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A superheterodyne receiver is a type of device universally used in a variety of electronics and information systems. Fault detection
and diagnosis for superheterodyne receivers are therefore of critical importance, especially in noise environments. A general
purpose fault detection and diagnosis scheme based on observers and residual error analysis was proposed in this study. In the
scheme, two generalized regression neural networks (GRNNs) are utilized for fault detection, with one as an observer and the
other as an adaptive threshold generator; faults are detected by comparing the residual error and the threshold. Then, time and
frequency domain features are extracted from the residual error for diagnosis. A probabilistic neural network (PNN) acts as a
classifier to realize the fault diagnosis. Finally, to mimic electromagnetic environments with noise interference, simulation model
under different fault conditions with noise interferences is established to test the effectiveness and robustness of the proposed fault
detection and diagnosis scheme. Results of the simulation experiments proved that the presented method is effective and robust in

simulated electromagnetic environments.

1. Introduction

With the advent of the era of big data, data transmission is
playing an increasingly important role. As a significant form
of data in the wireless transmission of electronic information
system, analog signal is irreplaceable in many specific cir-
cumstances because of its high accuracy of rate and simplicity
of signal processing.

In information system, the superheterodyne receiver is
a typical kind of analog signal receiving apparatus widely
used in radars and all kinds of signal receivers. The super-
heterodyne receiver has the capability of converting high-
frequency signals. Given its high sensitivity, frequency stabil-
ity, and simpler structure, the superheterodyne receiver has
essentially replaced all previous receiver designs and become
a standard configuration for virtually all modern radio
receivers, taking the use of frequency measuring receivers
in electronic intelligence reconnaissance as an example [1].
Particularly in the military field, the superheterodyne receiver
plays rather a more important role.

Serious receiver performance degradation is probably
caused by faults of components in receivers. Due to the
significance of superheterodyne receivers, the performance of
whole information system and the quality of communication
will be critically affected once superheterodyne receivers
failed. Hence effective fault detection and diagnosis methods
for superheterodyne receivers are vital for the enhancement
of performance and the mission success rate. Accurate fault
detection techniques can help to improve the availability
of different superheterodyne receivers and fault detection
is essential for initiating maintenance action to prevent
total failure of the system. Meanwhile, efficient diagnosis is
instrumental to disassembly and replacement malfunction
component, and then the efficiency of equipment mainte-
nance is improved. Finally, through synthetically consider-
ation information on detection and diagnosis, utilization of
superheterodyne receivers and the support of spare parts are
rationally planned to guarantee satisfactory performance of
information system.
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F1GURE I: The block diagram of a superheterodyne receiver.

The implementation of fault detection and diagnosis in
electromagnetic environment for superheterodyne receivers
is a practical problem confronting electronic information
equipment. However, there is little research known so far on
fault detection and diagnosis for superheterodyne receivers
under noise circumstance. Some relevant studies are as
follows. In Binu and Kariyappa’s survey, the approach of
diagnosis of analog circuits was given and the machine
learning-based approaches using artificial neural network as
implementation were proposed [2]. Khanafseh and Pervan
developed a general methodology to mitigate single receiver
failures for architectures of carrier phase navigation [3]. Chen
et al. proposed a fault diagnosis model for a radar receiver,
built by applying multisignal flow graphs [4]. Mohsen and El-
Yazeed invented a diagnosis approach of analog circuits based
on dictionary and the excellent effectiveness of proposed
algorithm was demonstrated by soft fault simulation [5]. Nho
et al. designed an algorithm and an operation boundary for
fault detection of an onboard GNSS receiver [6].

However, most of these studies are just suitable for a
single kind of receiver or some particular receiver types and
therefore not applicable to receivers on a broader sense. To
overcome this disadvantage, this study discusses a novel fault
detection and diagnosis method which can be applied for
most commonly used superheterodyne receiver types.

The method was inspired by fault detection schemes for
control systems. In their work [7], Jayakumar and Das pro-
posed a technique of fault detection for a flight control system
based on Luenberger observer. Keliris et al. developed a non-
linear observer-based approach for distributed fault detection
of a class of interconnected input-output nonlinear systems
[8]. Proll et al. presented a fault isolation method combining
structural diagnostic ability analysis with observer-based
residual generation [9]. These studies indicate that observer-
based methods tend to have excellent performance in the
fault detection problem for complex systems. Therefore, in
this study, an observer-based fault detection and diagnosis
method using adaptive thresholds were adopted in the infor-
mation system with superheterodyne receivers to explore the
application of the technique in a new field.

