S2), where S2 is the semilattice with two elements, hence SL and S2

satisfy the same Horn clauses. Since the theory of semilattices is convex,
satisfiability of ground clauses w.r.t. SL can be reduced to SAT solving.

6 Extensions of EL and EL+

The results described in Section 5 can easily be generalized to semilattices
with n-ary monotone functions satisfying composition axioms. This allows
us to define natural generalizations of EL and EL+. We start by presenting
a generalization of EL in which n-ary roles are allowed. We then sketch
possible extensions in which role inclusions are also taken into account.

6.1 Extensions of EL
We consider extensions of EL with n-ary roles. The semantics is defined in
terms of interpretations I = (DI , ·I), where DI is a non-empty set, con-
cepts are interpreted as usual, and each n-ary role R ∈ NR is interpreted
as an n-ary relation RI ⊆ (DI)n (cf. Table 2). A further extension is ob-
tained by allowing for certain concrete sorts – having the same support in
all interpretations; or additionally assuming that there exist specific con-
crete concepts which have a fixed semantics (or additional fixed properties)
in all interpretations. The extensions we consider are different from the
extensions with concrete domains and those with n-ary quantifiers studied
in the description logic literature (cf. e.g. [5, 3].

EXAMPLE 17. Consider a description logic having a usual (concept) sort
and a ’concrete’ sort num with fixed domain N. We may be interested in
general concrete concepts of sort num (interpreted as subsets of R) or in
special concepts of sort num such as ↑n, ↓n, or [n,m] for m,n ∈ R. For
any interpretation I, ↑nI = {x ∈ R | x ≥ n}, ↓nI = {x ∈ R | x ≤ n}, and
[n,m]I = {x ∈ R | n ≤ x ≤ m}. We will denote the arities of roles using a
many-sorted framework. Let (D,R, ·I) be an interpretation with two sorts
concept and num. A role with arity (s1, . . . , sn) is interpreted as a subset of
Ds1 × · · · ×Dsn

, where Dconcept = D and Dnum = R.

1. Let price be a binary role or arity (concept, num), which associates
with every element of sort concept its possible prices. The concept

∃price.↑n = {x | ∃k ≥ n : price(x, k)}
represents the class of all individuals with some price greater than n.
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2. Let has-weight-price be a role of arity (concept, num, num). The concept

∃ has-weight-price.(↑y, ↓p) = {x | ∃y′≥y, ∃p′≤p and has-weight-price(x, y′, p′)}

denotes the family of individuals for which a weight above y and a
price below p exist.

The example below can be generalized by allowing a set of concrete sorts.
We discuss the algebraic semantics of this type of extensions of EL.

Let SLO∃NR,S denote the class of all structures (S,P(A1), . . . ,P(An), {f∃r |
r ∈ NR}), where S is a semilattice, A1, . . . , An are concrete domains, and
{f∃r | r ∈ NR} are n-ary monotone operators. We may allow constants
of concrete sort, interpreted as sets in P(Ai). The classes DLO∃NR,S and
BAO∃NR,S of all distributive lattices resp. Boolean algebras with concrete
supports and n-ary join hemimorphisms {f∃r|r ∈ NR} are defined similarly.

THEOREM 18. If the only concept constructors are intersection and exis-
tential restriction, then for all concept descriptions D1,D2, and every TBox
T consisting of general concept inclusions GCI the following are equivalent:

(1) D1 ⊑T D2.

(2) SLO∃NR,S |= ∀C1, . . . , Cn

((∧
C⊑D∈GCI C ≤ D

)
→ D1 ≤ D2

)
.

Proof : Analogous to the proof of Theorem 5. 2

Let SLS be the class of all structures A = (A,P(A1), . . . ,P(An)), with sig-
nature Π = (S, {∧}∪Σ,Pred) with S={concept, s1, . . . , sn}, Pred={≤}∪{⊆i|
1 ≤ i ≤ n}, where A ∈ SL, the support of sort concept of A is A, and for
all i the support sort si of A is P(Ai).

THEOREM 19 ([18]). Every structure (A,P(A1), . . . ,P(An), {fA}f∈Σ),
where

(i) (A,P(A1), . . . ,P(An)) ∈ SLS, and

(ii) for every f∈Σ of arity s1. . .sn→s, fA is a partial function from∏n
i=1 Usi

to Us with a finite definition domain on which it is mono-
tone,

weakly embeds into a total model of SLOΣ,S (axiomatized by SLS∪Mon(Σ)).

COROLLARY 20. Let G =
∧n
i=1 si(c)≤s′i(c)∧s(c)6≤s′(c) be a set of ground

unit clauses in the extension Πc of Π with new constants Σc. The following
are equivalent:

(1) SLS ∪Mon(Σ) ∧G |=⊥.

