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Fractional differential equation has been introduced to the financial theory, which presents new ideas and tools for the theoretical
researches and the practical applications. In the work, an approximate semianalytical solution of the time-fractional European
option pricing model is derived using the method of combining the enhanced technique of Adomian decomposition method with
the finite difference method. And then the result is introduced in China’s financial market. The work makes every effort to test the
feasibility of the fractional derivative model in the actual financial market.

1. Introduction

Since it appeared in 1973, the Black-Scholes model [1, 2] has
become the most popular method for option pricing. This
classical Black-Scholes equation is a linear parabolic partial
differential equation, as follows:

𝜕𝑉𝜕𝑡 + 12𝜎2𝑆2 𝜕
2𝑉𝜕𝑥2 + 𝑟𝑆𝜕𝑉𝜕𝑆 − 𝑟𝑉 = 0, (1)

where 𝑉 = 𝑉(𝑆, 𝑡) is the option price, 𝑆 is the asset price, 𝑟 is
the risk-free interest rate, and 𝜎 is the volatility for the asset
price 𝑆.

The Black-Scholes model provides a simple and effective
technique to estimate the option price. With the researches
developing further, empirical studies [3–6] proved that the
financial market has the fractal characters both at home and
abroad. So, the classical model established on a partial differ-
ential equation with integer-order derivatives is not enough
to reflect the reality of the financial market. As everyone
knows, the differential equations involving the fractional
derivatives are powerful tools to study the fractal geometry
and the fractal dynamics. Fractional differential equations
show the superiority in modeling the important phenomena
in various fields such as fluid flow, electromagnetic, acoustics,
electrochemistry, cosmology, and material science. Then,
whether the fractional differential equation can be applied
into the financial market? The answer is Yes! Fractional

derivative has the property of self-similarity and it replies to
the long-range dependence better than the derivative with
integer order. The superiorities are beneficial to depict the
fractal structure in the financial market. In recent years, the
researches on the application of fractional calculus in the
financial theory show an increasing tendency. Cartea and
del-Castillo-Negrete [7] presented the fractional diffusion
models of the option prices in the derivatives market. In this
article, the authors introduced Riemann-Liouville fractional
derivative into the pricing problems of financial derivatives
and established the space-fractional diffusion equations using
three special processes of FMLS, CGMY, and KoBoL in
markets with jumps, which provided new tools to deal with
financial problems. Reference [7] made the numerical treat-
ment of knock-out barrier options for FMLS processes and
the analysis showed the effectiveness of fractional models.
Finally, [7] pointed out that the models can be used to
deal with American option. Based on the fractional models
presented by Cartea and del-Castillo-Negrete, Marom and
Momoniat [8] compared the numerical solutions of three
models and analyzed European option. Subsequently, Xi and
Cao [9] gave numerical solutions of the fractional American
option pricingmodel by constructing linear complementarity
problem. An explicit closed-form analytical solution of the
FMLS model was found by Chen et al. [10] where the
effectiveness of this model is proved by comparing with
derivatives of integer order and the validity of the put-call

Hindawi
Complexity
Volume 2018, Article ID 1872409, 10 pages
https://doi.org/10.1155/2018/1872409

http://orcid.org/0000-0002-1206-0444
https://doi.org/10.1155/2018/1872409


2 Complexity

parity is verified. Jumarie [11, 12] derived the time and space-
time fractional Black-Scholes equations and gave optimal
fractional Merton’s portfolio. Based on Jumarie’s theoretical
derivation, Liang et al. [13] introduced a bifractional Black-
Scholes model whose time-fractional derivative is produced
using the heuristic arguments. Using the heuristic arguments,
Chen et al. [14] used amodifiedBlack-Scholes equationwith a
time-fractional derivative to govern the double barrier option
and gave analytical solution. Song [15] presented a space-time
fractional derivative model for European option pricing with
transaction costs by the replicating portfolio.

The above works present new ideas and methods for the
researches on derivatives pricing theory. This study is in the
initial stage and lots of problems need to be solved. The aim
of the paper is to solve the time-fractional pricing model and
test the practicability of the results by the market data. The
paper has been organized as follows. In Section 2, the time-
fractional derivative model of option pricing is succinctly
described. In Section 3, the semianalytical solution of the
fractional model is derived by the enhanced technique and
the finite difference method. In Section 4, the result is tested
by the real data from China’s warrants and options market.
Some problems and conclusions are presented in Section 5.

