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The centralized Kalman filter is always applied in the velocity and attitudematching of Transfer Alignment (TA). But the centralized
Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper,
the federal Kalman filter (FKF) based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter
is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters,
and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on
neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS) when the system
dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and
the accuracy is higher.

1. Introduction

Because there are too many vector dimensions in TA, the
centralized Kalman filter has many disadvantages, such as
large amount of calculation, poor real-time performance, and
low reliability. In theory, the federal filtering is optimal or
suboptimal, and it has the characteristics of high reliability,
design flexibility, and being easy to apply to data fusion of
navigation. In the engineering practice, system noise and
measurement noise are always random signal, so it is difficult
to get the statistic characteristics. The federal Kalman filter
with neural networks is proposed in the paper. The federal
Kalman filter is combined with the neural networks to
improve the precision of initial attitude misalignment angle
of inertial navigation system [1, 2].

2. The Theory of Federal Kalman Filter with
Neural Networks

2.1. The Traditional Kalman Filter. It is assumed that the
system equation andmeasurement equation of linear discrete
system can be written as follows:

X𝑘 = Φ𝑘,𝑘−1X𝑘−1 +W𝑘−1
Z𝑘 = H𝑘X𝑘 + V𝑘, (1)

whereX𝑘 is estimated state, Z𝑘 is the measurement of system,
and Φ𝑘,𝑘−1 is transfer matrix from 𝑡𝑘−1 to 𝑡𝑘. W𝑘−1 is noise
sequence of system incentive.H𝑘 is the measurement matrix,
V𝑘 is noise sequence of measurement, and 𝐸[V𝑘V𝑇𝑘 ] = R.

So the Kalman filter equation is shown as follows.

(1) Time update is

X̂𝑘/𝑘−1 = Φ𝑘,𝑘−1X̂𝑘−1
P𝑘/𝑘−1 = Φ𝑘,𝑘−1P𝑘−1Φ𝑇𝑘,𝑘−1 + Γ𝑘−1Q𝑘−1Γ𝑇𝑘−1. (2)

(2) Measurement update is

K𝑘 = P𝑘/𝑘−1H
𝑇
𝑘 (H𝑘P𝑘/𝑘−1H𝑇𝑘 + R𝑘)−1

X̂𝑘 = X̂𝑘/𝑘−1 + K𝑘 (Z𝑘 −H𝑘X̂𝑘/𝑘−1)
P𝑘 = (I − K𝑘H𝑘)P𝑘/𝑘−1 (I − K𝑘H𝑘)𝑇 + K𝑘R𝑘K

𝑇
𝑘 .

(3)

The state estimateX𝑘 could be calculated when the initial
values X0 and P0 are known.

2.2. The Federal Filter. The federal filter is composed of
several subfilters and a main filter, where the subfilter can
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Figure 1: The structure of the federal filter.

independently update the time and measurement, and the
result will be sent to the main filter. And the main filter will
feed back to the subfilter after data fusion is analyzed. It is
the initial value of the next cycle. The federal filter is that the
large matrix of centralized filter algorithm is divided into the
subfilters [3, 4]. The structure of the federal filter is shown in
Figure 1.

The fusion algorithm of the traditional federal filter is as
follows:

X̂𝑔 = P𝑔( 𝑚∑
𝑖=1

P−1𝑐𝑖 X̂𝑐𝑖)
P𝑔 = ( 𝑚∑

𝑖=1

P−1𝑐𝑖 )
−1 ,

(4)

where X̂𝑔 is global state estimation after fusion, X̂𝑐𝑖 is the
local optimum estimation of subfilter on the system of public
state, P𝑐𝑖 is variance matrix of error of the local optimum
estimation, and the local estimations are not related to each
other.

2.3. The BP Neural Networks. The uptime of Kalman filter is
proportional to the cubic of the system order. The Kalman
filter will lose the real-time performance when the order of
system is very high, so the precision is not improved by the
order of system.

Artificial neural network is a system that simulates the
structure and function of human brain neuron networks by
method of engineering technology. It is comprised of a large
number of simple nonlinear processing units, and there are
complex and flexible connections between units.

The neural networks have a strong self-learning ability
and arbitrary nonlinear functions and parallel processing
could be realized. So the neural networks are always applied
in the information technology and control engineering.
According to the characteristics of information transmis-
sion, neural networks can be divided into feedforward and
feedback. The BP neural networks are feedforward networks
which are based on error backpropagation algorithm [5–7].

There are input layer nodes, one or more hidden-layer
nodes, and output layer nodes in the BP neural networks.

If the number of hidden-layers and nodes in each layer
are determined, the structure of the BP neural networks is
determined [8–10]. The principle of BP neural networks is
shown as Figure 2.

