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Intercriteria analysis (ICA) is a new method, which is based on the concepts of index matrices and intuitionistic fuzzy sets, aiming
at detection of possible correlations between pairs of criteria, expressed as coefficients of the positive and negative consonance
between each pair of criteria. Here, the proposed method is applied to study the behavior of one type of neural networks, the
modular neural networks (MNN), that combine several simple neuralmodels for simplifying a solution to a complex problem.They
are a tool that can be used for object recognition and identification. Usually the inputs of the MNN can be fed with independent
data. However, there are certain limits when we may use MNN, and the number of the neurons is one of the major parameters
during the implementation of the MNN. On the other hand, a high number of neurons can slow down the learning process, which
is not desired. In this paper, we propose a method for removing part of the inputs and, hence, the neurons, which in addition leads
to a decrease of the error between the desired goal value and the real value obtained on the output of the MNN. In the research
work reported here the authors have applied the ICAmethod to the data from real datasets with measurements of crude oil probes,
glass, and iris plant. The method can also be used to assess the independence of data with good results.

1. Introduction

One of the open and important questions in biology is the
ability of biological systems to adapt to new environments,
a concept termed evolvability [1]. A typical feature of evolv-
ability is the fact that many biological systems have mod-
ularity; especially many biological processes and structures
can be modeled as networks, such as metabolic pathways,
gene regulation, protein interactions, and brains [1–5]. This
feature has motivated important concepts in intelligent sys-
tems, such as modular neural network and evolutionary
computation.

Neural networks are considered modular if they are
comprised of highly connected clusters of nodes that are
connected to nodes in other clusters [4, 6, 7]. Despite
importance and continuous research in this area, there is no
agreement on why modular biological systems can evolve

[4, 8, 9]. There is evidence that modular systems look more
adaptable in nature [10] than the monolithic networks [11,
12]. Consequently, there are many papers dedicated to this
problem, for example, the work in [12].

In this paper, we introduce a hybrid combination between
the intercriteria analysis (ICA, see [13–18]) method andmod-
ular neural network models. The ICA employs the apparatus
of the intuitionistic fuzzy sets (IFS) for detecting possible
correlations between pairs of criteria. Introduced in [19], IFSs
are one of the extensions of Zadeh’s fuzzy sets [20]. In contrast
to fuzzy sets, IFS [21–24] have two degrees: of membership
(validity, etc., 𝜇𝐴) and of nonmembership (nonvalidity, etc.,
]𝐴), so that for each element 𝑥 of the universe, over which
an IFS 𝐴 is defined, the following inequality is valid: 0 ≤
𝜇𝐴(𝑥) + ]𝐴(𝑥) ≤ 1. In this case, a pair ⟨𝑎, 𝑏⟩, where 𝑎, 𝑏, 𝑎 +
𝑏 ∈ [0, 1], is called an intuitionistic fuzzy pair (IF pair).
The ICAmethod produces the so-called positive and negative
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consonance coefficients between the different criteria used
for evaluation of different objects.

Themain contribution of the paper is the proposed hybrid
approach combining intuitionistic fuzzy logic (through the
ICA method) with modular neural networks for designing a
powerful neural model for classification. The neural network
model is tested with benchmark problems and a real world
case to show the advantages of the proposed approach. As
regards existing works that could be considered similar to
this one, we can mention that intuitionistic fuzzy logic has
not been considered in conjunction with modular neural
networks previously, so it can be considered an original
contribution to the area of computational intelligence that
combines the advantages of the two methods. For the
purpose of testing the proposed method for preprocessing
the information going into MNNs, we use data from the
LUKOIL Neftochim Burgas AD from the measurements of
a set of crude oil probes (objects, in terms of ICA) against
a set of technological properties (criteria, in terms of ICA),
which precedes and conditions the process of production of
petrochemical products from the crude oil [25], dataset for
iris plant [26], and glass types [27].

The remainder of the paper is organized as follows. In
Section 2 some short remarks about the intercriteria analysis
method are given, which is based on intuitionistic fuzzy logic.
Section 3 describes basic concepts about modular neural net-
works. Section 4 describes the simulations and a discussion
of the results. Finally, Section 5 offers the conclusions and
outlines future work in this area.

2. Short Remarks on the Index Matrices and
Intercriteria Analysis Method

As we mentioned above, the ICA method [13, 14] is based on
two main concepts: intuitionistic fuzzy sets and index matri-
ces. A brief description is offered below for completeness.
Index matrices allow summarizing the criteria relevant to a
particular decision making problem.

