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Iterative learning control (ILC) is one of the most popular tracking control methods for systems that repeatedly execute the same
task. A system model is usually used in the analysis and design of ILC. Model-based ILC results in general in fast convergence and
good performance. However, the model uncertainties and nonrepetitive disturbances hamper its practical applications. One of the
commonly used solutions is the introduction of a low-pass filter, namely, the Q-filter. However, it is indicated in this paper that the
existing Q-filter configurations compromise the servo performance, although improving the robustness. Motivated by the
combination of performance and robustness, a novel Q-filter configuration in ILC is presented in this paper. Some practical
considerations, such as the configuration of ILC in a feedback control system, the time delay compensation, and the learning
coefficient, are provided in the implementation of the proposed ILC algorithm. The effectiveness and superiority of the proposed
ILC versus existing Q-filter ILC are demonstrated by both theoretical analysis and experimental verification on a wafer stage.

1. Introduction

High-performance motion is typically required in many
manufacturing environments [1–4] where a tool must track
a prescribed reference trajectory with high speed as well as
high accuracy. One of the examples is the wafer stage which
is responsible for the precision positioning of the wafer used
in the IC (integrated circuit) manufacturing. The wafer stage
performs a constant velocity scanning during exposure, after
which acceleration takes place to bring the stage to the next
exposure position [5]. In the next-generation photolithogra-
phy, the wafer stage is subject to tightening requirements on
the servo performance due to larger throughput and smaller
critical dimension [6]. However, feedback controllers such as
the PID controller alone cannot achieve these requirements
due to the closed loop bandwidth limitation frommechanical
resonances and electrical amplifiers [7, 8]. More and more
efforts are thus devoted to feedforward control techniques.

Considering the repetitive nature of wafer scanning, it is
natural to seek to incorporate the information from previous
iterations somehow into the control command of the current
iteration for the sake of eliminating the recurring servo error.
As one such algorithm, iterative learning control (ILC) has
found widespread applications in trajectory tracking and dis-
turbance rejection [9–12] since it was initially proposed by
Uchiyama [13] and Arimoto et al. [14]. For instance, an iter-
ative learning controller achieves about 93% improvement
over the feedback controller in terms of the tracking accuracy
in the wafer stage described in [15].

The early work on ILC focused on the design of a single
learning filter (called L filter). It uses one gain times the error
from the last iteration to update the control input as follows:

uj+1 k = uj k + L q ej k , 1

where the superscript j denotes the iteration index, k denotes
the discrete time index defined on the interval 0N − 1 ,
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q represents the forward time-shift operator, u is the control
input, e is the error signal, and L q is the learning filter.

The ILC algorithm in (1) seems to be very effective
from a mathematical perspective and can converge to the
zero-tracking error [16]. However, in practice, it usually
exhibits unacceptable learning performance, as illustrated
in Figure 1. This can be explained by the following:

(1) Most of the ILC algorithms like frequency-domain
ILC [17], optimal ILC [18], and so on are to a certain
extent model based from the perspective of conver-
gence conditions and performance properties. How-
ever, it is intractable in practice to obtain the
accurate systemmodel, especially at high frequencies.
Frequency domain analysis reveals that the robust-
ness of (1) to model uncertainty is limited [19]. The
poor robustness would lead to initial convergence
followed by divergence or instability when high fre-
quencies propagate through iterations. (See [20] for
more discussion of this phenomenon from several
points of view.)

(2) Although attenuating the repetitive disturbances, ILC
leads to propagation of noise and nonrepetitive dis-
turbances which could degrade the servo perfor-
mance [21].

For the improvement of ILC robustness, it is recom-
mended to use a low-pass filter to prevent the high fre-
quencies and noise from entering the learning feedback loop
[22, 23]. The widely used ILC algorithm is given as follows:

uj+1 k =Q q uj k + L q ej k , 2

whereQ q is the low-pass filter, often called theQ-filter. The
Q-filter restricts the bandwidth of the learning process,
thereby avoiding the propagation of high frequencies.

Remark 1. For a system with relative degree m, define L0
q = q−mL q ; then the ILC algorithm in (2) can be
written as uj+1 k =Q q uj k + L0 q ej k +m which is
an equivalently popular ILC formulation as (2) [24].