2.4. The Federal Kalman Filter with Neural Networks

2.4.1. The Theory of Federal Kalman Filter. The theory of
federal Kalman filters in TA is as follows:

(1) The output date of master inertial navigation system
(MINS) is used as the common reference system, the
velocity and angularity of slaver inertial navigation
system (SINS) regarded as independent subsystems.
In order to solve the problem, the BP neural networks
are used in the two subsystems while the statistics
characteristics of the system dynamic model and
noise model are unclear.

(2) The output date of two subsystems used the federal
filter to obtain global suboptimal estimation.

2.4.2.TheTheory of Kalman Filter with Neural Networks. The
purpose of the subfilter which used the BP neural networks is
that the Kalman filter is followed by the BP neural networks
with the minimum error.

The training process of neural networks is as follows: first,
the Kalman filter worked as open loop state to eliminate the
influence of convergence rate for initial value. Second, the
Kalman filter worked as closed loop state, and the initial
sample values of the neural network are constituted by the
input and output of the Kalman filter. Lastly, the sample value
of training could be got by averaging the testing values of
measurements. After the training, The BP neural networks
will be worked alone when the Kalman filter is removed [11–
13].

The inputs of BP neural networks are comprised of
three parts: A the difference of state prediction and state
estimation is X̂𝑘−X̂𝑘/𝑘−1.BThedifference of observation and
observation estimation is Z𝑘 −H𝑘X̂𝑘/𝑘−1. CThe filter gain is
K𝑘.ΔX̂𝑘 = 𝐷−X̂𝑘 is treated as the desired output of BP neural
networks, where𝐷 is the theoretical value of state vector.ΔX̂𝑘
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is the output of BP neural networks and X̂𝑘 is the output of
Kalman filter, where the two outputs are added together after
the BP neural networks are trained by samples.

The principle of Kalman filters with neural networks is
shown as Figure 3.

3. The Velocity and Attitude Matching in TA

The velocity matching in TA is required to assist maneuver
(such as right circle), and attitude matching in TA is required
angular velocity of pitch or roll (such as wing maneuver),
but it is not separated from the head platform misalignment
angle in the velocity matching and the same in the attitude
matching when the plane has the wing maneuver [13, 14].

In the velocity and attitude matching, horizontal align-
ment is realized in the velocity and azimuth alignment is
realized in attitude matching.The wing maneuver is required
during the alignment procedure.

3.1. State Equation of the Velocity and Attitude Matching. It
is supposed that X = [𝜑𝑛𝑇 𝛿V𝑛𝑇𝑒 𝜀𝑏𝑠𝑇 ∇𝑏𝑠𝑇 𝜇T 𝜆𝑇𝑓 𝜔𝑇𝑓]𝑇
is the system state equation of the velocity and attitude

matching, where 𝜑𝑛 = [𝜑𝑥 𝜑𝑦 𝜑𝑧]𝑇 is the platform
misalignment angle of slaver inertial navigation system,
𝛿V𝑛𝑒 = [𝛿V𝑛𝑒𝑥 𝛿V𝑛𝑒𝑦 𝛿V𝑛𝑒𝑧]𝑇 is velocity error of slaver inertial
navigation system,𝜇 = [𝜇𝑥 𝜇𝑦 𝜇𝑧]𝑇 is error ofmissile body’s
installation angle, ∇𝑏𝑠 = [∇𝑏𝑠𝑥 ∇𝑏𝑠𝑦 ∇𝑏𝑠𝑧 ]𝑇 is accelerometer’s
constant error of slaver inertial navigation system, 𝜆f =
[𝜆𝑓𝑥 𝜆𝑓𝑦 𝜆𝑓𝑧]𝑇 is flexure deformation angle of wing, and
𝜔f = [𝜔𝑓𝑥 𝜔𝑓𝑦 𝜔𝑓𝑧]𝑇 is flexure deformation angular rate of
wing. State equation of the velocity and attitude matching is

𝜑̇
𝑛 = −𝜔𝑛𝑖𝑛 × 𝜑𝑛 − C𝑛𝑏𝑠𝜀

𝑏𝑠
𝑏
− C𝑛𝑏𝑠𝜀

𝑏𝑠
𝑤

𝛿V̇𝑛 = (C𝑛𝑏𝑠 f𝑏𝑠) × 𝜑 − (2𝜔𝑛𝑖𝑒 + 𝜔𝑛𝑒𝑛) × 𝛿V𝑛 + C𝑛𝑏𝑠∇
𝑏𝑠
𝑏

+ C𝑛𝑏𝑠∇
𝑏𝑠
𝑤

𝜀̇
𝑏𝑠 = 0

∇̇
𝑏𝑠 = 0

𝜇̇
𝑏𝑓 = 0
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𝜆̇𝑓 = 𝜔𝑓.
𝜔̇𝑓 = − [𝛽2]𝜆𝑓 − [𝛽]𝜔𝑓 + 𝜂