Let 𝐼 be a fixed set of indices and let 𝑅 be the set of the
real numbers. An index matrix (IM) with sets of indices 𝐾
and 𝐿 (𝐾, 𝐿 ⊂ 𝐼) is defined by (see [13])

[𝐾, 𝐿, {𝑎𝑘𝑖 ,𝑙𝑗}] ≡

𝑙1 𝑙2 ⋅ ⋅ ⋅ 𝑙𝑛
𝑘1 𝑎𝑘1 ,𝑙1 𝑎𝑘1 ,𝑙2 ⋅ ⋅ ⋅ 𝑎𝑘1 ,𝑙𝑛
𝑘2 𝑎𝑘2 ,𝑙1 𝑎𝑘2 ,𝑙2 ⋅ ⋅ ⋅ 𝑎𝑘2 ,𝑙𝑛
... ... ... d

...
𝑘𝑚 𝑎𝑘𝑚 ,𝑙1 𝑎𝑘𝑚 ,𝑙2 ⋅ ⋅ ⋅ 𝑎𝑘𝑚 ,𝑙𝑛 ,

(1)

where 𝐾 = {𝑘1, 𝑘2, . . . , 𝑘𝑚}, 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝑛}, for 1 ≤ 𝑖 ≤ 𝑚,
and 1 ≤ 𝑗 ≤ 𝑛 : 𝑎𝑘𝑖 ,𝑙𝑗 ∈ 𝑅.

For any two IMs, a series of relations, operations, and
operators have been defined. The theory behind the IMs is
described in a more detailed fashion in [13].

Here, following the description of the ICA approach,
given by [14], we will start with the IM called 𝑀 with index
sets with 𝑚 rows {𝑂1, . . . , 𝑂𝑚} and 𝑛 columns {𝐶1, . . . , 𝐶𝑛},
where for every 𝑝, 𝑞 (1 ≤ 𝑝 ≤ 𝑚, 1 ≤ 𝑞 ≤ 𝑛),

𝑂𝑝 is an evaluated object, 𝐶𝑞 is an evaluation criterion,
and 𝑒𝑂𝑝 ,𝐶𝑞 is the evaluation of the 𝑝th object against the
𝑞th criterion, defined as a real number that is comparable
according to relation 𝑅with all the remaining elements of the
IM𝑀.

𝑀 =

𝐶1 ⋅ ⋅ ⋅ 𝐶𝑘 ⋅ ⋅ ⋅ 𝐶𝑙 ⋅ ⋅ ⋅ 𝐶𝑛
𝑂1 𝑒𝑂1 ,𝐶1 ⋅ ⋅ ⋅ 𝑒𝑂1 ,𝐶𝑘 ⋅ ⋅ ⋅ 𝑒𝑂1 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑒𝑂1 ,𝐶𝑛
... ... d

... d
... d

...
𝑂𝑖 𝑒𝑂𝑖 ,𝐶1 ⋅ ⋅ ⋅ 𝑒𝑂𝑖 ,𝐶𝑘 ⋅ ⋅ ⋅ 𝑒𝑂𝑖 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑒𝑂𝑖 ,𝐶𝑛
... ... d

... d
... d

...
𝑂𝑗 𝑒𝑂𝑗 ,𝐶1 ⋅ ⋅ ⋅ 𝑒𝑂𝑗 ,𝐶𝑘 ⋅ ⋅ ⋅ 𝑒𝑂𝑗 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑒𝑂𝑗 ,𝐶𝑛
... ... d

... d
... d

...
𝑂𝑚 𝑒𝑂𝑚 ,𝐶1 ⋅ ⋅ ⋅ 𝑒𝑂𝑚 ,𝐶𝑗 ⋅ ⋅ ⋅ 𝑒𝑂𝑚 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑒𝑂𝑚 ,𝐶𝑛 ,

(2)

From the requirement for comparability above, it follows
that for each 𝑖, 𝑗, 𝑘 the relation 𝑅(𝑒𝑂𝑖 ,𝐶𝑘 , 𝑒𝑂𝑗 ,𝐶𝑘) holds. The
relation 𝑅 has a dual relation 𝑅, which is true in the cases
when the relation 𝑅 is false, and vice versa. For instance, if
𝑅 is “greater,” the dual relation 𝑅 is “less.”

For the requirements of the proposed method, pairwise
comparisons between every two different criteria are made
along all evaluated objects. During the comparison, a counter
is maintained for the number of times when the relation 𝑅
holds, as well as another counter for the dual relation.

