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We present a mathematical model applying the general 
Pocklington equation to arbitrary shaped thin wire antennas. In 
order to simplify the antenna analysis this approach uses the 
point matching technique and a simplified kernel form. By 
means of this technique it is possible to increase the Method of 
Moments solution convergence and reduce computational time 
and effort. To exemplity this the procedure is applied to the 
well-known circular loop antenna. The obtained results are 
compared with those of Champagne method, which uses 
quadratic segments, in order to get a numerical solution for the 
Electric Field Integral Equation. 
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Introduction 
Numerical analysis is a very common subject in many engineering 
disciplines; especially in antenna analysis and design which has 
developed widely thanks to computer technology. Many numerical 
codes, such as NEC, provide useful tools for antenna engineers. 
However, there is always the need to look into new techniques that 
bring forth the most convenient solution for a specific problem. Here 
we present a technique using Pocklington equation for arbitrary 
geometry thin wires [1] and including the simplification of the 
integral kernel. In order to get computational solution, once the 
integral equation has been established, the methodology requires to 
specify the antenna geometry by establishing vectorial equations for 
the wire axis and the equivalent current filament. Finally, general 
Pocklington equation is solved via Method of Moments (MM). As an 
example of this we present the solution for the current distribution of 
a circular loop antenna. The results are then compared with those 
obtained by Champagne et al [2], who apply Mei’s procedure [3] of 
mixed potential integral equation and use at least three points to 
define a quadratic segment. Considering that Champagne’s method 
uses 8 quadratic segments, each one of three points, we get a total of 
17 points. We use the same number of points to get same results but 
now with the very simple technique of point matching and even with 
the simpler Simpson’s rule for integration. 

General Pocklington equation formulation 
As it is known, Pocklington equation sets a relation between the 
current distribution in a straight wire and the impressed electric field 
on its surface. It is a classical model that considers an antenna made 
of a perfect conductor, of a small radius compared to the wave-length 
of the electromagnetic field. Pocklington approach assumes that the 
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current density in the surface conductor can be simulated by a current 
filament parallel to the antenna axis, leaving the rest of the conductor 
as part of the free space as figure 1 shows. 

 
Figure 1. Geometry for the straight wire. 

As shown in figure 2, general geometries require a model 
encompassing the bent characteristics. This model is given by the 
general Pocklington equation [1, 4], formally obtained from Maxwell 
equations, magnetic and electric potentials and Lorenz’s gauge [5]: 
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Figure 2. Arbitrary bent wire and relations between its vectors and its geometry. 
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According to figure 2, a small wire’s segment defines a local co-
ordinate system, rotated around the reference co-ordinate system. 
Such rotation is represented by '•s s , and the antenna geometry is 
defined by ( )ss , ( )sr , ( )' 'ss  and ( )' 'sr . 

The general Pocklington equation can be simplified, in order to 
obtain a more efficient solution, by expanding the integral kernel 
using the vectorial equation that represents the wire’s axis, and the 
equivalent current filament equation, related to co-ordinate system, 
expressed as: 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ' ' ' ' ,s x s y s z s s s a s= + + = +r i j k r r n  (2) 

where ( )sn  is the unit normal vector for the wire’s axis. As seen, the 
curve representing the current filament is a parallel curve to the one 
representing the wire’s axis. For any particular antenna geometry, it is 
possible to define the tangential unit vectors to obtain the dot product 

'•s s  defined by: 
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Once the vectorial relationship has been found, it is possible to 
simplify the kernel of (1) expanding the operator 2 's s∂ ∂ ∂  over the 
Green’s functions, as it is shown in the following: 
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where R  is the distance between the observation and source points. 
Since the parallel curve is at a distance from the axis curve, the 
analysis points never coincide. Thus, there are no singularities. After 
applying (4), equation (1) is transformed into a pure integral equation: 
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In the case of a straight antenna, as in figure 1, equation (5) is 
transformed into the well- known integral relation found in the 
applied literature [6]: 
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We solve equation (5) with the MM that applies the point-
matching technique [7], using pulse functions as basis functions 
( )'ni s  and Dirac’s delta functions as weight functions ( )mw s .  
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The general MM for the antenna matrix equation is given by: 
 [ ]( ) ( ) ,mn n mZ I V=  (8) 

where [ ]mnZ  is known as the impedance matrix, given by: 
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while ( )mV  matrix, known as voltage matrix, is determined by: 

 tan ,i
m m

s

V w E ds= ∫  (10) 

and ( )nI  matrix, known as current matrix, is: 

 ( ) [ ] ( )1
n mn mI Z V−
= , (11) 

Champagne et al formulation 
Champagne’s approach expresses the electric field in terms of the 
magnetic vector potential ( )A r  and electric scalar potential ( )Φ r : 

 ( ) ( ) ( )tan tan
, ,i j Sω− = − +∇Φ⎡ ⎤⎣ ⎦E r A r r r on  (12) 

where tan
iE  is the tangential impressed electric field on the wire’s 

surface represented by S , and: 
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R  is the distance between the source and observation points. When 
applying MM, the total current ( )I r  is approximated by a series of 

independent piecewise linear expansion functions ( )nΛ r  such: 
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The 'nI s  are unknown current coefficients and N  is the total 
number of unknowns. In this way, the potentials are expressed by 
expansion series as follows: 
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Using (14) and (15) in (13), potentials are defined as: 
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Potential equations perform integrations along the arc length σ  
and around the perimeter ϕ . Notice that these integrals consider any 
wire’s radius, then the kernel functions are singular when the 
observation point coincides with the source one. Champagne avoids 
the problem in solving singularities apart by approximation and 
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adding the non- singular solution. In spite of its generality, this 
procedure complicates more the solution. The basis and weight 
function chosen by Champagne et al is given by: 
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where ξ  is a normalized variable which performs the transformation 
[ ] [ ]1, 0,1n nσ σ σ ξ−∈ → . The plus and minus signs, identify the 

positive or negative slope of the segment.  

