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All the papers in this special issue deal with the questions of what the wave function
represents and what the implications of quantum realism are in relation to our concep-
tion of space. These questions were the basis of the discussions that took place over
two conferences which, under the title of Space–time and the wave function, were
held in Barcelona in April 2013 and May 2014. The papers that are included here—or
preliminary versions of them—were presented and discussed at those conferences.1

There have been several conferences dedicated to this theme, together with various
papers published and this is the first special issue dedicated to the subject since the
appearance of the important book edited by Ney and Albert (2013). In our opinion,
three fundamental developments in the literature have contributed to opening up the
debate that we are concerned with here in the current terms and they have had a notable
influence on many of papers in this volume. There is no better introduction to the issue
than to briefly comment on these developments.

The first andmost evident of those precedents is Albert’s spirited defence of realism
about configuration space almost two decades ago (Albert 1996). In order to under-
stand Albert’s argument—which was what really triggered the whole debate—some

1 With the exception of the paper by Dorato who was invited to participate in the second conference
but was not able to attend and present his work for personal reasons.

B Albert Solé
albert.sole@ub.edu

Carl Hoefer
carl.hoefer@gmail.com

1 Departament de Lògica, Història i Filosofia de la Ciència, Universitat de Barcelona,
Carrer Montalegre 6, 08001 Barcelona, Spain

2 ICREA Research Professor, Departament de Lògica, Història i Filosofia de la Ciència, Universitat
de Barcelona, Carrer Montalegre 6, 08001 Barcelona, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-015-0826-x&domain=pdf


3056 Synthese (2015) 192:3055–3070

preliminary caveats are necessary concerning the wave function: the real star of this
special issue.2

In the first place, we need to consider that, mathematically, the wave function of a
system is a complex field defined in the so-called configuration space of the system.3

In other words, the wave function assigns a complex number to each point of that
space. The notion of “configuration space” is borrowed from classical mechanics. In
that theory, if we have a system of N particles, it is sometimes convenient to represent
the positions of all the particles through a unique point Q ≡ (Q1, Q2, . . . , QN ) ∈
R
3N , where Qi ∈ R

3 are the position coordinates in physical three-dimensional
space of the i th particle. Configuration space is the set of all points that—like Q—
represent a possible configuration of all the particles of the system in physical three-
dimensional space and it trivially follows that configuration space is 3N dimensional.
Going back to quantummechanics, the fact that thewave function of a system is defined
in configuration space amounts to the following. If we have a one-particle system,
its wave function assigns a number to each point of the ordinary, three-dimensional
space. In this respect, the wave function of a one-particle system can be thought of
as analogous to a classical field. If we have a two-particle system, however, then six
spatial coordinates—and not only three—must be specified in order to specify the
value of its wave function. In general, for an N -particle system, the specification of
3N spatial coordinates is required to specify the value of its wave function.

Classically, configuration space is considered to be a space of states (or a subspace
of the space of states) since each point in it represents one possible state of the system
under consideration. Therefore, configuration space is interpreted in classical mechan-
ics as a representational construct whose introduction is due to its practical usefulness,
but not as a physical space. As we will see below, Albert and others who are realists
with regard to configuration space maintain that, if we take quantum mechanics seri-
ously, we must assume that configuration space is the fundamental physical space and
not a space of states.4

Another important preliminary consideration has to do with entanglement. Imagine
two quantum systems that are entangled. It turns out that there is no way to assign a

2 For more details than we can offer here, see the introduction of Ney and Albert (2013).
3 In quantum mechanics the state of a physical system is represented by a vector (strictly speaking, a
ray) in the corresponding Hilbert space which, for systems with continuous degrees of freedom, has an
infinite number of dimensions. When a specific basis of Hilbert space is chosen, the projections of the
vector on each one of the axes of the basis allow us to define a complex function. This function is, in fact,
the wave function. If the basis chosen is that defined by the position eigenvectors, the wave function is
mathematically a complex field in configuration space. In his seminal paper, Albert is implicitly assuming
this particular choice of basis, which may be considered the most natural in the context of non-relativistic
quantum mechanics.
4 As Maudlin (2010) rightly notes, the very notion of “configuration space”, as borrowed from classical
mechanics, presupposes the existence of a lower dimensional space in which some particles are configured.
In this respect, if one assumes with Albert that configuration space is the fundamental physical space,
and that there is no space of lower dimension with particles in it, then referring to this fundamental space
as configuration space is clearly misleading. It would also be wrong to consider that the dimensionality
of the fundamental space depends on the number of particles in the universe if, fundamentally, there are
no particles but just a field. In this respect, we consider that the configuration space realist must take the
dimensionality of the fundamental space as a brute fact about our world.
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wave function to each individual system such that, through knowledge of those wave
functions, we could infer all the properties of the whole combined system.5 In general,
the wave function of the combined system is the only one that obeys the dynamical
laws of the theory and the only one that allows us to determine and make predictions
regarding all the properties of the systems involved, including relational properties.6

So, in quantum mechanics, we have a type of holism: the wave function of the whole
takes priority over the wave functions of the parts, which are not always well defined
and—when they are—depend on the former. This leads us to the necessary distinction
between the universal wave function (the wave function of the entire universe) and
the wave functions of arbitrary sub-systems of the universe, and to conclude that,
in terms of establishing a quantum ontology, the primary candidate for reification
must be the universal wave function and not the wave functions of sub-systems of the
universe.