Let 𝑆𝜇
𝑘,𝑙

be the number of cases in which the relations
𝑅(𝑒𝑂𝑖 ,𝐶𝑘 , 𝑒𝑂𝑗 ,𝐶𝑘) and 𝑅(𝑒𝑂𝑖 ,𝐶𝑙 , 𝑒𝑂𝑗 ,𝐶𝑙) are simultaneously sat-
isfied. Let also 𝑆]𝑘,𝑙 be the number of cases in which the
relations 𝑅(𝑒𝑂𝑖 ,𝐶𝑘 , 𝑒𝑂𝑗 ,𝐶𝑘) and the dual 𝑅 = (𝑒𝑂𝑖 ,𝐶𝑙 , 𝑒𝑂𝑗 ,𝐶𝑙)
are simultaneously satisfied. As the total number of pairwise
comparisons between the objects is given by𝑚(𝑚–1)/2, it can
be verified that the following inequalities hold:

0 ≤ 𝑆𝜇
𝑘,𝑙

+ 𝑆]𝑘,𝑙 ≤
𝑚 (𝑚 − 1)

2 . (3)

For every 𝑘, 𝑙, such that 1 ≤ 𝑘 ≤ 𝑙 ≤ 𝑛 and for 𝑚 ≥ 2 two
numbers are defined:

𝜇𝐶𝑘 ,𝐶𝑙 = 2
𝑆𝜇
𝑘,𝑙

𝑚(𝑚 − 1) ,

]𝐶𝑘,𝐶𝑙 = 2 𝑆]𝑘,𝑙
𝑚(𝑚 − 1) .

(4)

The pair constructed from these two numbers plays the
role of the intuitionistic fuzzy evaluation of the relations that
can be established between any two criteria𝐶𝑘 and𝐶𝑙. In this
way, the IM 𝑀 that relates evaluated objects with evaluating
criteria can be transformed to another IM 𝑀∗ that gives
the relations detected among the criteria, where stronger
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Figure 1: The structure of the MNN.
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Figure 2: The structure of the MNN with 2 modules.

correlation exists where the first component 𝜇𝐶𝑘,𝐶𝑙 is higher
while the second component ]𝐶𝑘,𝐶𝑙 is lower.

𝑀∗ =

𝐶1 ⋅ ⋅ ⋅ 𝐶𝑛
𝐶1 ⟨𝜇𝐶1 ,𝐶1 , ]𝐶1,𝐶1⟩ ⋅ ⋅ ⋅ ⟨𝜇𝐶1 ,𝐶𝑛 , ]𝐶1,𝐶𝑛⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝐶𝑛 ⟨𝜇𝐶𝑛,𝐶1 , ]𝐶𝑛,𝐶1⟩ ⋅ ⋅ ⋅ ⟨𝜇𝐶𝑛 ,𝐶𝑛 , ]𝐶𝑛,𝐶𝑛⟩ .

(5)

Frompractical considerations, it has beenmore flexible to
work with two IMs𝑀𝜇 and𝑀], rather than with the IM𝑀∗
of IF pairs. IM𝑀𝜇 contains as elements the first components
of the IFPs of𝑀∗, while𝑀] contains the second components
of the IFPs of 𝑀∗. Once the intercriteria pairs have been
calculated, for example, using the software described in [28],
the question arises about defining the thresholds against
which the membership and the nonmembership parts are
evaluated [29, 30].

As has been discussed in some publications on ICA, for
example, in [31, 32], the ICA results are very close to those
obtained with the correlation analyses of Spearman, Pearson,
andKendall. It is worth noting the so far empirically observed
fact that when in the data there are mistakes (e.g., shift of
the decimal separator) these three correlation analyses give
a larger deviation of the value than ICA; that is, ICA is less
sensitive, so the use of them together can be used as a way of
detecting errors in the input data.

3. Modular Neural Networks

Modular neural networks [33, 34] are one of the models
that can be used for object recognition, classification, and

identification (see Figure 1). A modular neural network can
be viewed as a set of monolithic neural networks [35–37]
that deal with a part of a problem, and then their individual
outputs are combined by an integration unit to form a global
solution to the complete problem. The main idea is that a
complex problem can be divided into simpler subproblems
that can be solved by simpler neural networks and then the
total solution will be a combination of the outputs of the
simple monolithic neural networks.

In the proposed hybrid approach each of the MNN
Modules takes as its input the result of the application of
ICA method over three datasets (dataset for production of
petrochemical products from the crude oil [25], iris plants
[26], and glass types [27]). Every module is a two-layer
Multilayer Perceptron and the output of the second layer of
the ANN is 𝑎2𝑖 (for 𝑖 ∈ {1, . . . , 𝑛}), where 𝑛 is the maximal
number of modules.