(2) SLS ∪Mon(Σ)[G] ∧G has no partial model with a total {∧SL}-reduct
in which all terms in G are defined.
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Let
⋃n
i=0 Mon(Σ)[G]i ∧Gi ∧Def be obtained from Mon(Σ)[G] ∧G by purifi-

cation, i.e. by replacing, in a bottom-up manner, all subterms f(g) of sort
s with f ∈ Σ, with newly introduced constants cf(g) of sort s and adding
the definitions f(g) = ct to the set Def. We thus separate Mon(Σ)[G] ∧ G
into a conjunction of constraints Γi = Mon(Σ)[G]i ∧Gi, where Γ0 is a con-
straint of sort semilattice and for 1 ≤ i ≤ n, Γi is a set of constraints over
terms of sort i (i being the concrete sort with fixed support P(Ai)). Then
the following are equivalent (and are also equivalent to (1) and (2)):

(3)
⋃n
i=0 Mon(Σ)[G]i ∧Gi ∧Def has no partial model with a total {∧SL}-

reduct in which all terms in Def are defined.

(4)
⋃n
i=0 Mon(Σ)[G]i∧Gi is unsatisfiable in the many-sorted disjoint com-

bination of SL and the concrete theories of P(Ai), 1 ≤ i ≤ n.

The complexity of the uniform word problem of SLS ∪Mon(Σ) depends on
the complexity of the problem of testing the satisfiability — in the many-
sorted disjoint combination of SL with the concrete theories of P(Ai), 1 ≤
i ≤ n — of sets of clauses Cconcept ∪

⋃n
i=1 Ci ∪Mon, where Cconcept and Ci

are unit clauses of sort concept resp. si, and Mon consists of possibly mixed
ground Horn clauses.

Specific extensions of the logic EL can be obtained by imposing additional
restrictions on the interpretation of the “concrete”-type concepts within
P(Ai). (For instance, we can require that numerical concepts are always
interpreted as intervals, as in Example 17.)

THEOREM 21. Consider the following extensions of EL with n-ary roles:

(1) The one-sorted extension of EL with n-ary roles.

(2) The extension of EL with two sorts, concept and num, where the se-
mantics of classical concepts is the usual one, and the concepts of sort
num are interpreted as elements in the ORD-Horn, convex fragment
of Allen’s interval algebra [12], where any CBox can contain many-
sorted GCI’s over concepts, as well as constraints over the numerical
data expressible in the ORD-Horn fragment.

In both cases, CBox subsumption is decidable in PTIME.

Proof : (1) is an immediate consequence of results in [18]. We prove (2)
as follows. The assumption on the semantics of the extension of EL we
made ensures that all algebraic models are two-sorted structures of the
form A = ((A,∧), (Int(R, O), {fA}f∈Σ), with sorts {concept, num}, such
that (A,∧) is a semilattice, Int(R, O) is an interval algebra in the Ord-
Horn fragment of Allen’s interval arithmetic [12], and for all f ∈ Σ, fA is
a monotone (many-sorted) function. We will denote the class of all these
structures by SLOrdHorn.

Note that the Ord-Horn fragment of Allen’s interval arithmetic has the
property that all operations and relations between intervals can be repre-
sented by Ord-Horn clauses, i.e. clauses over atoms x ≤ y, x = y, containing
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at most one positive literal (x ≤ y or x = y) and arbitrarily many negative
literals (of the form x 6= y). Nebel and Bürkert [12] proved that a finite set of
Ord-Horn clauses is satisfiable over the real numbers iff it is satisfiable over
posets. As the theory of partial orders is convex, this means that although
the theory of reals is not convex w.r.t. ≤, we can always assume that the
theory of Ord-Horn clauses is convex. The main result in Corollary 20 can be
adapted without problems to show that if G =

∧n
i=1 si(c)≤s′i(c)∧s(c)6≤s′(c)

is a set of ground unit clauses in the extension Πc of Π with new constants
Σc, and if Mon(Σ)[G]c ∧Mon(Σ)[G]num ∧Gc ∧Gnum ∧Def are obtained from
Mon(Σ)[G] ∧G by purification, the following are equivalent:

• SLOrdHorn ∪Mon(Σ) ∧G |=⊥;

• Mon(Σ)[G]0∧G0∧Con[Def]0 is unsatisfiable in the combination of SL
and the Ord-Horn fragment of Allen’s interval arithmetic.