In his article, Albert aims to elucidate the ontological consequences of non-
relativistic quantum mechanics. He starts from the assumption that our universe is
governed by the laws of that theory and assumes that its Hamiltonian has the follow-
ing form:

H =
N∑

i=1

(
pi

)2 +
N∑

j,k=1
j �=k

Vi j

([(
q3 j−2 − q3k−2

)2 + (
q3 j−1 − q3k−1

)2

+ (
q3 j − q3k

)2]1/2
)

(1)

For a Hamiltonian such as (1), the solutions of the Schrödinger equation,

i h̄
∂�(q, t)

∂t
= H�(q, t) (2)

are wave functions �(q, t) defined in the configuration space of the universe, which
has 3N dimensions.

Albert is well aware that defenders of one or other quantum theory would disagree
about whether the wave function provides a complete representation of a physical
system, and about whether the evolution given by the Schrödinger equation (2) is
universally valid. However, everyone would agree that the wave function is the funda-
mental theoretical term of quantummechanics and that, through Born’s rule, the wave
function allows us to derive the empirical predictions of the theory.7 Therefore, Albert
does not doubt that a committed quantum realist must reify the wave function. If, in
mathematical terms, the universal wave function is a field defined in a 3N -dimensional
configuration space, then the most natural realist interpretation (and the only interpre-

5 That is, the states of the two systems are non-separable.
6 For a discussion of entanglement and its repercussion for wave function realism, see Ney (2015, Sect. 2).
7 The Born’s rule states that the probability density for a measurement of the configuration q of the particles
of the system at time t is given by ρ(q, t) = |�(q, t)|2.
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tation considered by Albert) is to assume that the wave function represents a physical
field that also exists in a space of 3N dimensions. Crucial to Albert’s arriving to this
conclusion is the fact that, given a Hamiltonian like (1), all the dynamic possibili-
ties allowed by quantum mechanics cannot be represented by a finite set of functions
defined in any space of dimension less than 3N .8 This has notorious implications since,
if one requires that the fundamental physical space must be such that the physical state
supervenes on intrinsic (separable) matters of fact at each point of this space, as Albert
does, then the claim that configuration space is the fundamental arena of our universe
seems motivated.9

Albert was not the first to adopt a realist interpretation of the wave function as a
physical field in configuration space and hence to consider that configuration space
itself is physically real.10 However, his paper stands out in its consideration that con-
figuration space is the only physical space and the assumption that this conclusion
is unavoidable for the quantum realist, whatever form of resolving the measurement
problem she chooses. Although Albert’s position is commonly dubbed as “wave func-
tion realism” in the literature, we find this terminology rather inappropriate because, as
we will see, there may be other prima facie realist interpretations of the wave function
not amounting to the claim that it represents a physical field in configuration space.
In this regard, we prefer to dub “configuration space realism” the metaphysical thesis
that configuration space exists as a physical space. Moreover, we refer to the thesis
that the wave function represents a physical field in configuration space as “wave
function field realism”. If one thinks, in addition, that the wave function stands for the
only physical object, we then have “wave function monism”, which turns into “wave
function field monism” if this object is a field in configuration space.

Assuming wave function field monism raises two questions that, although related,
are different but are not always distinguished. In the first place, we can ask in what
way the objects of our everyday experience—cats, tables, etc.—can be found in the
wave function. To put it another way, we need to establish an account of reduction
between the objects of our experience and the fundamental ontology.11 In the second
place, given that the fundamental space is 3N -dimensional, we can ask in what way
the three-dimensional character of the objects of the experience is recovered—if this
is indeed recovered. In his paper of 1996, Albert defends that the macroscopic objects

8 InAlbert’s ownwords: “for any co-ordinatizationwhatever of configuration space, the set of all trajectories
of a quantum-mechanical world with Hamiltonian (1) will include trajectories which pass though states
that are completely non-separable in those co-ordinates, states which cannot be expressed as products of
functions of any proper subset of those co-ordinates (adapted from Albert 1996, fn. 8). For a reflection
on the connection between non-separability and configuration space realism and an assessment of Albert’s
argument, see Myrvold (2015, Sect. 3).
9 For a reflection on the connection between non-separability and configuration space realism and an
assessment of Albert’s argument, see Myrvold (2015, Sect. 3).
10 Bell’s (1987) endorsement of wave function field realism in the context of Bohmian mechanics is well
known and much cited. Other Bohmians, such as Valentini (1992), Holland (1993) and Bohm and Hiley
(1993) have defended a similar position.
11 The relationof reduction establishedwoulddepend, naturally, onwhether configuration space is inhabited
only by the wave function, or whether it is considered that there are more physical objects in it.