(5)

So the state-space model of the velocity and attitude
matching is

Ẋ =

[[[[[[[[[[[[[[
[

− (𝜔𝑛𝑖𝑛×) 03×3 −C𝑛𝑏𝑠 03×3 03×3 03×3 03×3
(C𝑛𝑏𝑠 f𝑏𝑠×) − ((2𝜔𝑛𝑖𝑒 + 𝜔𝑛𝑒𝑛) ×) 03×3 C𝑛𝑏𝑠 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3 03×3 𝐼3×3
03×3 03×3 03×3 03×3 03×3 − [𝛽2] − [𝛽]

]]]]]]]]]]]]]]
]

X +

[[[[[[[[[[[[[[
[

−C𝑛𝑏𝑠𝜀𝑏𝑠𝑤
C𝑛𝑏𝑠∇
𝑏𝑠
𝑤

03×3
03×3
03×3
03×3
𝜂

]]]]]]]]]]]]]]
]

, (6)

where C𝑛𝑏𝑠 = [ 𝑇11 𝑇12 𝑇13𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

] is the attitude matrix of slaver

inertial navigation system:

(C𝑛𝑏𝑠 f𝑏𝑠×) = [[
[

0 −𝑓𝑛𝑈 𝑓𝑛𝑁𝑓𝑛𝑈 0 −𝑓𝑛𝐸−𝑓𝑛𝑁 𝑓𝑛𝐸 0
]]
]

((2𝜔𝑛𝑖𝑒 + 𝜔𝑛𝑒𝑛) ×) =
[[[[[[[
[

0 −(2𝜔𝑖𝑒 sin 𝐿 + 𝑉𝐸 tan 𝐿𝑅𝑁 ) (2𝜔𝑖𝑒 cos 𝐿 + 𝑉𝐸𝑅𝑁)(2𝜔𝑖𝑒 sin 𝐿 + 𝑉𝐸 tan 𝐿𝑅𝑁 ) 0 𝑉𝑁𝑅𝑀−(2𝜔𝑖𝑒 cos 𝐿 + 𝑉𝐸𝑅𝑁)
−𝑉𝑁𝑅𝑀 0

]]]]]]]
]
,

(7)

where 𝜀𝑏𝑠𝑤 is Gaussian white noise of gyro, ∇𝑏𝑠𝑤 is Gaussian
white noise of accelerometer, 𝜂 = [𝜂𝑥 𝜂𝑦 𝜂𝑧]𝑇 is Gaussian
white noise sequence of second order, in which 𝜂𝑖 ∼ N(0, 𝑄𝑖),𝑄𝑖 = 4𝛽3𝑖 𝜎2𝜂 , and 𝜎2𝜂 is the variance of flexure deformation
angle; [𝛽] = diag(𝛽𝑥, 𝛽𝑦, 𝛽𝑧) and [𝛽2] = diag(𝛽2𝑥, 𝛽2𝑦, 𝛽2𝑧).
3.2. The Measurement Equation of Velocity and Attitude
Matching. It is supposed that V̂𝑛𝑒𝑚 is the velocity of MINS,
V̂𝑛𝑒𝑠 is the velocity of SINS, V̂𝑛𝐿𝐴 is the lever velocity from
MINS, Ĉ𝑛𝑏𝑚 is the attitude matrix of MINS, Ĉ𝑛𝑏𝑠 is the attitude
matrix of SINS, and C𝑏ℎ

𝑏𝑓
is transformation matrix between 𝑏𝑓

and 𝑏ℎ, where 𝑏𝑓 is installation coordinate and 𝑏ℎ is horizontal
coordinate.

The difference of velocity between MINS and SINS is the
measurement in the velocity matching; attitude matrix is the
measurement in the attitude matching. The measurement of
the velocity and attitude matching is as follows.

Consider

Z𝑉 = V̂𝑛𝑒𝑠 − (V̂𝑛𝑒𝑚 + V̂𝑛𝐿𝐴)

Z = [𝑍𝑉𝑍𝜃]

Z𝜃 =
[[[[[[[[[
[

ZDCM (3, 2) − ZDCM (2, 3)2
ZDCM (1, 3) − ZDCM (3, 1)2
ZDCM (2, 1) − ZDCM (1, 2)2

]]]]]]]]]
]

ZDCM = Ĉ𝑛𝑏𝑚C
𝑏ℎ
𝑏𝑓
Ĉ𝑏𝑠𝑛

= [I − (𝜑𝑛𝑚×)]C𝑛𝑏𝑚C𝑏ℎ𝑏𝑓C𝑏𝑠𝑛 [I + (𝜑𝑛×)] .
(8)

𝜑𝑛𝑚 is the attitude error angle of master inertial navigation
system, and 𝜑𝑛 is the attitude error angle of slaver inertial
navigation system.