The design of the Q-filter in (2) has been addressed in
numerous literature. In [25], a nonparametric Q-filter which
has no requirement on any explicit properties of nonrepeti-
tive disturbances is developed. A zero-phase Q-filter is
designed to eliminate the bad learning transient in [16]
where, however, it is indicated that the ILC algorithm in (2)
leads to a trade-off between robustness and performance.
More clearly, a Q-filter with high bandwidth results in
improved performance but at the expense of robustness,
and vice versa. Although the time-varying Q-filters in
[22, 26, 27] and the nonlinear Q-filters in [28] extend
the robustness and performance boundaries given by the
fixed Q-filter in [16], the ILC algorithms in the form of (2)
cannot converge to zero-tracking error unless Q q = 1
[24]. This motivates the following work in the paper:

(1) Three different ILC configurations under the two
DOF (degree of freedom) control architecture are
compared in terms of both theoretical analysis and
practical considerations.

(2) A novel Q-filter configuration in model-based ILC is
proposed. It adjusts the control input utilizing the fil-
tered error signal along with the original control sig-
nal from the previous iteration, rather than the
filtered one as in (2). The proposed algorithm pro-
vides improved performance (zero-tracking error)
versus the Q-filter configuration in (2) while main-
taining high robustness.

(3) Some additional considerations, such as the zero-
phase filter design, time delay compensation, and
the learning coefficient, are provided in the imple-
mentation of the proposed ILC algorithm.

The rest of the paper is organized as follows: Section 2
describes the wafer stage considered in this paper, followed
by its modelling. Section 3 presents the proposed model-
based ILC algorithm with a novel Q-filter configuration. In
addition, some considerations in the practical implementa-
tion are given. In Section 4, experimental results are provided
to validate the effectiveness and superiority of the proposed
algorithm. Concluding remark is finally given in Section 5.

2. Application Context

2.1. Wafer Stage. In order to reduce the overhead time cre-
ated by wafer exchange, thereby improving throughput, two
wafer stages are used during wafer scanning. While the first
stage performs overhead activities such as wafer unload/load,
horizontal alignment, and measurement of the surface topog-
raphy, the second one exposes the previously measured wafer
[29]. When both stages are finished with their tasks, the
stages are swapped and a new cycle begins. As shown in
Figure 2, each of the stages consists of two modules: a long-
stroke module and a short-stroke module. The former used
for coarse positioning has an H-bridge design, the work
range of which is 400mm with micrometer-level positioning
accuracy. The latter is responsible for fine positioning with a
2mm work range and nanometer-level positioning accuracy.
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Figure 1: The phenomenon of initial convergence followed by
divergence in ILC with only a learning filter.

2 Complexity



The wafer stage is controlled in six logical axes: three
translations: x, y, and z, and three rotations: rx, ry, and rz .
The control system adopts a 6-degree of freedom (DOF) con-
troller structure in combination with force and measurement
decoupling designs. Scanning of every field on a wafer is
performed in the y-direction by conducting a series of
point-to-point motions with constant velocity. After an
exposure scan, simultaneous x and y accelerations bring the
stage to the next exposure position. Motion in the xy-plane
enables the full wafer exposure. Motions in z, rx, ry, and rz
are used to keep the wafer surface in the focal plane of the
lens. In this paper, for reasons of clarity, only the x-direc-
tion long-stroke module is considered. This choice is rather
arbitrary but basically captures features that also exist in the
remaining directions.

2.2. Modelling. The frequency response of the x-direction
long-stroke wafer stage is measured by a sine sweep experi-
ment with a sampling time Ts = 200 μs. A series of sinusoidal
input signals in the range from 1.0Hz to 1000Hz are injected
to the stage. The amplitude gain and phase shift are measured
by comparing the discrete Fourier transforms of the position
and the control signal. Figure 3 shows the measured fre-
quency characteristic, from which it can be observed that
the long-stroke wafer stage can be modeled as a double-
integrator-based system with a mass of approximately
23.85 kg, in series connection with several resonances at high
frequencies. These resonances characterize the structural flex-
ibilities of the stage. In addition, the phase decline below−180°
indicates the existence of time delay due to several sources
such as the actuator system and current control circuits.