123



Synthese (2015) 192:3055–3070 3059

that we experience have a merely apparent character and he tells a story of how those
appearances originate, based on the form of the Hamiltonian of the universe (1).12

Albert’s paper generated numerous reactions, the majority of them critical of his
argument in favour of the reality of configuration space.13 Although the papers that
are presented here are not directly critical of Albert’s argument, many of them do
represent indirect criticism. To the extent that one defends a non-instrumentalist (and
hence realist) interpretation of the wave function without insisting on the reality of
configuration space, one is in fact criticising Albert’s position. There are many pro-
posals of that type from the Bohmian camp—but not only from there—and several
are explored in this special issue.

However, before considering Bohmian mechanics, we want to mention the work
of philosophers such as Deutsch, Wallace and Saunders, in order to clarify and try
to resolve some of the problems that arise in the context of Everett’s interpretation
(1957), converting it into amany-worlds theory.14 Taken together, thatwork constitutes
precisely the second step forward in the recent literature that has had a considerable
influence on the debate that we are here considering. The Everettian considers that
the wave function alone is enough to account for everything that is real and that it
evolves, without exception, in accordance with the Schrödinger equation. Since that
evolution is strictly deterministic, the problem arises of how to interpret the quantum
mechanical probabilities furnished by Born’s rule. The question becomes even more
complicated when we consider that the wave function, without collapse, generally
contains “branches” for each of the possible sequences of results and that all those
branches are equally real, according to the Everettians. If this is so, what sense does it
make to assign probabilities of measurement outcomes when all the possible results do
in fact occur, according to the theory? And what can count as evidence in favour of the
theory, when the theory asserts that all possible sequences of outcomes actually occur,
including that which would standardly be described as disconfirming the theory? Such
a theory appears to fail to meet any minimal criterion of falsifiability.

Contemporary Everettians have also attempted to resolve various ontological puz-
zles. To the extent that many of them consider that thewave function constitutes all that
there fundamentally is, they face the same question as Albert: they have to account for
how the macroscopic objects of our everyday experience are reduced to the fundamen-
tal ontology, in this case, the wave function.Wallace (2003, 2010) in particular tackles
this question and proposes an account of reduction according to which a macroscopic
object (e.g., a table) is a pattern in the structure of the wave function that is functionally
identified.15 If we accept that macroscopic objects are reduced in such a way, we can

12 See Albert (1996; 279ff). Later, Albert (2013) modifies his position and suggests a non-eliminative
causal account of reduction.
13 For criticism, see Monton (2002, 2006) or Maudlin (2010).
14 Concerning the many differences between these authors—the current defenders of the many worlds
interpretation—and Everett himself, see the paper by Barrett in this volume (Barrett 2015). N.b., these
authors tend not to use the “many worlds” phrase to label their interpretation of quantum theory.
15 Wallace’s proposal regarding reduction is sufficiently flexible (or vague) and does not require the wave
function to be interpreted as a physical field in configuration space. In fact, Wallace is against that inter-
pretation and he openly opposes realism with regard to configuration space. For a discussion of Wallace’s
proposal, see Barrett (Sect. 6) and Ney (Sect. 5) in this special issue.
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literally find a world in the wave function and if, in its unitary evolution, the wave
function branches suitably, duplicating patterns, then many worlds can be found in
it.16 From all of that we arrive, eventually, at the fact that we do not have to postulate
the existence of many worlds (as some Everettians previously did) but rather they are
conceived as emerging entities, once the existence of the wave function structure is
assumed.

This perspective has led some Everettians to level an argument against Bohmians—
the so-called redundancy argument—concluding that the latter are implicitly commit-
ted to a many worlds ontology. Given that the third and final recent development that
we want to comment on has to do, precisely, with Bohmian mechanics, which plays a
prominent role in this volume, we will now briefly describe that theory.