In order to test the unsatisfiability of the latter problem we proceed as
follows. We first note that, due to the convexity of the theories involved
and to the fact that all constraints in G0 ∧ Mon(Σ)[G]0 ∧ Con[Def]0 are
separated (in the sense that there are no mixed atoms) if

(1) G0 ∧Mon(Σ)[G]0 ∧ Con[Def]0 |=⊥, then:

(2) there exists a clause C = (
∧
ci = di → c = d) in Mon(Σ)[G]0 ∪

Con[Def]0 such that G0 |=
∧
ci = di and G0∧{c = d}∧(Mon(Σ)[G]0∧

Con[Def]0)\{C} |=⊥.

In order to prove this, let D be the set of all atoms ciRidi occurring
in premises of clauses in Mon(Σ)[G]0 ∪ Con[Def]0. As every model of
G0∧

∧
(cRd)∈D ¬(cRd) is also a model ofG0∧Mon(Σ)[G]0∪Con[Def]0, and the

last formula is by (1) unsatisfiable, G0∧
∧

(cRd)∈D ¬(cRd) |=⊥ in the combi-
nation of the Ord-Horn fragment over posets with the theory of semilattices.
Let G+

0 be the conjunction of all atoms in G0, and G−0 be the set of all nega-
tive literals inG0. ThenG+

0 |=
∨

(cRd)∈D(cRd)∨∨
¬L∈(G0)− L. Since the con-

straints are sort-separated and both theories involved are convex, it follows
that either G0 |=⊥ or else G0 |= cRd for some (cRd) ∈ D. We can repeat
the process until all the premises of some clause in Mon(Σ)[G]0 ∪Con[Def]0
are proved to be entailed by G0. Thus, (2) holds.

By iterating the argument above we can always – if (1) holds – suc-
cessively entail sufficiently many premises of monotonicity and congruence
axioms in order to ensure that, in the end,

(3) there exists a set {C1, . . . , Cn} of clauses in Mon(Σ)[G]0 ∪ Con[Def]0
with Cj = (

∧
cji = dji → cj = dj), such that for all k ∈ {0, . . . , n− 1},

G0 ∧
k∧
j=1

(cj = dj) |=
∧
ck+1
i = dk+1

i and G0 ∧
n∧
j=1

(cj = dj) |=⊥ .
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Note that (3) implies (1), since the conditions in (3) imply that G0 ∧∧n
j=1(c

j = dj) is logically equivalent with G0 ∧C1 ∧ . . . Cn, which (as set of
clauses) is contained in the set of clauses G0 ∧Mon(Σ)[G]0 ∧ Con[Def]0.

This means that in order to test satisfiability of G0 ∧ Mon(Σ)[G]0 ∪
Con[Def]0 we need to test entailment of the premises of Mon(Σ)[G]0 ∪
Con[Def]0 from G0; when all premises of some clause are provably true we
delete the clause and add its conclusion to G0. The PTIME assumptions
for concept subsumption and for the Ord-Horn fragment ensure that this
process terminates in PTIME. 2

EXAMPLE 22. Consider the special case described in Example 17. Assume
that the concepts of sort num used in any TBox are of the form ↑n, ↓m and
[n,m]. Consider the TBox T consisting of the following GCIs:

{∃price(↓n1) ⊑ affordable, ∃weight(↑m1) ⊓ car ⊑ truck,
has-weight-price(↑m, ↓n) ⊑ ∃price(↓n) ⊓ ∃weight(↑m),
↓n ⊑ ↓n1, ↑m ⊑ ↑m1, C ⊑ car, C ⊑ ∃ has-weight-price(↑m, ↓n) }

In order to prove that C ⊑T affordable ⊓ truck we proceed as follows. We
refute

∧
D⊑D′∈T D ≤ D

′ ∧ C 6≤ affordable ∧ truck. We purify the problem
introducing definitions for the terms starting with existential restrictions,
and express the interval constraints using constraints over Q and obtain the
following set of constraints:

Def Cnum Cconcept Mon

fprice(↓n1) = c1 n ≤ n1 c1 ≤ affordable n1 ≤ n→ c1 ≤ c
fprice(↓n) = c m ≥ m1 d1 ∧ car ≤ truck n1 ≥ n→ c1 ≥ c
fweight(↑m1) = d1 e ≤ c ∧ d m1 ≥ m→ d1 ≤ d
fweight(↑m) = d C ≤ car m1 ≤ m→ d1 ≥ d
fh-w-p(↑m, ↓n) = e C ≤ e

C 6≤ affordable ∧ truck

The task of proving C ⊑T affordable ⊓ truck can therefore be reduced to
checking if Cnum ∧ Cconcept ∧ Mon is satisfiable w.r.t. the combination of
SL (sort concept) with LI(Q) (sort num). For this, we note that Cnum

entails the premises of the first, second, and fourth monotonicity rules.
Thus, we can add c ≤ c1 and d ≤ d1 to Cconcept. Thus, we deduce that
C ≤ e ∧ car ≤ (c ∧ d) ∧ car ≤ c1 ∧ (d1 ∧ car) ≤ affordable ∧ truck, which
contradicts the last clause in Cconcept.