The circular loop antenna for the Pocklington 
general equation. 
The circular loop antenna of figure 3 is characterized by the following 
equations: 
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where A  is the antenna’s radius and a  is the wire’s radius. 
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Figure 3. Circular loop antenna and its associated vectors. 
The loop is fed by a unit delta gap source located at 0ºϕ =  and 

has the following parameters: 
3 Hz , 17 segments , 0.0637 , 0.0027 .f G N A aλ λ= = = =  

Figure 4 shows the real and imaginary parts of the current 
distribution, from which we can make comparisons to the Champagne 
technique [2]. The results we have chosen to compare are those of the 
eight quadratic segments with a four-point Gaussian quadrature 
numerical scheme (4-pt GQ). This is remarkable if we consider to use 
a numerical integral scheme based on the Simpson rule. As we can 
see, there is an uniform error of 5% in the whole current distribution; 
for practical uses, it will be neglected.  
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Figure 4a. Real component current distribution 

 
Figure 4b Imaginary component current distribution 
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Computational comparison 
Champagne et al. and Pocklington methods were programmed by 
using a Visual C++ 6.0 compiler. This allows to create 32 bits 
applications for shell environments and for GUI environments as 
well. Both methods were developed as shell applications and the 
current distribution results were plotted in another graphical program. 

Both programs use libraries for handling complex numbers, 
matrices and vectors. In Visual C++ 6.0, each matrix element consists 
of a 16 bytes register. This is due to the fact that each complex 
number is performed by two real numbers with double data type. In 
this compiler version, 8 bytes are necessary for storage each of double 
register. In this way for both methods, the amount of memory for the 
matrices is 
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In the Champagne method, which uses 8 segments the amount of 
used memory is: 
 

( ) ( )216 162 8 8 16 64 1280= =× + + =Total memory Bytes =1.25 MBytes

 
where as in the Pocklington method, which uses 17 segments, the 
total amount of used memory is: 

( ) ( )216 162 17 17 34 289 5168= =× + + =Total memory Bytes = 5.04 MBytes  
It is clear that in the Champagne method the amount of used 

memory is less than in the Pocklington method. This is because 
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Champagne uses fewer segments than Pocklington does. However if 
both use the same number of segments, the amount of used memory 
is the same in each case. 

Due to its generality, the Champagne method evaluates several 
integrals numerically. This is seen in the fact that it takes into account 
any wire’s radius and the use of Galerkin technique. Thus number of 
performed integrations is: 
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In Pocklington method, the number of performed integrations is: 
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Therefore, since Pocklington method performs fewer integrations, 
it is more rapid than Champagne’s one. Differences would be more 
pronunced if Champagne would have used the same number of 
segments than Pocklington did. In that case, the results are the 
following: 
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Conclusion 
This paper tries to apply the Pocklington equation results to the 
circular loop antenna. If, for practical uses, an error of 5 % is 
neglected, Pocklington results are similar to those of Champagne’s 
formulation. The difference between both procedures is that we use 
the very simple point-matching technique and the Simpson’s rule for 
integration, where as Champagne uses the Galerkin method and the 
Gaussian quadrature technique for integration. 

Although Champagne et al consider any thickness for the wire’s 
antenna, in practice, most of the antennas are thin in comparison to 
the wave-length of the electromagnetic field. Thus, an appropriate 
model for such antennas would be the general Pocklington equation. 
By emphatizing the vectorial representation for modeling the wire, we 
got a formulation which can be used for linear or curved antennas. 
We conclude then that the proposed model represents correctly the 
electromagnetic antenna’s behavior for an arbitrary geometry [1, 4, 
6]. 
References  
[1] Barrera-Figueroa, V., Sosa-Pedroza, J. and López-Bonilla, J. Simplification of 

Pocklington integral equation for arbitrary bent thin wires, Boundary Elements 
XXVII edition, (Electrical Engineering and Electromagnetics), Eds. A. 
Kassab, C. A. Brebbia, E. Divo and D. Poljak. WIT Trans. on Modelling and 
Simulation, WIT Press, vol. 39, pp. 563-574, 2005. 

[2] Champagne J., Nathan II, T. Williams, Jeffery and R. Wilton, Donald, The use 
of curved segments for numerically modelling thin wire antennas and 
scatterers, IEEE Trans. on Antennas and Propagation, vol. 40, No. 6, p.p. 682-
689, June 1992. 

[3] Mei, K. K., On the integral equations of thin wire antennas, IEEE Trans. on 
Antennas and Propagation, vol. AP-13, pp 374-378, 1965,. 

[4] Tang, C. H., Input impedance of arc antennas and short helical radiators, IEEE 
Trans. on Antennas and Propagation, vol. AP-12, pp 2-9, 1963. 



 Apeiron, Vol. 13, No. 2, April 2006 273 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

[5] Sosa- Pedroza, J., López-Bonilla, J. and Barrera-Figueroa, V. “La ecuación 
generalizada de Pocklington para antenas de alambre de forma arbitraria”; 
Revista Científica (The Mexican Journal of Electromechanical Engineering) 
ESIME-IPN vol 9, N.2, pp 83-86, 2005 

[6] Stutzman, W.L. and Thiele, G.A. Antenna, theory and design, p. 488, chap. 
10. Ed. John Wiley & Sons, New York,1998. 

[7] Werner, D. H., Werner, P. L. and Breakall, J. K. Some computational aspects 
of Pocklington electric field integral equation for thin wires, IEEE Trans. on 
Antennas and Propagation, Vol. 42, No. 4, pp. 561-563, 1994. 