As is well known, in Bohmian mechanics, in order to provide a complete charac-
terization of a physical system we need to specify not only the wave function but also
the positions of the particles of the system which, according to the theory, are well
defined at all times. The trajectory of the particles depends on the wave function and
is given by the so-called “guidance equation”:

dQk

dt
= h̄

mk
Im

( �∇k�(q, t)

�(q, t)

) ∣∣∣
q=Q(t)

(3)

When it comes to elucidating the ontology of the theory, almost all those who offer an
interpretation consider that Qk represents the position of the kth particle in a three-
dimensional space that corresponds with the physical space of our experience, which
is taken to be fundamental. A macroscopic object such as a table is identified with a
collection of Bohmian particles that, in addition to being distributed in the form of a
table, must satisfy certain dynamic properties that depend on the wave function. So
we see that, under this interpretation, the problem of reducing macroscopic objects
to the fundamental ontology is hugely simplified and the problem of recovering the
three-dimensional character of those objects becomes trivial: macroscopic objects
are three-dimensional because they are collections of particles that are also three-
dimensional.

The interpretation of the wave function in Bohmian mechanics is, however, more
controversial. The fact that the trajectory of the particles depends on the wave function
in accordance with (3), has prompted some Bohmians to think that the wave function
represents a physical field that ‘moves’ the Bohmian particles, in an analogous way
to how an electromagnetic field ‘moves’ a charged particle that is located within it.
However, given that the wave function is defined in configuration space, this proposal
leads to the consideration that the Bohmian ontology consists of a field, which inhabits
configuration space, and a set of particles, which inhabit three-dimensional physical
space. So, we have the field and the particles in two different spaces and so the problem

16 Decoherence occurs when a quantum system interacts with its surroundings, becoming entangled with
them. The idea here is that if we have a system A in a quantum superposition, it is almost unavoidable that
an interaction is produced between A and its surroundings, so that A ends up entangled with elements of
their surroundings.When such entanglement occurs, we typically are not be able to observe the distinctively
quantum effects of A’s superposition.
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arises of how the two types of entities communicate. This problem can be resolved
if, as Albert (1996) proposes, we interpret Q ≡ (Q1, Q2, . . . , QN ) ∈ R

3N as the
position of a single universal particle (“the marvelous point”) that together with the
wave function inhabits configuration space. Then, both wave and particle are in the
same space and there is no longer anymystery in their communication. However, under
this interpretation the problem of the recovery of the three-dimensional character of
the objects of our everyday experience reappears.

Whatever the interpretation of the Bohmian particles may be, if the wave function
is interpreted as a field or, more generally, as being a physical object, the proposal can
fall prey to the redundancy argument mentioned above. Consider, for example, the
classic case of Schrödinger’s cat.17 When the wave function (which we will suppose
does not collapse, as both Everettians and Bohmians assume) contains two branches,
one corresponding to the live cat and the other to the dead cat, the defender of a many
worlds interpretation maintains that in the structure of that wave function there are two
patterns, which give rise to two emergent cats. According to the traditional story, the
Bohmian judges the situation very differently. Depending on their initial positions, the
Bohmian particles will evolve deterministically in accordance with (3) towards either
the configuration of a live cat or the configuration of a dead cat. Therefore, it is the
configuration of the particles that determines if there is a cat alive or a dead cat and,
in at any given moment, there is just one cat.

The supporter of the redundancy argument will not consider, however, the situation
in the same way, but will see Bohmians as accepting that the wave function is included
in the ontology, just as Everettians do. Therefore, after the experiment, the Bohmian
ontology (just like Everettian ontology) includes two wave function patterns that give
rise to the emergence of a live cat and a dead cat, independently of what the particles
do. So in this way, according to the redundancy argument, the Bohmian also has two
cats and hence there are two worlds included in the Bohmian ontology. In the famous
words of Deustch, “pilot-wave theories [Bohmian mechanics] are parallel-universes
theories in a state of chronic denial” (1996, p. 225).

We consider that the supporters of the redundancy argument assume, without jus-
tification, that the reductive relation must be the same for both the Everettian and for
the Bohmian, despite the fundamental ontology of the latter including more elements.
This seems highly dubious and it would appear legitimate for the Bohmian to consider
a different account of reduction, based on the particles, since particles are included in
the Bohmian ontology.18 In addition, precisely the fact that particles are included in
the Bohmian ontology provides resources for interpreting the Bohmian wave function
in ways that are not prima facie available to the Everettian. Instead of considering that
the wave function represents a physical object, it can be interpreted in relation to the
particles, either as representing some property of the particles themselves or of their
law-like temporal evolution. In such a case, the redundancy argument does not get off
the ground, since, if the wave function itself is not interpreted as a physical object,
it can hardly be claimed that its structure can give rise to a multiplicity of worlds.

17 See Schrödinger (1935).
18 For further elaboration of this point and others against the redundancy argument, see Hawthorne (2010)
and Valentini (2010).
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Moreover, if the wave function itself is not interpreted as a physical object, the need
to reify configuration space also disappears, despite it being defined mathematically
in that space.