2. Time-Fractional Black-Scholes Equation

Giona and Roman [16, 17] pointed out that the relationship
between the total flow of the probability flow 𝑖(𝑟, 𝑡) and the
average probability density 𝑝(𝑟, 𝑡) is

∫𝑡
0
𝑖 (𝑟, 𝜏) 𝑑𝜏 = 𝑟𝑑𝑓−1 ∫𝑡

0
𝐾 (𝑡 − 𝜏) 𝑝 (𝑟, 𝜏) 𝑑𝜏, (2)

where 𝑑𝑓 is the dimension of the fractal media.The diffusion
kernel of the fractal media can be expressed as

𝐾 (𝑡 − 𝜏) = 𝐴𝛼Γ (1 − 𝛼) (𝑡 − 𝜏)𝛼 , 0 < 𝛼 < 1, (3)

where 𝛼 is a transmission exponent and 𝐴𝛼 is a constant that
can be determined [18]. Based on [13, 14, 19], 𝐴𝛼 is supposed
as 1 in following work.

The change of option price is considered as a fractal
transmission system. Let𝑉(𝑆, 𝜏) denote the option price with𝜏 = 𝑇 − 𝑡; the relationship between 𝑖(𝑆, 𝜏) and 𝑝(𝑆, 𝜏) for the
option problem is determined by (2), as follows:

∫𝜏
0
𝑖 (𝑆, 𝜏) 𝑑𝜏 = 𝑆𝑑𝑓−1 ∫𝜏

0
𝐾(𝜏 − 𝜏) 𝑝 (𝑆, 𝜏) 𝑑𝜏, (4)

where

𝑝 (𝑆, 𝜏) = 𝑉,
𝑖 (𝑆, 𝜏) = 12𝜎2𝑆2 𝜕

2𝑉𝜕𝑆2 + 𝑟𝑆𝜕𝑉𝜕𝑆 − 𝑟𝑉. (5)

Then, one can establish the following time-fractional
model:

𝑆𝑑𝑓−1 𝜕𝛼𝑉𝜕𝜏𝛼 = 12𝜎2𝑆2 𝜕
2𝑉𝜕𝑆2 + 𝑟𝑆𝜕𝑉𝜕𝑆 − 𝑟𝑉, 0 < 𝛼 < 1, (6)

where 𝜕𝛼𝑉/𝜕𝜏𝛼 is just the Riemann-Liouville fractional
derivative defined as𝜕𝛼𝑉𝜕𝜏𝛼 = 1Γ (1 − 𝛼) 𝜕𝜕𝜏 ∫

𝜏

0

1(𝜏 − 𝜏)𝛼𝑉(𝑆, 𝜏) 𝑑𝜏. (7)

The idea of the above transformation from a Black-
Scholes equation with integer-order derivative to a fractional
Black-Scholes equation has been adopted for the option
problem in [13, 14, 19]. By the relationship presented in
the mentioned documents, one can also obtain the time-
fractional model. The analytical solution of the model con-
taining the dividend yield 𝐷 and 𝑑𝑓 = 1 is given by [14]. Li
[19] gave the numerical solutions of the time-fractionalmodel
with 𝑑𝑓 being 1 by the finite differencemethod.Themain task
of this paper is to present solutions of (6) with the condition𝑑𝑓 ̸= 1 and give the actual application. Under the situation,
finding analytical solutions is difficult and so it is necessary to
turn to semianalytical approximations for getting a solution.

The values of European call and put option in the work
are supposed to be a solution of (6) with the following initial
and boundary conditions, respectively:

𝑉 (𝑆, 0) = max (𝑆 − 𝐾, 0) ,
𝑉 (0, 𝜏) = 0,
𝑉 (𝑆, 𝜏) = 𝑆 − 𝐾 exp (−𝑟𝜏) , 𝑆 → +∞,

(8)

𝑉 (𝑆, 0) = max (𝐾 − 𝑆, 0) ,
𝑉 (0, 𝜏) = 𝐾 exp (−𝑟𝜏) ,
𝑉 (𝑆, 𝜏) → 0, 𝑆 → +∞.