By considering the rigid mode, vibration modes, and the
time delay component, the following P s can be formulated
as the model of the wafer stage:

P s = K t
1

Ms2
+ 〠

2

i=1

Ki

s2 + 2ζiωis + ω2
i

e−Tds, 3

where K t is the gain including the torque constant and ampli-
fier with current control,M is the mass of the wafer stage, Ki

is the modal constant of the ith vibration mode, ωi is the nat-
ural angular frequency, ζi is the damping coefficient, and Td
is the delay time.

Table 1 lists the parameters in P s , while the solid curves
in Figure 3 show the frequency response of P s .
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Figure 2: Wafer stage.① short-stroke module; ② long-stroke module.
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Figure 3: Frequency response functions in Bode representation of
the x-direction long-stroke wafer stage.

Table 1: Parameters in the wafer stage model.

Parameter Value Parameter Value Parameter Value

K t 1/20 M 23.85 Td 580 μs

K1 0.0130 ζ1 0.040 ω1 2π × 150 rad/s
K2 0.0023 ζ2 0.018 ω2 2π × 292 rad/s
K3 0.0038 ζ3 0.027 ω3 2π × 510 rad/s
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3. Model-Based ILC with a Modified Q-Filter

In this paper, the learning filter L and the Q-filter are
designed separately although they can be simultaneously
designed in some one-step procedures [30]. This kind of
ILC design procedure is usually referred to as a two-
step ILC design [26]. Note that the following develop-
ments are presented in the frequency domain using the
z-domain presentation. The z-transformation of a system
can be obtained by replacing q with z. The frequency
response is given by replacing z with eiθ for θ ∈ −ππ .
Hereafter, the argument of z will be omitted for compact-
ness of notation.

3.1. ILC Configurations. Since ILC is incapable of attenuating
the nonrepetitive disturbances, a two DOF control struc-
ture is typically used in practice, where ILC is integrated
into an existing closed-loop system as an add-on scheme.
Based on the choice of (1) the learning signal and (2)
the injection point of the learned control signal, three
alternative ILC configurations are usually adopted in preci-
sion motion systems [31]. They are illustrated in Figure 4
where C fb denotes the feedback controller designed in
advance, uf f is the control effort learned by ILC, e is the
error signal, and d and v denote the input and output dis-
turbance of the plant, respectively.

In configurations I [32] and II [25], the learning
signal used in ILC is the tracking error, that is, r − yj.
The learned control signal uj

f f in configuration I is
injected to the input of the plant, whereas the one in
configuration II is injected to the input of the feedback
controller. In configuration III [31], the learning signal
is C fb r − yj , and the learned control signal is injected
into the input of the plant. In general, the ILC algo-
rithms involved in the configurations can be given as
follows, respectively:

Conf iguration I:

uj+1
f f = uj

f f + Lej, uj = uj
f f + C fbe

j

Conf iguration II:

uj+1
f f = uj

f f + Lej, uj = C fb uj
f f + ej

Conf iguration III:

uj+1
f f = uj

f f + LC fbe
j = uj

f f + C fbe
j

4

The analysis and comparison of three ILC configurations
are performed in the following.
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Figure 4: Two DOF control structures with different ILC configurations.
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3.1.1. Theoretical Analysis. Simple derivations reveal the
tracking error propagation from the iteration j to the itera-
tion j + 1 as follows:

Conf iguration I:

ej+1 = 1 − P
1 + PC fb

L ej −
P

1 + PC fb
dj+1 − dj

−
1

1 + PC fb
vj+1 − vj

Conf iguration II:

ej+1 = 1 − PC fb
1 + PC fb

L ej −
P

1 + PC fb
dj+1 − dj

−
1

1 + PC fb
vj+1 − vj

Configuration III:

ej+1 = 1 − PC fb
1 + PC fb

L ej −
P

1 + PC fb
dj+1 − dj

−
1

1 + PC fb
vj+1 − vj

5

From (5), the ideal learning filters for three configura-
tions can be given as follows, respectively:

Conf iguration I:

L∗ = P
1 + PC fb

−1

Conf igurations II and III:

L∗ =
PCf b

1 + PCf b

−1

6

From (6), it seems that there is no difference between the
three ILC configurations since each of them can achieve zero
convergence rate with the ideal learning filter. However, from
the frequency characteristics of the ideal learning filters
shown in Figure 5, it can be observed that configurations II
and III are well suited for the frequency domain design since
the DC gain of the learning filter is close to 1, whereas the DC
gain in configuration I tends to be infinite, which may lead to
numerical issues.