This consideration brings us to the last development in the literature that we wish
to comment on in this Introduction and that has had a marked influence on the works
contained in this special issue. It is the proposal of some friends of Bohmian mechan-
ics that, in this theory, the wave function has a nomological status.19 According to
this proposal, Bohmian particles, defined in three-dimensional space, form what has
been called the ‘primitive ontology’ of Bohmian mechanics. The wave function is
interpreted in analogy with a Hamiltonian, that is, as part of our representation of the
law that governs the evolution of the particles.

Although there are certain analogies between the Hamiltonian and the wave func-
tion,20 the proposal that the wave function should be interpreted as a law prima facie
seems counterintuitive. The wave function is a contingent solution of the Schrödinger
equation (2), which is considered by many to be a genuine law of the theory. Fur-
thermore, as a solution of that equation, the wave function has a non-trivial temporal
evolution that would seem difficult to square with its supposed nomological charac-
ter. In this respect, the proponents of the nomological interpretation point out that it
is the universal wave function and not the effective wave function of arbitrary sub-
systems of the universe that should be interpreted nomologically.21 We know little as
to what the form of that universal wave function might be and the supporters of the
nomological interpretation demonstrate that the supposition of a static universal wave
function is compatible with effective wave functions of sub-systems that manifest the
desired phenomenology; that is, that have a non-trivial temporal evolution given by
the corresponding Schrödinger equation and that allow to calculate the trajectories of
the particles of the sub-system through the guidance relation.

The proposal of the nomological interpretation of the wave function opens up a
whole range of philosophical questions, since the debate about the nature of the wave
function gets entangled with the metaphysical debate about the nature of laws. This

19 This suggestion was first formulated in Durr et al. (1992) and further developed both in Durr et al. (1997)
and in Goldstein and Zanghi (2013).
20 See Durr et al. (1997).
21 In Bohmian mechanics, there is a precise way to define the wave function of a given sub-system of the
universe. Let A be a subsystem of the universe including S particles with position variables x . Let y be the
position variables of all the particles not belonging to A. A’s conditional wave function at time t , ψA

t , is
defined as follows:

ψA
t (x) = �t (x, Y (t))

where �t is the universal wave function at t and Y (t) the actual configuration at t of the particles in A’s
environment. Now suppose that the universal wave function can be decomposed in the form:

�t (x, y) = φt (x)θt (y) + �⊥
t (x, y)

where (a) θt (y) and�⊥
t (x, y) are functions with macroscopically disjoint supports; and (b) Y (t) lies within

the support of θt (y). If conditions (a) and (b) are met, then φt (x) is A’s effective wave function at t .
Notice that the effective wave function of a system does not always exist but, when it does, it is equal to
its conditional wave function. For an exhaustive analysis of the notion of conditional wave function, see
Norsen et al. (2015), in this special issue.
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latter debate was ignored by the original proponents of the nomological interpretation;
however, the connections between the two debates have been addressed recently in the
literature and some papers in this special issue contribute greatly to this exploration.

There are many different views concerning the nature of laws. First of all, using
Callender’s ingenious expression in this volume, laws can be interpreted as bits or its.
To interpret laws as “bits” is to consider that laws are not something over and above the
physical objects and their natural properties, but particularly good summaries of the
distributions of those properties. This is obviously what Humeans with regard to laws
assume. In contrast, to interpret laws as “its” is to consider that laws do not supervene
on the distribution of natural properties but are further ontological posits. This view, in
turn, can be expanded in different ways. According to primitivists, laws are primitive
and the actual behaviour of physical objects is accounted for, in part, because of there
being some laws; which just is a brute fact about the world. According to disposition-
alists, apart from natural non-modal properties, physical objects are endowed with
further dispositional properties or powers and it is the existence of these properties
that makes it the case that certain laws obtain. In other words, dispositionalism makes
the laws real but derived, the dispositions being the truth-makers of the laws.

A question arises as to whether the nomological interpretation of the wave function
in Bohmian mechanics is compatible with all these views about the nature of laws
and what the benefits of each view are when applied to this particular case. If we
take Bohmian mechanics into consideration—the theory that is at the origin of the
nomological interpretation—Humeanism amounts to considering that the mosaic of
local matters of fact contains the trajectories of the particles and that a law is whatever
axiom of the system best allows us to systematize those trajectories. If Bohmian
mechanics achieves the best balance between simplicity and strength, postulating
a wave function that obeys the Schrödinger equation and intervenes in the guidance
equation, then thewave function can perfectlywell be deemed nomological in nature—
if it supervenes on the history of particles trajectories. A primitivist friend of the
nomological interpretation would consider, in contrast, that the wave function refers
to a further entity—the law—and that the Bohmian trajectories are what they are, in
part, because of this law. Finally, the dispositionalist would attribute to the Bohmian
particles a set of dispositions to move in such and such a way, depending on their
configuration and would take the wave function to represent these dispositions.