Observer is established to obtain the estimated output,
and then the difference between the actual and estimated
output is taken as the residual error, which carries a great
deal of information of system. Fault detection is carried out
by comparing the residual error with the adaptive threshold.
A type of neural network is effective to meet the nonlinear
requirements of observer and adaptive threshold generator.

Considering the nonlinear fitting capability of generalized
regression neural network (GRNN), it is employed in this
paper. Moreover, GRNN requires shorter training time to find
optimal solution than BPNN [10].

From the point of view of pattern recognition, the process
of fault diagnosis of a superheterodyne receiver is pattern
classification for its operating status. Feature extraction of the
residual error is the key point of fault diagnosis which deter-
mines whether the fault diagnosis is successful. To further
process the residual error signal, time domain and frequency
domain analysis are applied to extract fault features and
then a classifier diagnoses the fault. A proper classifier also
has a better effect on the result of fault diagnosis. Since
the probabilistic neural network (PNN) is a widely used
algorithm for classification applicable to nonlinear problems
and high dimension applications with short training time [11],
the diagnosis is realized using PNN.

To solve the aforementioned problems, a method that
combines observer, adaptive threshold generator, and classi-
fier based on PNN is proposed in order to realize the accurate
fault detection and effective diagnosis, which is beneficial to
improve the operation performance of the information sys-
tem with superheterodyne receivers. Moreover, the method
proposed in this study is featured with stronger engineering
applicability and generality. It is more practical in com-
munication fields compared with previous approaches since
the only monitoring data required by the observer are the
system input/output, while, on the other hand, the GRNN,
employed as the fault observer, is able to describe virtually all
kinds of nonlinear systems. In general, the method is robust
to various noises under electromagnetic environments with
noise interference, due to its adaptive nature.

The structure of this paper is organized as follows. The
simulation model of a typical superheterodyne receiver is
given in Section 2. In Section 3, the fault detection and
diagnosis scheme is elaborated. In Section 4, the validity of
the proposed method is proved using simulation data seeded
with faults and the results of the experiments were given
subsequently, and Section 5 concludes the paper with some
perspectives.

2. Modeling of a Typical
Superheterodyne Receiver

Figure 1 is the block diagram of a typical superheterodyne
receiver consisting of local oscillator, mixer, bandpass filter,
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FIGURE 2: The adaptive fault detection and diagnosis for the superheterodyne receiver.
amplifier, demodulator, and additive white Gaussian noise TABLE 1: Parameter of IF filter.
(AWGN) channel. . . Parameter Unit Value
In signal source system, the module is packaged into a -
. . . . . Filter order Null 1
subsystem, including original signal, carrier, and attenuator,
to simulate the reception signal. The antenna collects the ~ Center frequency Hz 465k
Bandwidth Hz 12k

radio signal. Then the radio signal is processed as follows.
First, the received signal is fed into a mixer where it is mixed
with a sine wave known as the local oscillation signal. A local
oscillator provides the mixing frequency that is variable for
tuning the receiver to different stations. The frequency mixer
does the actual heterodyning, which changes the incoming
radio frequency signal. Second, the signal obtained by mixing
is processed by intermediate frequency (IF) band-pass filter
and amplifier successively. The IF band-pass filter provides
the narrowband filter and amplifier provides most of the gain
for the radio signal. Then the other IF filter processes the
signal again to further eliminate the band noise. Third, the
envelope detector demodulates signals from the filter and
provides an output which is the envelope of the original
signal. Last, the extracted signal is sent into a low-pass filter.
Signal from filter is the system output after being amplified by
audio amplifier.

Based on the composition and the principle of the super-
heterodyne receiver, the simulation model is established in
Matlab/Simulink simulation environment. The details of the
simulation model are as follows:

(a) In the signal source, the carrier frequency is 1000 kHz.
The parameter of attenuator module is 0.1. The mod-
ule simulates attenuation caused by the transmission
distance from the transmitter to the receiver.

(b) In AWGN channel, the means of random white noise
is 0, and the variance of random white noise is 0.001.
The noise is used to simulate the interference of
electromagnetic environment.

(c) The local oscillation signal is from the voltage-
controlled oscillator controlled by the input voltage.

Set up a slider gain module, and then the frequency
of the local oscillator is controllable. The quiescent
frequency of voltage-controlled oscillator is 465 kHz.
The input sensitivity of voltage-controlled oscillator is
1000 Hz/V.

(d) Parameters of IF filters are shown in Table 1. The
parameter of the IF amplifier is 20. The upper and
lower limits of envelope detector are set to inf and 0.
The parameter of the audio amplifier is 2. The band-
width of the low pass filter is 6 kHz.