The output 𝑂 is calculated according to the following
equation, which basically performs a weighted integration of
the module outputs:

𝑂 = ∑𝑛𝑖=1 𝑎2𝑖 𝑔𝑖𝑘𝑖
∑𝑛𝑖=1 𝑔𝑖

, (6)

where 𝑎2𝑖 is output of the module 𝑖 ∈ [1, 2, . . . , 𝑛]; 𝑔𝑖 is
average deviation of the output values of the module 𝑖; 𝑘𝑖
is coefficient of existence of module 𝑖. The coefficient of
existence of every module shows the presence/absence of the
respective module, with respect to the need of that module in
the particular case.

For illustration purposes and simplifying calculations, we
can choose to reduce the structure of the MNN and use 2
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Table 1: Membership parts of the intuitionistic fuzzy pairs, giving the intercriteria correlations between measurements of crude oil probes.

𝜇 1 2 3 4 5 6 7 8
1 1.000 0.699 0.770 0.658 0.956 0.176 0.446 0.703
2 0.699 1.000 0.787 0.597 0.676 0.408 0.640 0.775
3 0.770 0.787 1.000 0.777 0.728 0.394 0.665 0.921
4 0.658 0.597 0.777 1.000 0.627 0.468 0.674 0.771
5 0.956 0.676 0.728 0.627 1.000 0.134 0.404 0.661
6 0.176 0.408 0.394 0.468 0.134 1.000 0.730 0.473
7 0.446 0.640 0.665 0.674 0.404 0.730 1.000 0.743
8 0.703 0.775 0.921 0.771 0.661 0.473 0.743 1.000

Table 2: Nonmembership parts of the intuitionistic fuzzy pairs, giving the intercriteria correlations between measurements of crude oil
probes.

] 1 2 3 4 5 6 7 8
1 0.000 0.288 0.217 0.326 0.042 0.822 0.552 0.295
2 0.288 0.000 0.204 0.391 0.312 0.580 0.348 0.213
3 0.217 0.204 0.000 0.212 0.261 0.595 0.325 0.068
4 0.326 0.391 0.212 0.000 0.359 0.518 0.312 0.215
5 0.042 0.312 0.261 0.359 0.000 0.866 0.596 0.339
6 0.822 0.580 0.595 0.518 0.866 0.000 0.270 0.527
7 0.552 0.348 0.325 0.312 0.596 0.270 0.000 0.257
8 0.295 0.213 0.068 0.215 0.339 0.527 0.257 0.000

modules from the structure from Figure 2 (𝑘1 = 1, 𝑘2 =
1, 𝑘3 = 0, . . . , 𝑘𝑛 = 0).

The first module considers all independent inputs (weak
dissonance, dissonance, and strong dissonance). The second
module takes the inputs that have strong negative conso-
nance, negative consonance, and weak negative consonance,
and weak positive consonance, positive consonance, and
strong positive consonance.

In the second module, we can reduce some of the inputs
if they have very strong positive consonance. In this case, we
can remove one of the inputs. In the case that they have strong
negative consonance, this means that we can also remove
some of the inputs. Other configurations for the modular
neural network are possible, depending on how the inputs are
selected.

4. Discussion of Results

For verifying the accuracy of the proposedmethod the data of
the real dataset with measurements of crude oil probes, glass,
and iris plants were used.

4.1. Testing with Data for Crude Oil Probes. For the learning
process of MNN, we set the following parameters: perfor-
mance (MSE) = 0.00001; validation check = 15. The dataset
was divided into three different parts: training (from 1 to 100);
validation (from 101 to 120), and testing (from 121 to 140).
For the purpose of learning algorithms, one of the variants of
the backpropagation algorithm is used, namely, Levenberg-
Marquardt. As a target for the model, the values from the
databases were used.

In the MNN, the data for 140 crude oil probes, mea-
sured against 8 physical properties (“criteria” in the ICA
terminology) were used (for the input data, see [34]). The
eight criteria are as follows: (1) density at 15∘Cg/cm3; (2)
10% (v/v) ASTM D86 distillation, ∘C; (3) 50% (v/v) ASTM
D86 distillation, ∘C; (4) 90% (v/v) ASTM D86 distillation,
∘C; (5) refractive index at 20∘C; (6) H2 content, % (m/m);
(7) aniline point, ∘C; (8) molecular weight g/mol. Using
the ICA approach, we are seeking for correlations between
these eight criteria on the basis of the 140 crude oil probes
(“objects” in ICA). Using the ICA software [28] applied to
the whole 140 × 8 matrix with measurements, we obtain 28
IF pairs, giving the pairwise correlations between the eight
criteria. For easier processing of the result of ICA application,
the output is given in the form of two IMs, containing
the membership and the nonmembership parts of the IF
correlations discovered between each pair of criteria (Tables
1 and 2), which in Table 3 are sorted in descending order
according to the membership part of the intercriteria pairs,
from strong positive consonance (i.e., pair 1-5 with degree
⟨0.956; 0.042⟩), through dissonance, to negative consonance
(i.e., pair 5-6 with degree ⟨0.134; 0.866⟩).