We can see how, inBohmianmechanics at least, thewave function can be interpreted
in ways that cover all the usual categories: as a physical object in itself; as a property
of a physical object; or as a law.22 Given that all these interpretive possibilities are
analysed in this special issue, let us see next what the contents of the papers are.

The papers

The first paper in the volume is JeffreyBarrett’s epilogue on the Everett interpretation
of quantum mechanics. In it, Barrett offers a systematic summary of the theory, mak-

22 The possibility that the wave function represents a totally new category of object (see Maudlin 2013) is
not explored in this volume.
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ing Everett’s assumptions explicit and showing how they could possibly fit together.
The central thread running through the whole of the paper is the question of the
theory’s empirical adequacy. In Everett’s theory, ideal observers are associated with
determinate relative measurement records. However, according to the theory, almost
every measurement yields not one, but every physically possible result; and from this,
Everett concludes that no non-trivial probabilities for measurement outcomes can be
definedwithin the theory. Given this situation, Barrett wonders towhat extent Everett’s
theory can be empirically vindicated and discusses Everett’s own views in this respect.

However, it would be an error to consider that this paper of Barrett’s is just another
presentation of Everett’s theory. Barrett not onlymakes Everett’s assumptions explicit,
but compares them with those that supporters of the many worlds interpretation make
today, in an attempt to disentangle Everett from contemporary Everettians. So, for
example, Barrett discusses Everett’s account of the constitution ofmacroscopic objects
and reveals the role that decoherence plays in that account; which is very different from
the role it has in other contemporary accounts. Barrett also provides a novel criticism
of Wallace’s position with respect to the ontological status of the wave function and
analyses the proposal by contemporary Everettians to introduce probabilities into the
theory, making clear here too the huge difference with Everett’s original ideas.

Configuration space realists face a problem also related to the interplay between
quantum mechanics and the evidence we have for it, but a problem of a very dif-
ferent nature from that considered by Barrett. The evidence that we use to confirm
quantum mechanics consists of macroscopic objects with a certain arrangement in
three-dimensional space, such as instrument needles pointing in a certain direction,
spots on photographic plates, inkmarks on paper, etc. UsingBell’s expression, all these
are local beables. If the supporters of configuration space realism consider that only
configuration space and the 3N -dimensional objects that inhabit it are real, they will
be implying that the evidence we use to confirm quantum mechanics, which consists
in local beables, does not exist. We would then arrive at the conclusion that quantum
mechanics is empirically incoherent, since if the theory were true, the evidence we
have to believe in it would not exist.

Alyssa Ney discusses this problem in her paper; and as in many of her previous
works, she defends configuration space realism through a very audacious argument.
If we do not want a fundamental theory to be empirically incoherent, then whatever
constitutes the evidence for the theory must be included in the basic ontology of the
theory. This is what Ney calls the “overlap thesis”. The typical answer, from those who
support realism concerning configuration space, is to assume that this thesis is satisfied
in the case of quantum mechanics since, although only the 3N -dimensional ontology
is fundamental, there is nothing to prevent the local beables from forming part of the
ontology of the theory as emerging entities which are not any less real due to their
condition of being emergent. Ney sees this answer as problematic as she considers that,
to date, themany and varied attempts made by configuration space realists to show that
macroscopic objects reduce to the fundamental configuration space based ontology,
have been unsuccessful. Does this mean that the realist with respect to configuration
space is condemned to be empirically incoherent? In her paper, Ney claims that this
is not the case, given that, really, the evidence that we have in favour of quantum
mechanics is not three-dimensional. The stage is set for a lively argument.
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The next group of papers focus on Bohmian mechanics, which was the most widely
discussed theory at both of the two conferences that were the motivation for and origin
of this special issue. In the first of these papers,Travis Norsen, DamianoMarian and
Xavier Oriols present a somewhat heretical Bohmian ontology that is made up solely
of entities that reside in the three-dimensional space of our everyday experience; that
is, local beables. The proposal of Norsen, Marian and Oriols consists of assuming that
both particles and waves exist; but, instead of reifying the universal wave function
in configuration space, they postulate the existence of a set of fields all of which are
defined in three-dimensional space.

Since it is a straightforward consequence of the guidance equation (3) that the
trajectory of each Bohmian particle depends only on its conditional wave function,
one can think of these conditional wave functions as each one guiding its affiliated
particle. Conditional wave functions are fields defined in three-dimensional space
and the proposal here is to reify them instead of the big, universal wave function.
Conditional wave functions, however, are not solutions of the Schrödinger equation
but obey a non-linear non-unitary dynamics that ultimately depends on an infinite set
of fields, also defined in physical three-dimensional space. In short, the price to a pay
for retaining all the dynamic information contained in the universal wave function,
without introducing the latter into the equations and axiomsof theBohmianmechanics,
is to postulate an infinite set of three-dimensional fields whose evolution is coupled.