3. Fault Detection and Diagnosis for
Superheterodyne Receivers

Figure 2 shows the schematic diagram of the adaptive fault
detection and diagnosis.

As is shown in the figure, in the phase of fault detection,
an observer based on GRNN is fed with the system input and
the system output. After training, the observer outputs an
estimated value as a reference. Then residual error is obtained
by comparing it with the actual output. Meanwhile, the other
GRNN generates threshold that changes accordingly. The
detection is finally realized by comparing the residual error
and the adaptive threshold.

After fault detection, fault diagnosis is conducted based
on the residual error generated by the fault observer. Three
time domain parameters and three frequency domain param-
eters are extracted from the residual error signal. Finally,
PNN is employed as the classifier to realize fault diagnosis.
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3.1. GRNN Observer Based Adaptive Fault Detection

3.1.1. Generalized Regression Neural Network and Its Structure.
Note that the fault detection is conducted in real-time elec-
tromagnetic environment where noise and interference will
impact superheterodyne receivers’ performance. GRNN is
developed as an alternative to traditional neural network. As
a feed-forward neural network based on nonlinear regression
theory, GRNN has a simple and straightforward training
algorithm which is significantly different from BPNN [12].
As shown in Figure 3, GRNN neural network includes four
layers: an input layer, a pattern layer, a summation layer, and
an output layer [13].

Assume that the network input is X = [x,,%,,...,%,]",
and the corresponding network output is Y = [y, y,,
..., y.]T. Each layer is presented in detail as follows.

(1) Input Layer. The number of neurons in the input layer
is equal to the dimension of input feature vector. Each
neuron is a simple distribution unit. The input of networks
is transferred to the pattern layer directly.

(2) Pattern Layer. The number of neurons in the pattern layer
is the total number of training samples n. Each neuron is
related to different sample. The neural transfer function in the
pattern layer is

(x-x) (X-X)
202

P =exp |- =12,...,n. (1)

In (1), X is the system input. X; is the learning sample
corresponding to the ith neuron. Therefore, the output of
neuron i is the squared Euclidean distance between the input
and the corresponding training sample.

(3) Summation Layer. There are two summation types in the
summation layer.
The function of the first type is
T
$ aup | KX (X )
i=1 20° .

)

This function sums out the output of all pattern layer
neurons. The transfer function is

Sp=) P, (3)
i=1

The function of the second type is

o [ o))

(4)

i=1

Outputs of all pattern layer neurons were weighted and
summed. y;; is the jth element of the ith output of training
sample Y;. The transfer function is

n
Sni= D P j=12..k (5)
i=1

(4) Output Layer. The number of neurons in the output
layer is equal to the dimension of output feature vector from
training sample, which is k. The output of summation layer
is divided in each neuron. The output of neuron j is the jth
element of the network output:

ok (6)

3.1.2. Design of the Fault Observer and Adaptive Threshold
Generator. Design of a fault observer and an adaptive thresh-
old generator using the method described in [14] is shown in
Figure 4. Two GRNNG are utilized in this method. The first
GRNN acted as an observer, which outputs the estimated
system output. Then define the residual error by obtaining
the deviation value between the estimated output and actual
output. The other trained neural network is used as the adap-
tive threshold generator. The output datasets are composed
of adaptive threshold values. Result of comparison between
residual error and adaptive threshold can be applied to judge
whether the system has fault or not.

In the training process, the system input and output are
sent to the GRNN to obtain the observer. The residual error
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is close to 0 when system works normally, while residual error
increased when system is abnormal.

Aim to construct the relationship between the system
input, output, and threshold. The training input datasets of
the second neural network consist of the system input and
output, and the training output data are the expected adaptive
threshold calculated using (7).

threshold = ¢, (k) + . (7)

In (7), g(k) is the baseline residual error, which is
acquired from observer under normal circumstances, and f3
is the correction coefficient.

The observer and adaptive threshold generator can be
employed to realize the fault detection after training. The
residual error is below the threshold in normal status. While
the system is in faulty status, the residual error exceeds the
threshold.

3.2. Residual Error Analysis Based Fault Diagnosis. Residual
error is the difference between the actual output and the
estimated output; therefore the residual error carries large
amount of fault information. Fault diagnosis is developed
based on residual error.

3.2.1. Feature Extraction in Time and Frequency Domain.
Feature extraction is a key issue in fault diagnosis. Properly
extracted features can improve both diagnosis speed and
accuracy.

The time domain analysis can characterize the energy
and stability of signal over time. The frequency analysis
can decompose the signal in detail. Considering the sim-
plicity of time domain analysis and the adaptive ability
of frequencydomain analysis, in this study, the feature of
residual error is extracted by combining the time domain and

frequency domain. Thereby the performance of system will be
characterized as more comprehensive.