A similar procedure can be used in general for testing (in PTIME) the
satisfiability of mixed constraints in the many-sorted combination of SL
with concrete domains of sort num, assuming that all concepts of sort num
are interpreted as intervals and the constraints Cnum are expressible in a
PTIME, convex fragment of Allen’s interval algebra.

6.2 Extensions of EL+

For roles with arbitrary arity we also consider role inclusion constraints
of the form r1 ◦ r2 ⊑ r. This means that, for every interpretation
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I = (D,A1, . . . , An), if (x1, . . . , xn) ∈ rI1 and (xn, . . . , xn+k) ∈ rI2 then
the tuple (x1, . . . , xn−1, xn+1, . . . , xn+k) ∈ rI . The monotone functions as-
sociated with r1, r2 are:

f∃r2(Un+1, . . . , Un+k) = {yn | ∃yi∈Ui, n+ 1≤i≤n+ k, (yn, yn+1, . . . , yn+k)∈r2},
f∃r1(U2, . . . , Un) = {y1 | ∃yi ∈ Ui, 2 ≤ i ≤ n, (y1, y2, . . . , yn) ∈ r1}.
The corresponding composition rule at algebraic level is:

f∃r1(U2, . . . , Un−1, f∃r2(Un+1, . . . , Un+k)) =

{y1 | ∃yi∈Ui, 2≤i≤n− 1,∃yn∈f∃r2(Un+1, . . . , Un+k), (y1, y2, . . . , yn)∈r1} =

{y1 | ∃yi ∈ Ui, 2 ≤ i ≤ n− 1,∃yi ∈ Ui, n+ 1 ≤ i ≤ n+ k,
(yn, yn+1, . . . , yn+k) ∈ rI2 and (y1, y2, . . . , yn) ∈ rI1 } =

{y1 | ∃yi∈Ui, such that for 2 ≤ i ≤ n+ k, i 6= n,
(y1, y2, . . . , yn−1, yn+1, . . . , yn+k)∈rI2 ◦rI1 } ⊆

{y1 | ∃yi ∈ Ui, such that for 2 ≤ i ≤ n+ k, i 6= n,
(y1, y2, . . . , yn−1, yn+1, . . . , yn+k) ∈ rI} =

= f∃r(U2, . . . , Un−1, Un+1, . . . , Un+k).

THEOREM 23. The set of Horn clauses SL ∪ Mon(Σ) ∪ RIa, where the
functions in Σ may be n-ary, has the property that every Evans partial
model A with the properties:

(i) for every f∈Σ, fA is a partial function with a finite definition domain;

(ii) for each axiom ∀x1, . . . , xn+k(f1(x1, . . . , xn−1, f2(xn+1, . . . , xn+k)) ≤
f(x1, . . . , xn−1, xn+1, . . . , xn+k)) ∈ RIa, and all a1, . . . , an+k ∈ A, if
fA(a1, . . . , an−1, an+1, . . . , an+k) is defined then f2A(an+1, . . . , an+k)
is defined in A;

(iii) A |= SL ∪Mon(Σ) ∪RIa;
weakly embeds into a total model of SL ∪Mon(Σ) ∪RIa.
Proof : Similar to the proof of Theorem 12. 2

7 Conclusions

In this paper we have shown that subsumption problems in EL can be
expressed as uniform word problems in classes of semilattices with mono-
tone operators, and that subsumption problems in EL+ can be expressed
as uniform word problems in classes of semilattices with monotone oper-
ators satisfying certain composition laws. This allowed us to obtain, in
a uniform way, PTIME decision procedures for EL, EL+, and extensions
thereof. These locality considerations allow us to present a new family of
PTIME (many-sorted) logics which extend EL with n-ary roles and/or with
numerical domains. These extensions are different from other types of ex-
tensions studied in the description logic literature such as extensions with
n-ary existential quantifiers (cf. e.g. [3]) or with concrete domains [5].
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The results in [17] show that the class of semilattices with monotone
operations allows ground (equational) interpolation. We plan to use the
results presented in this paper for studying interpolation properties in ex-
tensions of EL and for analyzing possibilities of efficient (modular) reasoning
in combinations of ontologies based on extensions of EL.
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