Norsen (2010) already explored and defended this ontology populated by an infi-
nite number of fields. However, here Norsen, Marian and Oriols suggest a different
ontological picture. They propose to cut the infinite series of coupled fields, just leav-
ing a small number of them. In this case, the Bohmian trajectories that follow from
the corresponding equations will not be exactly identical to those that would result
from considering the infinite set of fields; but Norsen, Damiano and Oriols defend
the notion that the discrepancy between the two sets of trajectories would be so small
that the resultant theories would not be empirically distinguishable, given the cur-
rent experimental margins of error. According to the authors, we would then be faced
with a similar case to that of the GRW theory,23 which recognizes, for example, the
possibility of macroscopic superpositions with consequences that would violate our
observations, but which assigns an infinitesimal probability to such situations.

Next, in a highly suggestive paper, Craig Callender wonders whether there is
any reason to reify the wave function and, to answer that question, he proposes a
comparison between versions of quantum mechanics and classical mechanics, when
both theories are expressed using the same formalism. Here we should point out
that classical mechanics can be formulated through a formalism similar to that of
Bohmian mechanics, in which classical wave functions appear. However, nobody has
ever suggested reifying those wave functions, which are considered to be representa-
tional artefacts. So, to establish whether the Bohmian wave function should be reified,
Callender proposes comparing it with the classical wave function, analysing the sim-
ilarities and differences between the two and considering if there are any differences

23 See Ghirardi et al. (1986).
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that provide grounds for not reifying the wave function in the classical case but doing
so in the quantum case.

Despite the classical and Bohmian wave functions having many similarities (for
example, both are objects defined in spaces with a great many dimensions), Callender
identifies a crucial difference: while in the classical case we do not need the wave func-
tion, in the Bohmian case the wave function is absolutely necessary in order to have
a well-posed initial value problem. Although perhaps this characteristic may explain
why some people have attempted to reify the wave function in Bohmian mechanics,
Callender argues that this should not impress the supporter of a nomological interpre-
tation of the wave function, at least, not one who is a Humean in regard to the nature
of laws. This turns out to be Callender’s favourite interpretation of the wave function;
he explains how to apply it in the context of Bohmian mechanics and argues in its
defence.

Mauricio Suárez embarks on a critical review of the different interpretative options
that have been offered with respect to the Bohmian wave function and which—as we
say above—can be summarised as interpreting it as representing a physical field, a law
or a property of Bohmian particles. Suárez first rules out interpreting the wave func-
tion as a field in configuration space, due to the difficulty in explaining the supposed
communication between that field (inhabiting configuration space) and the particles
(inhabiting three-dimensional space). He then offers an original criticism of the nomo-
logical interpretation, basedon the fact that thewave functionhas a non-trivial temporal
evolution; and finally advocates a dispositionalist interpretation of the wave function.

Both Suárez’s dialectics and his conclusions may well remind us of work by Esfeld
et al. (2014). However, there are important differences between Suárez’s proposal
and that of those other authors. In first place, Suárez attributes a disposition to each
Bohmian particle to move in some or other fashion; while Esfeld et al. defend the idea
that it is only possible to attribute dispositions to the set of all the particles. So we can
see that the metaphysics proposed by both parties is quite distinct. In the second place,
Suárez brings into play an interpretative distinction in the field of Bohmian mechanics
that Esfeld et al. do not mention. That is the division between those who claim that
Bohmian mechanics is essentially a first-order theory, with the guidance Eq. (3) as
the fundamental law of motion of the particles, and those who consider a version of
the theory in which the law of motion is second order, with the acceleration of the
Bohmian particles being proportional to the sum of the classical forces and a new
quantum force that is derived from the wave function. In opposition, for example, to
what Solé (2013) maintains, Suárez argues that the second-order approach—or causal
approach—offers some advantages with respect to the first-order approach in relation
to its explanatory power, and that precisely those advantages may come into their own
when a dispositional interpretation of the wave function is considered.

Mauro Dorato also embarks on a critical assessment of the different interpretative
options related to the wave function, although his objective is quite different from that
of Suárez. Dorato is not aiming to present and defend a specific interpretation, but
rather to evaluate the realist’s situation, once all the realist interpretations of the wave
function have been duly scrutinised. Dorato’s conclusion is that all the viable forms of
interpreting the wave function realistically share the idea that it should be understood
as representing something abstract. If that is indeed the case, then a nominalist who
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rejects the existence of abstract entities, must also reject realism with regard to the
wave function and maintain an instrumentalist attitude, which, after Dorato’s analysis,
does not seem entirely without its motivation.