(9)

3. Semianalytical Solution

In this section, two aspects of work need to be complete. The
one is to give an enhanced technique of Adomian decompo-
sitionmethod; the other is to solve a semianalytically solution
of the pricingmodel by the enhanced technique and the finite
difference method.

3.1. Description of the Enhanced Method. Consider a general
differential equation[L +R +N] 𝑢 (𝑥, 𝑡) = 0, (10)

whereL is an easily or trivially invertible linear operator,R
is the remaining linear part, andN is a nonlinear operator.

Equation (10) can be rewritten as

𝑢 = Φ −L
−1 [R +N] 𝑢, (11)

where Φ is determined by the given conditions.
The standard Adomian decomposition method [20, 21]

suggests the solution 𝑢 can be decomposed into the infinite
series and the nonlinear termN𝑢 is decomposed; namely,

𝑢 = ∞∑
𝑛=0

𝑢𝑛,
N𝑢 = ∞∑

𝑛=0

𝐴𝑛,
(12)
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where 𝐴𝑛 are Adomian polynomials, defined by

𝐴𝑛 = 1𝑛! [ 𝑑𝑛𝑑𝜆𝑛N(∞∑
𝑖=0

𝜆𝑖𝑢𝑖)]
𝜆=0

, 𝑛 ≥ 0. (13)

Substituting decomposition series (12) into both sides of
(11) gives the following relationship:

∞∑
𝑛=0

𝑢𝑛 = Φ −L
−1
R
∞∑
𝑛=0

𝑢𝑛 −L
−1
∞∑
𝑛=0

𝐴𝑛. (14)

From the above equation, the standard Adomian decom-
position method defines the components 𝑢𝑛 by the following
recursive relationship:

𝑢0 = Φ,
𝑢𝑛 = −L−1 [R𝑢𝑛−1 + 𝐴𝑛−1] , 𝑛 = 1, 2, . . . . (15)

Further, [15] introduced the convergence-control param-
eter 𝜔 (|𝜔| < 1) and new components are constructed,
defined by

�̃�𝑛 = 𝑛∑
𝑘=0

𝐶𝑘𝑛𝜔𝑛−𝑘 (1 − 𝜔)𝑘+1 𝑢𝑘,
𝐶𝑘𝑛 = 𝑛!𝑘! (𝑛 − 𝑘)! ,

𝑛 = 0, 1, . . . .
(16)

A solution of (10) is an infinite series with the computable
components �̃�𝑛 which contains a new parameter 𝜔; namely,

𝑢 = ∞∑
𝑛=0

�̃�𝑛. (17)

Comparing (15) with (16), it is knowable that the standard
Adomian decomposition method is a case of the enhanced
technique. The existence of the parameter 𝜔 can adjust
the convergence region and it is beneficial to improve the
accuracy of the truncated series. It is can be identified by
the analysis presented in [22–24], where Professor Liao gives
the efficient way to obtain the optimal convergence-control
parameters.

3.2. Derivation of the Solution. The finite difference method
has been extended successfully to deal with various fractional
differential equations [25–27]. Under the technique, the
differential equation is transformed into a difference equation
and numerical solutions are finally obtained.

The space variable 𝑆 is discretized by the difference
approximation, where 𝑆 ∈ [0, 𝑆max] and 𝑆max is a realistic and
practical approximation to infinity. Let the step ℎ = 𝑆max/𝑀
and 𝑆𝑚 = 𝑚ℎ (𝑚 = 0, 1, . . . ,𝑀); 𝑉𝑚(𝜏) denotes a solution of
(6) in the space point 𝑆𝑚.

For spatial derivative, the following difference approxi-
mations are used:

𝜕𝑉𝜕𝑆 = 𝑉𝑚+1 − 𝑉𝑚−12ℎ + 𝑂 (ℎ) ,
𝜕2𝑉𝜕𝑆2 = 𝑉𝑚+1 − 2𝑉𝑚 + 𝑉𝑚−1ℎ2 + 𝑂 (ℎ2) .