The measurement equation of velocity and attitude
matching is
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Z = [
[
03×3 I3×3 03×3 03×3 03×3 03×3 03×3
I3×3 03×3 03×3 03×3 −C𝑛𝑏𝑚C𝑏ℎ𝑏𝑓 −C𝑛𝑏𝑚 03×3

]
]
X

+ [V𝑉
V𝜃

] ,
(9)

where the white noise of zero mean Gaussian is V𝑉, and the
measurement noise signal of unknown is V𝜃.

4. Application of Federal Kalman Filter
with Neural Networks in the Velocity and
Attitude Matching

4.1. The Structure Design of Federal Kalman Filter with Neural
Networks. The centralized Kalman filter is applied in the
velocity and attitude matching of TA. It is superior to the
velocity matching or the attitude matching, especially in the
speed of alignment and the requirement of maneuver, but
there are too many numbers of dimensions and large amount
of calculation. Combined with the neural networks, the per-
formance of federal Kalman filter is improved on the velocity
and attitude matching when the statistics characteristics of
the system dynamic model and noise model are unclear [15,
16].

The parallel computation is supported by the federal
Kalman filter with neural networks to reduce the calculation
in TA, and the neural networks are used in the subfilter. The
principle diagram of the federal Kalman filter with neural
networks on the velocity and attitude matching is shown as
Figure 4.

4.2. The Simulation of Federal Kalman Filter with Neural
Networks in theVelocity andAttitudeMatching. It is supposed
that there are the flexure deformation of the wing and
the unknown measurement noise signal when the federal
Kalman filters with neural networks are simulated in the
velocity and attitude matching.

According to the fight characteristic, this papermakes the
corresponding numerical simulation under wing motion by
aircraft. The time of shake wing is 60 s and the angle of shake

wing is 30∘. The initial position of TA is that north latitude is34.03006∘, east longitude is 108.76405∘, and altitude is 448m;
the initial attitude of TA is that yaw is−90∘, roll is 0∘, and pitch
is 0∘.

The condition for simulation is as follows: error param-
eters of SINS: constant drift of gyro is 1∘/h, random walk of
gyro is 0.1∘/√h, constant offset error of accelerometer is 5 ×10−4 g, and standard deviation of accelerometer is 5 × 10−5 g ⋅√s.

Installing-error angle of missile body: 𝜇 =[0.1∘ 0.1∘ 0.1∘]𝑇.
Misalignment initial angle of SINS: 𝜑(0) =[0.1∘ 0.1∘ 0.5∘]𝑇.
Velocity initial error of SINS: 𝛿V𝑛𝑒 (0) =
[3m/s 3m/s 3m/s]𝑇.

The number of input layer nodes of BP neural networks is
6, the number of hidden-layer nodes of BP neural networks
is 12, and the number of output layer nodes of BP neural
networks is 3.

The simulation period is 20ms. Meanwhile, it has the
same conditions as Kalman filter. The blue solid line is the
result of the federal Kalman filter with neural networks, and
the red dashed line is the result of Kalman filter.

It is the main difference between the federal Kalman filter
with neural networks and the Kalman filter that the Kalman
filters with neural networks are used in the velocity matching
and the attitudematching, and the result is got by the Kalman
filter with neural networks in the velocity matching and the
attitude matching. In order to get the optimal estimation of
navigation parameter error, the result is sent to themain filter
for data fusion.

From Figure 5, it is showed that the convergence of
misalignment angle of the Kalman filter has been in 10󸀠 after
20 s. But the convergence ofmisalignment angle of the federal
Kalman filter with neural networks has been in 5󸀠 after 20 s.
The precision of federal Kalman filter with neural networks is
above the precision of Kalman filter.
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Figure 5: Estimate error of misalignment angle.

5. Summary

The input of the networks is the error parameters of
Kalman filter. After the sample training, the BP networks
output is added to the results of Kalman filter. In the
practical engineering applications, this algorithm is superior
to the Kalman filter under the nonlinear situation, and
the result of simulation shows that the federal Kalman
filter with neural networks in the velocity and attitude
matching is more practicable and effective. The federal
Kalman filter with neural networks is better to estimate
the initial attitude misalignment angle of inertial navigation
system when the system dynamic model and noise statistics
characteristics of inertial navigation system are unclear,
and the estimation error is smaller and the accuracy is
higher.
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