Three time domain parameters of signal, including peak
value, root mean square, and average absolute value, are
extracted. Suppose that a set of discrete data signal obtained
by sampling is x;, x,, ..., x,; equations of these parameters
are as follows.

Peak value is

o= Xmax = max{|xi|} : (8)
Root mean square is
13,
[; = ers = N;xi . (9)
Average absolute value is
. 1Y
y =X N; || (10)

Wavelet transformation (WT) and singular value decom-
position (SVD) are general methods to extract the frequency
domain feature. WT is an effective way to deal with signal.
It can project a signal from time domain space to several
frequency ranges, and the features of the dataset are implied
in these frequency ranges. Signals are decomposed into a
feature matrix and different frequency ranges can be obtained
by using the WT. And the features usually appear in different
frequency ranges [15]. SVD can be used to extract the
prominent feature from all the frequency ranges. It can
decompose a matrix into simple and meaningful pieces,
which may contribute to the subsequent analysis. Matrix A
decomposed by SVD can be expressed as follows:

A=UsVT, (11)

where U represents the left singular vector, V' denotes the
right singular vector, and S indicates diagonal matrix whose
elements in the main diagonal are singular values.

The samples belonging to the same category will have the
similar singular values and samples with different categories
decomposed by SVD will obtain diverse singular values [16].
Hence, the singular values can be utilized to represent a
signal.

After the analysis in time and frequency domain, the
eigenvector of superheterodyne receivers is composed of time
domain and frequency domain features.

3.2.2. PNN Based Fault Diagnosis. In this study, PNN is
employed as classifier for fault diagnosis. As a radial basis
function neural network, a PNN neural network is a powerful
algorithm for classification with its theory based on Bayes
minimum risk criteria (Bayesian decision theory) [17]. Due
to its concise training and strong classification ability, the
PNN has widely applications for fault diagnosis in practical
applications [18]. Compared with BP neural network, the
advantage of a PNN is that the topology, connection weights,
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TABLE 2: Injected fault modes in simulation model.

Number Fault Details

1 Amplifier fault Amplifier gain reduction fault
2 Oscillator fault Local oscillator bias fault

3 Filter fault Filter bandpass reduction fault

and thresholds can be set immediately when training samples
are attainable [19].

The general structure of a PNN model is shown in
Figure 5. The model contains 4 layers: input layer, the pattern
layer, the summation layer, and the output layer [20].

The input layer introduced the eigenvector into network.
Pattern layer calculates the distance between the unknown
input and the training sample. Then distance transformed by
activation function, which is Gaussian function, is the output
of pattern layer. The number of neurons in summation layer is
equal to the number of failure modes. Each neuron sums the
probability of one kind of fault. According to the estimated
probability, the output layer chooses a neuron in summation
layer with the highest probability as the output of the neuro
network.

In the process of diagnosis, the training data is used
to train the PNN; the weights of neuro network and other
parameters are created in the learning stage. In the recalling
stage, the PNN is utilized as a classifier to identify the system
status.

4. Case Study

4.1. Simulation Parameters and Fault Injection. A sine signal
is used as the input signal is in the simulation. The amplitude
is I and the system input frequency is 100 Hz.

According to the statistics of historical maintenance
data, main fault types of a superheterodyne receiver include
amplifier fault, oscillator fault, and filter fault, which are fed
into the simulation model to test the effectiveness of the
proposed approach.

The fault modes listed in Table 2 were introduced into the
simulation model by changing several specific parameters of
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FIGURE 7: Detection result for amplifier fault.

the fault components. The details of fault injection are listed
in Table 3.

The simulation duration is 0.01 s, and the sampling rate is
600 K/s. Data of normal status and three kinds of fault status
were collected. In each case there are 6000 data points of
system input and 6000 data points of system output.

4.2. Fault Detection and Results Analysis. For fault detection,
normal data of system input and output are used to train
the observer based on the first GRNN. The system input and
the system output of the previous step are taken as the input
sample of training data. The output sample of training data
is the actual system output. The function spread of the first
GRNN neural network is set to 0.01.

Normal data are used to train the second GRNN to
generate the adaptive threshold as well. The system input and
the estimated system output are taken as the input sample
of training data. The output sample of training data is the
expected adaptive threshold which is the summation of the
baseline residual and f. Through multiple tests combined
experience, the value of f3 is set to 0.1. The function spread
of the second GRNN neural network is set to 0.01.

The structure and parameters of the GRNN neural net-
works are determined after training.