(18)

Substituting (18) into (6) gives

(𝑚ℎ)𝑑𝑓−1 𝜕𝛼𝑉𝑚 (𝜏)𝜕𝜏𝛼
= 12𝜎2𝑚2 (𝑉𝑚+1 (𝜏) − 2𝑉𝑚 (𝜏) + 𝑉𝑚−1 (𝜏))
+ 𝑟𝑚2 (𝑉𝑚+1 (𝜏) − 𝑉𝑚−1 (𝜏)) − 𝑟𝑉𝑚 (𝜏) .

(19)

Equation (8) is discretized and gives

𝑉𝑚 (0) = max (𝑚ℎ − 𝐾, 0) , 𝑚 = 0, . . . ,𝑀,
𝑉0 (𝜏) = 0,
𝑉𝑀 (𝜏) = 𝑀ℎ − 𝐾 exp (−𝑟𝜏) .

(20)

From (9), one can get

𝑉𝑚 (0) = max (𝐾 − 𝑚ℎ, 0) , 𝑚 = 0, . . . ,𝑀,
𝑉0 (𝜏) = 𝐾 exp (−𝑟𝜏) ,
𝑉𝑀 (𝜏) = 0.

(21)

According toAdomian decompositionmethod, the linear
operator is chosen and the treatment of nonlinear term is not
involved for this problem. Equation (19) can be rewritten as

(𝑚ℎ)𝑑𝑓−1L𝑉𝑚𝑘 (𝜏)
= 12𝜎2𝑚2 (𝑉𝑚+1𝑘−1 (𝜏) − 2𝑉𝑚𝑘−1 (𝜏) + 𝑉𝑚−1𝑘−1 (𝜏))
+ 𝑟𝑚2 (𝑉𝑚+1𝑘−1 (𝜏) − 𝑉𝑚−1𝑘−1 (𝜏)) − 𝑟𝑉𝑚𝑘−1 (𝜏) .

(22)

The inverse operator of L is assumed to be a Riemann-
Liouville fractional integral operator, given by

L
−1 (⋅) = 𝐽𝛼 (⋅) = 1Γ (𝛼) ∫

𝜏

0
(𝜏 − 𝜏)𝛼−1 (⋅) 𝑑𝜏. (23)

Then, the recursive relationship of the call option is
defined by

𝑉𝑚0 (𝜏) = max (𝑚ℎ − 𝐾, 0) , 𝑚 = 0 ⋅ ⋅ ⋅𝑀,
𝑉0𝑘 (𝜏) = 0,
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𝑉𝑚𝑘 (𝜏) = (𝑚ℎ)1−𝑑𝑓
⋅ 𝐽𝛼 {12𝜎2𝑚2 (𝑉𝑚+1𝑘−1 (𝜏) − 2𝑉𝑚𝑘−1 (𝜏) + 𝑉𝑚−1𝑘−1 (𝜏))
+ 𝑟𝑚2 (𝑉𝑚+1𝑘−1 (𝜏) − 𝑉𝑚−1𝑘−1 (𝜏)) − 𝑟𝑉𝑚𝑘−1 (𝜏)} ,

𝑚 = 1 ⋅ ⋅ ⋅𝑀 − 1,
𝑉𝑀𝑘 (𝜏) = −𝐾(−𝑟𝜏)𝑘𝑘! , 𝑘 = 1, 2, . . . .

(24)

For the put option, we have

𝑉𝑚0 (𝜏) = max (𝐾 − 𝑚ℎ, 0) , 𝑚 = 0 ⋅ ⋅ ⋅𝑀,
𝑉0𝑘 (𝜏) = 𝐾(−𝑟𝜏)𝑘𝑘! ,
𝑉𝑚𝑘 (𝜏) = (𝑚ℎ)1−𝑑𝑓

⋅ 𝐽𝛼 {12𝜎2𝑚2 (𝑉𝑚+1𝑘−1 (𝜏) − 2𝑉𝑚𝑘−1 (𝜏) + 𝑉𝑚−1𝑘−1 (𝜏))
+ 𝑟𝑚2 (𝑉𝑚+1𝑘−1 (𝜏) − 𝑉𝑚−1𝑘−1 (𝜏)) − 𝑟𝑉𝑚𝑘−1 (𝜏)} ,

𝑚 = 1 ⋅ ⋅ ⋅𝑀 − 1,
𝑉𝑀𝑘 (𝜏) = 0, 𝑘 = 1, 2, . . . .