3.1.2. Practical Considerations. From an implementation
point of view, the choice of ILC configurations depends firstly
on the availability of the control signals. In precision motion
systems, commercial amplifiers and motor drivers are usually
used. They provide either an open-loop control where the
input is a control signal or a closed-loop control where the
input is a reference signal. ILC configurations I and III
require direct access to the control input of the plant, which
is, however, infeasible if a closed-loop commercial controller
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(b) ILC configurations II and III

Figure 5: Frequency responses of ideal learning filters for ILC configurations I, II, and III.
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is used. The choice of closed-loop controllers will restrict the
user from implementing only ILC configuration II. All ILC
configurations can be implemented if an open-loop control-
ler is used.

On the other hand, in ILC configurations I and III, if
the ILC algorithm yields a large undesired control signal
(resulting from the incorrect numerical computation or
the unstable ILC algorithm), the direct injection of this
signal would saturate even damage the plant. However,
this can be avoided in ILC configuration II since the ILC
signal will be filtered by the feedback controller C fb before
being injected to the plant.

3.2. Learning Filter Design. Based on all the above discussions,
for the sake of implementation and safety, ILCconfiguration II
is adopted in this paper. From (6), the model-inversion
learning filter is given as follows:

L = PC fb
1 + PC fb

−1
7

Remark 2. If the relative degree of the closed-loop system sat-
isfies l ≥ 1, then the learning filter in (7) will be noncausal.
Unlike the usual notion of noncausality, the ILC algorithm
with a noncausal learning filter is still implementable in prac-
tice because of the availability of the entire data from all pre-
vious iterations.

Remark 3. If the learning filter in (7) is unstable which usually
happens when sampling a continuous-time system with a fast
sampling time [33], model-inverse techniques for
nonminimum-phase systems can be adopted, such as the
ZPETC method in [34], the ZMETC method in [35], and
the noncausal series approximation method in [36]. See
[37] for their comparisons.

Remark 4. From Figure 5(b), it can be observed that the
learning filter can be approximated by L = 1 at low frequen-
cies. This approximation can be used in practice if a Q-filter
is well designed. Despite to its popularity, ILC configuration
I is more complicated in terms of the calculation of the learn-
ing filter L = P/ 1 + PC fb

−1. This is another reason why we
choose ILC configuration II rather than I.

3.3. Preexisting Q-Filter Configuration. As we discussed in
Section 1, if only a single learning filter is used in the
model-based ILC, divergence or instability may happen as
the iteration increases due to the model uncertainty at high
frequencies. A Q-filter is thus often introduced to enhance
the robustness of the learning process. Referring to ILC
configuration II, the Q-filter is usually configured in ILC
as follows:

uj+1
f f =Q uj

f f + Lej 8

3.3.1. Convergence. The frequency-domain condition for the
convergence of the ILC algorithm in (8) is given as follows:

Theorem 1. Consider ILC configuration II in Figure 4(b) and
the ILC algorithm in (8). The ILC algorithm is convergent if

Q 1 − PC fb
1 + PC fb

L
∞
< 1 9

Proof. From Figure 4(b), the tracking error in the jth iteration
can be given as follows:

ej = Sr −Guj
f f − PSdj − Svj 10

where S = 1/ 1 + PC fb is the sensitivity function and
G = PC fb/ 1 + PC fb is the closed-loop system function.

From (8) and (10), the tracking error in the j + 1 th iter-
ation can be obtained by

ej+1 = Sr −G Q uj
f f + Lej − PSdj+1 − Svj+1 11

From (10), we have Guj
f f = Sr − ej − PSdj − Svj substitut-

ing which into (11) yields

ej+1 =Q 1 −GL ej + 1 −Q Sr − PS dj+1 −Qdj − S vj+1 −Qvj

12
The above error propagation indicates that the ILC

algorithm in (8) is convergent if

Q 1 −GL ∞ < 1 13

3.3.2. Performance. Suppose that the input and output dis-
turbances of the system in Figure 4(b) are repetitive. If the
ILC algorithm in (8) is convergent, then it follows that
from (12).

e∞ =Q 1 − GL e∞ + 1 −Q Sr − PS 1 −Q d − S 1 −Q v

14
Therefore, the converged tracking error is

e∞ = 1 −Q S
1 −Q 1 −GL

r − v − Pd 15

It can be obviously observed that e∞ = 0 holds for all r, d,
and v, if and only if the ILC algorithm in (8) is converged and
Q = 1. Therefore, perfect tracking necessitates Q = 1 at the
cost of robustness. This indicates that the Q-filter configu-
ration in (8) leads to a tradeoff between robustness and
performance.