Four tests were carried out to validate the effectiveness of
the fault detection scheme. The results are shown in Figures
6-9. In each figure, the blue curve shows the residual error,
and the red curve is the adaptive threshold.
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TABLE 3: Fault injection details.

Test number Fault mode Fault component

Changed parameter for fault injection (unit) Parameter (normal) Parameter (fault)

1 Normal -

2 Amplifier fault Electronic amplifier

3 Oscillator fault Local oscillator

4 Filter fault  Intermediate frequency filter

Gain 20 17
Quiescent frequency (kHz) 465 480
Bandwidth (kHz) 12 1
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In test 1, the superheterodyne receiver works normally.
The result of detection is shown in Figure 6. The residual
error was close to zero and below the threshold; therefore
the results indicate that the system is under normal circum-
stances.

In test 2, an electronic amplifier fault was injected to the
system. The result of detection is shown in Figure 7. The
residual error became greater and exceeded the threshold;
therefore, the results indicate that fault occurred in the
system.

In test 3, an oscillator fault was injected to the system. The
result of detection is shown in Figure 8. The residual error is
beyond the threshold; therefore, the results indicate that fault
occurred in the system.

In test 4, a filter fault was injected to the system. The result
of detection is shown in Figure 9. The residual error increased
significantly and exceeded the threshold; therefore, the results
indicate that fault occurred in the system.

TABLE 4: Training eigenvectors for fault diagnosis.

Pattern Sample size Label data
Normal 210 eigenvectors 1
Filter fault 210 eigenvectors 2
Amplifier fault 210 eigenvectors 3
Oscillator fault 210 eigenvectors 4

4 Result of Cl'enssiﬁcati(?n b'ased on PNN

0 50 100 150 200 250
Number of Test Data

Result of Classification
(3]

F1GURE 10: Result of Classification based on PNN.

As indicated by the simulation results, the residual error
exceeded the threshold when the system worked abnormally
under the interference of environment noise factors.

4.3. Fault Diagnosis and Results Analysis. For fault diagnosis,
the time domain features, including the average absolute
value, the root mean square, the peak value, and three fre-
quency domain features processed by WT-SVD, are obtained
from residual error. Data were preprocessed and one eigen-
vector including 6 features was extracted from each of 600
samples of residual error signals. 270 eigenvectors were
extracted from each residual error signal and totally 1080
eigenvectors were obtained.

To train the PNN, 840 eigenvectors of each fault mode
were selected to form the training data, and their labels were
set as shown in Table 4. The function spread of PNN was set
to 0.075.

After the training of PNN, the other 240 eigenvectors
were employed as the test data to verify the effectiveness of
the proposed method. Figure 10 shows the results of fault
diagnosis. In Figure 10, the red points are the actual labels of
the test data, while the blue points are the predicted labels by
PNN.

Number 1 to number 60 are the normal data. Number 61
to number 120 are the filter fault data. Number 121 to number
180 are the amplifier fault data. Number 181 to number 240 are



the oscillator fault data. In the test of normal data, the PNN
classification result of 4 test samples did not match the actual
label. In the test of amplifier fault data, the PNN classification
result of all test samples matched the actual label. In the test
of oscillator fault data, the PNN classification result of 2 test
samples did not match the actual label. In the test of filter fault
data, the PNN classification result of all test samples matched
the actual label.

In total, there are 6 test samples of the misjudgment of the
fault diagnosis out of 240 test samples, and the corresponding
diagnosis accuracy was 97.5%.

5. Conclusion

In this paper, a general purpose fault detection and diag-
nosis method was proposed for information systems with
superheterodyne receivers. By establishing the observer and
adaptive threshold generator based on GRNNs, the faults
of superheterodyne receiver are detected by the variation
of residual error. The residual error is then used to extract
fault features and PNN is employed as the fault classifier to
diagnose the fault type. The proposed method was verified
by simulation experiments considering noise interferences.
The result indicates that the proposed method can effectively
detect superheterodyne receiver faults and diagnose fault
modes accurately. Meanwhile, the adaptive threshold has
strong adaptive ability for noise interferences.

The advantage of the proposed approach lies in that it
is applicable not only to the superheterodyne receiver but
also to more complex signal receiving systems of similar
designs in which the transfer functions are difficult to obtain.
It also outweighs other previous methods due to its strong
robustness to environmental noises and interferences and
enables a higher mission success rate.

However, future work needs to be done to make the
proposed method more practical. First, the data from a lab
testing of actual superheterodyne receiving system will be
applied instead of simulation model to further verify the
effectiveness of the proposed method. Second, the classifier
needs to be developed to realize the diagnosis in the situation
with multiple failures.
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