(25)

The components �̃�𝑚𝑛 are determined by the following
expressions:

�̃�0𝑛 (𝜏) = 𝑉0𝑛 (𝜏) ,
�̃�𝑚𝑛 (𝜏) = 𝑛∑

𝑘=0

𝐶𝑘𝑛𝜔𝑛−𝑘 (1 − 𝜔)𝑘+1 𝑉𝑚𝑘 (𝜏) ,
𝑚 = 1 ⋅ ⋅ ⋅𝑀 − 1,

�̃�𝑀𝑛 (𝜏) = 𝑉𝑀𝑛 (𝜏) , 𝑛 = 0, 1, 2, . . . .
(26)

Eventually, the semianalytical approximate solution of the
fractional model (6) is

𝑉𝑚 (𝜏) = ∞∑
𝑛=0

�̃�𝑚𝑛 (𝜏) , 𝑚 = 0 ⋅ ⋅ ⋅𝑀. (27)

We can also establish other modes according to the
recurrence formulas presented by [28]. But, the focus of
the work is to explain the application of the time-fractional
model, so we do not consider other forms. Further, the initial
and boundary conditions that are satisfied by series solution
(27) are checked out. For the boundary condition, it is evident
via Maclaurin series expansion of 𝑀ℎ − 𝐾 exp(−𝑟𝜏) and𝐾 exp(−𝑟𝜏). The following equality tells us that the initial

condition can be proved under condition (23). Therefore,
series solution (27) is reasonably structured.

𝑉𝑚 (0) = ∞∑
𝑛=0

�̃�𝑚𝑛 (0)
= (1 + 𝜔 + 𝜔2 + ⋅ ⋅ ⋅ + 𝜔𝑛 + ⋅ ⋅ ⋅) �̃�𝑚0
= 1(1 − 𝜔) (1 − 𝜔)𝑉𝑚0 = 𝑉𝑚0 ,

𝑚 = 1 ⋅ ⋅ ⋅𝑀 − 1.

(28)

4. Application and Analysis

With the help of the mathematical calculation software
MATLAB, the result of Section 3 is tested in China’s financial
market.

Example 1. The call warrant of Angang Steel 030001 is taken
as an example to explain the application of results (27).

The data (the data came from the database of the Tai’an
CSMAR series) from 12/05/2005 to 10/25/2006 are used
to estimate parameters. The first step is to determine the
parameter𝑑𝑓 of the fractional derivativemodel.Theoretically
speaking, it is a Hausdorff dimension. For the self-affine
processes, [29] pointed out the celebrated relationship 𝐷 +𝐻 = 𝑛 + 1 for a self-affine surface in 𝑛-dimensional space,
where 𝐷 is a fractal dimension and 𝐻 is Hurst coefficient.
For this problem, Mandelbrot gave some discussions in [29],
where he arranged a lot of his own and his partners work.
Hurst is a statistic that characterizes the correlation effect of
time series. For a time series, the fractal dimension 𝐷 can be
considered as 2-H. In practical application, the calculation
results are generally approximate. So, the traditional R/S
analysis [30, 31] is employed to give Hurst exponent. The
formula ln(𝑉𝑖+1/𝑉𝑖) is applied to calculate the logarithmic
return rate of the call warrant, where 𝑉𝑖 is the daily closing
price. Hurst exponent for option is estimated as 0.6207. The
result is greater than 0.5 and proves that the warrants market
has the fractal character.This conclusion basically tallies with
those studies [5, 6] on Chinese financial market.

Secondly, 𝜎 is estimated by the historical volatility and
then is annualized. The formula is

𝑋𝑖 = ln(𝑆𝑖+1𝑆𝑖 ) ,
𝑋 = 1𝑁 ∑𝑋𝑖,
𝜎 = √ 242∑ (𝑋𝑖 − 𝑋)2𝑁 − 1 ,

(29)

where 𝑆𝑖 stands for the daily closing price of the stock
of Angang Steel and the value 242 is chosen as a general
number of trading days.Then the volatilities are 0.3948.Hurst
exponent is 0.6006 and 𝑑𝑓 takes 1.3994.