3.4. Proposed Q-Filter Configuration. As discussed in Section
3.3, the existing ILC algorithm in (8) cannot converge to
zero-tracking error unless Q = 1, which motivates the follow-
ing ILC algorithm:

uj+1
f f = uj

f f +QLej 16

The Q-filter in the proposed algorithm is configured only
in the filtering of the error signal.
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3.4.1. Convergence. The following theorem presents the con-
vergence condition of the proposed ILC algorithm in (16).

Theorem 2. Consider ILC configuration II in Figure 4(b) and
the ILC algorithm in (16). The ILC algorithm is convergent if

1 − PC fb
1 + PC fb

QL
∞
< 1 17

Proof. From (5), we can easily get the tracking error propaga-
tion from the iteration j to j + 1 as follows:

ej+1 = 1 − PC fb
1 + PC fb

QL ej −
P

1 + PC fb
dj+1 − d

−
1

1 + PC fb
vj+1 − vj ,

18

from which, it straightforwardly leads to the frequency-
domain convergence condition as shown in (17).

3.4.2. Performance. The converged tracking error yielded by
the proposed ILC algorithm in (16) can be given as follows
under the assumption on the repetitiveness of d and v:

e∞ = 1 − PC fb
1 + PC fb

e∞, 19

which leads to

e∞ = 0 20

The zero asymptotic tracking error indicates that the pro-
posed algorithm achieves perfect tracking performance,
meanwhile maintaining the robustness to uncertainties at
high frequencies.

3.5. Practical Considerations. In the real implementation of
the proposed algorithm (16), some practical aspects should
be considered.

3.5.1. Zero-Phase Q-Filter. The Q-filter is used to maintain
the convergence for all frequencies even in the face of model
uncertainties. Although any low pass filter could be used as
the Q-filter, the zero-phase filter is generally preferable in
ILC since it allows no phase sacrifice. In [16, 32], a forth-
and-back filtering principle is provided to apply a regular
low pass filter in a zero-phase manner. In [19], several ways
of representing the zero-phase filter are offered using matri-
ces and transforms.

A comparison about the frequency characteristics of a
second-order regular Q-filter and a second-order zero-
phase Q-filter is illustrated in Figure 6.

3.5.2. Learning coefficient. In practice, more than one iter-
ations may be desired to average out the influence of non-
repetitive disturbances and measurement noise, although
zero convergence rate can be achieved theoretically. There-
fore, the learning filter L is usually multiplied by a coefficient
0 < γ < 1 to reduce the convergence rate, thereby making the

error converge smoothly and averaging out uncertainties
through iterations. Note that a large learning coefficient
induces fast convergence but is associated with large noise
amplification, and vice versa.

3.5.3. Delay Compensator. A time ahead zα is usually incor-
porated into the ILC controller in order to compensate (1)
the relative degree of the system, (2) the time delay resulting
from mechanical dynamics, sensors, actuators, and ampli-
fiers as discussed in Section 2.2, and (3) the phase delay
caused by the nonzero-phase Q-filter. The proper time ahead
is of significant importance to the ILC performance. Insuffi-
cient or too much time ahead would lead to slow convergence
even divergence.

In summary, the proposed ILC algorithm is presented as
follows:

uj+1
f f = uj

f f + zαγQLej 21
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and zero-phase Q-filter.

Figure 7: Long-stroke wafer stage motion system.
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Referring to (17), the frequency-domain convergence
condition of the ILC algorithm in (21) can be given as follows:

1 − γzα
PC fb

1 + PC fb
QL

∞
< 1 22

4. Experimental Verification

In this section, the proposed ILC algorithm in (21) is exper-
imentally validated on a wafer stage as shown in Figure 7.