Although Dorato discusses (and rejects) realismwith regard to configuration space,
criticising Wallace’s account of reduction, the interpretation that Dorato discusses in
most detail is the nomological interpretation of the wave function. Dorato leaves
Humeanism to one side and analyses in depth both primitivism and dispositionalism.
In this sense, Dorato’s paper can be seen as complementing Callender’s, as Dorato
analyses those variations of a nomological interpretation that Callender does not con-
sider. If the wave function is to be understood as a law and also as an entity, then
Dorato argues that the only way to do so is to see it as a mathematical entity and,
hence, abstract. The case of dispositionalism could seem different, as a disposition is
not seen as an abstract entity. However, Dorato considers that due to quantum holism,
in Bohmian mechanics it only makes sense to attribute a disposition to the global con-
figuration of all the particles and, according to him, that disposition would be, once
again, an abstract property.

The papers by Callender, Suárez and Dorato make an excellent prologue to the
paper by Matthias Egg and Michael Esfeld. We have seen that the three former
papers analyse the prospects for interpreting, within Bohmian mechanics, the wave
function as a field, as a law (either from a Humean point of view, or in accordance
with primitivism) or as a dispositional property. Egg and Esfeld ask whether these
same interpretations constitute valid options for interpreting the wave function in the
context of the GRW theory.

Egg and Esfeld’s motivation stems from the idea, defended in Allori et al. (2008),
that Bohmian mechanics and GRW have a common structure. We have already seen
that, in Bohmian mechanics, the particles can be considered to be the primitive ontol-
ogy, defined in ordinary three-dimensional space, and that the wave function can be
considered to be something that has to do with the temporal evolution of that primitive
ontology. Similarly, in the version of GRW considered by Egg and Esfeld, which is
usually referred to as GRWm, there is a primitive ontology that consists of the mass
density field m(x, t):

m(x, t) =
N∑

i=1

mi

∫

R3N

dq1, . . . , dqnδ(qi − x)
∣∣ψ(q1, . . . , qN , t)

∣∣2 (4)

and, once again, the wave function can be understood here as having to do with the
evolution of this field.24 Despite this common structure, there are important differences
between GRWm and Bohmian mechanics. One of the most important is that, while
Bohmian trajectories do not supervene on the wave function, with a multiplicity of
trajectories being compatible with the same wave function, clearly, the mass density
(4) does supervene on the wave function. Due to this and other differences between the

24 In GRW, the wave function does not always evolve in accordance with the Schrödinger equation; there
is an additional stochastic law that determines spontaneous collapses whose probability increases with the
number of particles in the system considered.
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theories, Egg and Esfeld consider that neither the interpretation of the wave function as
a physical field, nor the nomological interpretation, either theHumeanor the primitivist
version, are satisfactory in the context of GRWm. According to these two authors, only
an interpretation of the wave function as a stochastic disposition of the mass density
to change its form is viable.

This special issue concludes with a paper which, in some way, could be seen as
a methodological amendment to the papers that precede it. Note that the advocates
of configuration space realism, consider this position to be a consequence of taking
non-relativistic quantummechanics seriously. In the sameway, the other interpretative
options in relation to the wave function discussed so far are based on theories such
as Bohmian mechanics and GRW which are not relativistic theories either. In the
knowledge that those theories are neither fundamental nor true, the speculative exercise
that we have been engaged in is to consider what the ontological furniture of the world
would be if they were. In addition, it is considered that this interpretative exercise
can be performed considering only the theory in question, without taking into account
from what other more fundamental theory it could be derived from.

In his paper, Wayne Myrvold rejects this approach and defends the idea that, in
order to assess the meaning of the wave function, we must take into account that quan-
tum mechanics is a non-relativistic approximation, valid solely in certain low-energy
regimes, of quantumfield theory.His proposal consists of analysing the non-relativistic
and the relativistic versions of quantum field theory and locating the elements of those
theories that, within the appropriate limits, can be identified with the wave function
of non-relativistic quantum mechanics. According to Myrvold, it is through explor-
ing the properties of those elements that we can find out about the nature of the
wave function. Proceeding in this way, he challenges two ideas that are crucial for
the wave function field realist. First, Myrvold shows that wave functions in quantum
field theory are unlike fields because, even if they assign a value to each point of the
configuration space in which they are defined, those values are not local properties of
the corresponding points. Second, the configuration spaces in which wave functions
are defined cannot be taken as fundamental, since they are constructed from oper-
ators defined in ordinary spacetime. It remains to be seen whether the defender of
configuration space realism will accept Myrvold’s methodology; but in any case, his
exploration constitutes a highly suggestive counterpoint to the previous papers and an
excellent close to this special issue.
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