The risk-free interest rate 𝑟 takes 0.0252 (the data came
from the people’s bank of China) that is the rate for one-year
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(b) 𝛼 = 0.6207

Figure 1: The 𝜔-curve.
term deposit after adjustment in 2006. The strike price 𝐾 is
3.6.The space length 𝑆max and the step length ℎ are 9 and 0.01,
respectively.

After completing the above parameters estimation, the
data 𝑆 = 6.32, 𝜏 = 𝑇 − 𝑡 = 24/242, and 𝑉 = 3.057
on 10/25/2006 are substituted into the second approximation𝑉2(𝜏) = ∑2𝑛=0 �̃�𝑛(𝜏). Let 𝛼 be 0.3793 (1-H), the parameter 𝜔 is
solved as −0.4984 and 0.2378 ± 0.4249𝑖. If 𝛼 is 0.6207 (Hurst
exponent), the corresponding 𝜔 is −0.4985 and 0.2428 ±0.4279𝑖.

The next step is to calculate the option price on
10/26/2006, when 𝑆 = 6.54, 𝜏 = 𝑇 − 𝑡 = 23/242. Based on
the convergence-control parameter pointed out by [22–24],
the 𝜔-curves of the solution 𝑉6542 (𝜏) with 𝛼 being 0.3793 and0.6207 are drawn in Figure 1. The interval where the solution
curves are near horizontal is valid and the homologous
solutions can be convergent. Although Figure 1 gives the
curves for the real values of 𝜔, it is knowable that the two sets
of values for 𝜔 are acceptable.

Finally, substituting 𝜏 = 𝑇−𝑡 = 23/242 and the first set of
values for 𝜔 into𝑉6542 (𝜏), the obtained warrant values in turn
are 3.304 and 3.302 ± 0.001384𝑖 under the condition that 𝛼 is
0.3793. Similarly, one can get 3.304 and 3.303 ± 0.0008738𝑖
for 𝛼 being 0.6207. The classical Black-Scholes solution is
2.9486. The actual value is 3.256. Enlarging the analyzing
scope, the estimations by the paper algorithm, the Black-
Scholes model, and the actual values of the call warrant on
09/18/2006–11/27/2016 are listed in Figures 2 and 3 under the
determined parameters.

The solid line and the diamonds in Figures 2 and 3
are obtained under enhanced technique (26). Actually, our
results are complex-valued.The real parts of solutions are cut
out and described by the solid line and the diamonds.𝜔 is one
of important parameters in the algorithmand it is determined
by the actual values of the previous trading day. That is to
say, the function of 𝜔 is not only a control parameter of the
series solution, but also a reference point for the fluctuation
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Figure 2: 𝛼 = 0.3793.

of the option price on the considered trading day. From the
concrete example, the valuations by substituting these 𝜔 into
the expressions are close. From Figures 2 and 3, we can know
that the solid line and the diamonds are very intimate. The
trajectory motions of the two curves are along the actual
values which are labeled with stars and came from the actual
market. In contrast, the dots that describe the values from the
classical Black-Scholes model are far from the true values. It
is evident that the estimates determined by results (27) are
dependable.

Example 2. Considering the SSE 50 ETF put option 10000188
and the call option 10000615 as the second example, the daily
closing prices (the data came from the trading software of
Essence Securities) of options on 04/23/2015–12/16/2015 and
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Solid line (Diamond): Real part of solution
Dot: Black-Scholes model
Star: Actual value

Figure 3: 𝛼 = 0.6207.

04/28/2016–12/27/2016 are taken as two groups of the sample
data.