The wafer stage is mounted on an air bearing with
400 kPa air pressure. The position of the linear motor is mea-
sured by a Renishaw linear incremental encoder with the
effective resolution of 0.1μm and maximum velocity of
0.5m/s. The stage is driven by an all-digital power ampli-
fier based on the field-programmable gate array (FPGA)
XC3S400. The bandwidth of the drives is about 2.0 kHz.
The wafer stage system is stabilized by a PID feedback
controller. The bandwidth of the position loop is about
60Hz. The drives and the controllers communicate with
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each other through high-speed fibers. The proposed algo-
rithm is realized by using C language on a
TMS320C6414TGLZ DSP controller. The sampling period
of the control system is Ts = 200 μs. The internal data of
the DSP is transmitted to the computer through the net-
work cable and then displayed on the screen.

Although it is a common industrial practice to use a
second-order reference trajectory based on a rigid body con-
sideration of a system, high-order motion profiles are more
preferred in ultraprecision motion systems since by which
less resonant dynamics are excited. In this paper, a third-
order polynomial motion trajectory with constraints on the
1st to the 3rd derivatives is used, as shown in Figure 8. It is
generated by a trajectory planning algorithm that takes sys-
tem dynamics into account.

4.1. Effectiveness of the Proposed Algorithm. In the experi-
ments, the learning coefficient γ is set as 0.95, and the follow-
ing zero-phase Q-filter is used as an alternative to the regular
low pass filter.

Q = b0 + b1z
−1

1 + a1z−1
⋅
b0 + b1z
1 + a1z

23

where a1 = 2 +wcTs / −2 +wcTs , b0 = b1 = wcTs / −2 +
wcTs , and wc = 2π × 100 is frequency in rad/s.

In order to determine the best time ahead α, experiments
withα in the range of 14 to 39 are performed. After conver-
gence, the stable error signals are shown in Figure 9, from
which it can be observed that when the time ahead is set as
α = 29, the best servo performance is achieved. The conver-
gence process is shown in Figure 10. Figure 11 shows the fre-
quency responses of the error propagation functions under
α = 14, α = 29, and α = 39. The following indications can be
obtained from Figures 10 and 11.

(1) The proposed algorithm is convergent, although
the nonrepetitive disturbances and measurement
noise could lead to slight fluctuation in the converged
error signal.

(2) The learning is most efficient under α = 29 since the
corresponding error propagation function has the
lowest magnitude at each frequency.

(3) Insufficient α = 14 or too much α = 39 time
ahead would lead to slow convergence even diver-
gence. It can be forecasted that high-frequency
errors at about 70Hz to 100Hz will be amplified
for the learning process with α = 14 and diver-
gence would happen as the iteration increases
since 1 − γzα PC fb/ 1 + PC fb QL ∞ > 1.

4.2. Superiority of the Proposed Algorithm. To further ver-
ify the high performance of the proposed method, experi-
mental comparison with the existing ILC algorithm in (8)
is performed. The Q-filter in (8) is set as the same as the
one in (23). The time ahead is set as 29. The tracking
error in each iteration is shown in Figure 12, from which
the following observations can be obtained:

(1) The conventional ILC algorithm improves robust-
ness against uncertainties, but at the cost of perfor-
mance. The tracking error converges to 4μm during
the constant-velocity phase and 20μm during the
acceleration phase.
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(2) The proposed algorithm in (21) achieves high robust-
ness and high performance simultaneously. The con-
verged tracking errors during the constant-velocity
phase and the acceleration phase are 0.25μm and
2μm, respectively.

5. Conclusion

In order to deal with the trade-off between servo perfor-
mance and robustness against model uncertainties in the
existing model-based ILC, a novel Q-filter configuration is
proposed in this paper. Three commonly used ILC configura-
tions in the two DOF control structure are compared from
the perspective of theory and practice. Theoretical analysis
reveals the compromise of the existing ILC algorithms on
the servo performance. Different from conventional Q-filter
configurations, the Q-filter in this proposed ILC algorithm
is only configured in the error signal. It avoids the weakening
of the control signal and ensures the filtering of the high fre-
quencies in the error signal. Some additional practical con-
siderations are provided when implementing the proposed
ILC algorithm. Experimental results confirm the effectiveness
and superiority of the proposed method.

The observation in the experimental results that the tracking
error in the acceleration phase is always larger than that in
the constant-velocity phase would motivate the development
of a cut-off frequency-varying Q-filter in the further work.
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