The first is to estimate parameters by the option 10000188.
The strike price𝐾 of the put option equals 3. Hurst exponent
is estimated as 0.6567, which reflects that the time series has
the long-term positive autocorrelation and indicates that the
option market exhibits the fractal characters. The historical
volatility for 50 ETF is 0.4385, with the number of the trading
days being 242. Hurst exponent is 0.6468 and 𝑑𝑓 can be
1.3532. Based on the historical data from the people’s bank of
China, the interest rate is made four adjustments in 2015 and
the average value is around 0.02. So the value of the risk-free
interest rate 𝑟 is considered as 0.02. 𝑆max and ℎ are 4 and 0.001,
successively.𝑉1(𝜏) is the first approximation; namely, 𝑉1(𝜏) =∑1𝑛=0 �̃�𝑛(𝜏). Repeating the steps of Example 1, the real price
on 12/01/2015 is used to calculate 𝜔 and then evaluates the
option value on 12/02/2015. In addition, the estimations from
12/03/2015 to 12/15/2015 are calculated and listed in Table 1
together with those from the Black-Scholes model and the
actual values. Based on the study for the option 10000188,
the option 10000615 with strike price 2.006 is estimated
under the condition that the parameters 𝑑𝑓, 𝛼, 𝑆max, ℎ, 𝜎,
and 𝑟 have the same values as those of the put option. The
estimations by the paper algorithm, the Black-Scholes model,
and the actual values on 04/28/2016–05/12/2016 are listed in
Table 2. Further, numerical comparisons from 05/13/2016 to
12/27/2016 are shown in Figures 4 and 5. From the figures,
the solid lines, the diamonds, and the stars are close and
the dots are over them at most of the trading time points. It
can be seen that the curves of the real parts of our solutions
are closer to the true values than those from the Black-
Scholes formula. Namely, our errors are smaller. Through
the comparative analysis, approximation (27) is stable and
executable. It has embodied the superiority than the Black-
Scholes model especially for the option 10000615.
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Solid line (Diamond): Real part of solution
Dot: Black-Scholes model
Star: Actual value

(a) 05/13/2016–08/31/2016
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Solid line (Diamond): Real part of solution
Dot: Black-Scholes model
Star: Actual value

(b) 09/01/2016–12/27/2016

Figure 4: 𝛼 = 0.3433.

5. Problems and Conclusions

In the work, the approximate semianalytical solution of the
fractional option pricing model is derived by the enhanced
technique and the finite differencemethod. Further, the result
is introduced into the real market. By the two examples in
Section 4, one can find that the application of the fractional
derivative model in the actual financial market is reliable and
valuable. But the existing problems should be pointed out.

(i) The first problem is the parameter estimations. Except
for some conventional parameters, the fractional deriva-
tive model adds the fractal dimension 𝑑𝑓 and the order𝛼 of fractional derivative. The two parameters make the
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Solid line (Diamond): Real part of solution
Dot: Black-Scholes model
Star: Actual value
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Solid line (Diamond): Real part of solution
Dot: Black-Scholes model
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(b) 09/01/2016–12/27/2016

Figure 5: 𝛼 = 0.6567.

model better display the fractal features of the market.
The semianalytical approximate solution presented in this
work contains a convergence-control parameter 𝜔 that can
improve the accuracy of the approximate solution. However,
the existence of these parameters increases the difficulties
of the empirical analysis. In the work, 𝑑𝑓 equals 2-H. The
relationship between 𝜔 and 𝛼 on the previous day is used
to calculate option price on that day. These are not accurate.
If these parameters are made more accurate, one can obtain
much better valuation. Their optimal determinations are the
key to settle the problems.

(ii) The second problem is the computational difficulties
and the actual applications are limited. Example 2 tells us
that even the first approximation is also effective. But the
point influences judging the rational values of 𝜔 by the𝜔-curve. If 𝜔 = 0, the enhanced technique is reduced
to the standard Adomian decomposition method. Research
experience illustrates that the values of𝜔 lie in the range close
to zero and can be taken as the reasonable estimations. But
it is undeniable that the computational difficulties cause the
limitations in real application.

Although the fractional partial differential equation has
been introduced into the financial theory, the literatures on
the practical application are very few. This work makes every
effort to apply the fractional partial differential equation
to model the actual market. For existing problems, we
continue the study in further work.The connections between
the fractal dimension, the order of fractional derivative,
and Hurst exponent are worthy of studying. In short, the
effectiveness and advantage of the fractional derivativemodel
are indubitable, but more problems need further researches.
We hope and believe that the study of the fractional derivative
model in the financial theory can advance the development of
mathematics and finance.
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