On this basis, we separate these 28 intercriteria pairs in
two groups, where Module 1 of the MNN takes as input the
dissonant pairs, and Module 2 takes as input the consonant
pairs, either positive or negative. In this way, we aim to reduce
the number of input parameters of the MNN, yet keeping
high enough level of precision.

In Table 4 we are presenting the values from 22 neural
network simulations and the identifiers of criteria that we
provide at the input on each module. These 22 simulations
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Table 3: Relations among the criteria with specific values.

IF pair Criteria Type of intercriteria relation
⟨0.956; 0.042⟩ 1-5 Strong positive consonance
⟨0.921; 0.068⟩ 3-8 Positive consonance
⟨0.787; 0.204⟩ 2-3 Weak positive consonance
⟨0.777; 0.212⟩ 3-4 Weak positive consonance
⟨0.771; 0.215⟩ 4-8 Weak positive consonance
⟨0.770; 0.217⟩ 1-3 Weak positive consonance
⟨0.743; 0.257⟩ 7-8 Weak dissonance
⟨0.730; 0.270⟩ 6-7 Weak dissonance
⟨0.728; 0.261⟩ 3-5 Weak dissonance
⟨0.703; 0.295⟩ 1-8 Weak dissonance
⟨0.699; 0.288⟩ 1-2 Weak dissonance
⟨0.676; 0.312⟩ 2-5 Weak dissonance
⟨0.674; 0.312⟩ 4-7 Weak dissonance
⟨0.665; 0.325⟩ 3-7 Dissonance
⟨0.661; 0.339⟩ 5-8 Dissonance
⟨0.658; 0.326⟩ 1-4 Dissonance
⟨0.640; 0.348⟩ 2-7 Dissonance
⟨0.627; 0.359⟩ 4-5 Dissonance
⟨0.597; 0.391⟩ 2-4 Dissonance
⟨0.473; 0.527⟩ 6-8 Strong dissonance
⟨0.468; 0.518⟩ 4-6 Strong dissonance
⟨0.446; 0.552⟩ 1-7 Strong dissonance
⟨0.408; 0.580⟩ 2-6 Dissonance
⟨0.404; 0.596⟩ 5-7 Dissonance
⟨0.394; 0.595⟩ 3-4 Dissonance
⟨0.394; 0.594⟩ 3-6 Dissonance
⟨0.176; 0.822⟩ 1-6 Weak negative consonance
⟨0.134; 0.866⟩ 5-6 Negative consonance

are all the possible combinations of criteria, where Module
2 obtains as input at least one criterion, starting with all
of the consonant criteria (1, 3, 5, 6, and 8 in row 1) down
to at least one of the consonant criteria (1, 3, 5, 6, or 8,
in rows 18–22). Based on the values from Table 3, we offer
the use of the relations of positive consonance and negative
consonance, since both affect in the same way the inputs of
the neural network. The parameters 𝑔1, 𝑔2, and 𝑔3 are the
average deviations of the output values ofModule 1,Module 2,
andwhole neural network, respectively. A detailed discussion
of the results follows in Section 4.4.

4.2. Testing with Data for Iris Plants. As another test case for
the proposed method, we also consider the dataset [26] that
contains four parameters (criteria): (1) sepal length in cm, (2)
sepal width in cm, (3) petal length in cm, and (4) petal width
in cm.There are 3 classes of 50 instances each [26], where each
class refers to a type of iris plant. The targets are Iris setosa, 1,
Iris versicolor, 2, and Iris virginica, 3.

The ICA method was applied to the 150 × 4 matrix in
the same fashion as previously (see Tables 5, 6, and 7), and
the results are given in Table 5, sorted in descending order
according to the membership part of the intercriteria pairs.

In the neural network inputs were assumed with the
following parameters: parameter 2 (in the first neural network
input) and parameters 1, 3, and 4 in consonance (in the
second neural network input). In Table 8 the values from 7
neural network simulations are presented and a number of
parameters that we defined for each module are described.

4.3. Testing with Data for Glass. Finally, as a third case for
testing the proposed approach we consider the benchmark
glass data. In this case, in the input of this modular neural
network, we use the experimental data from [27] for obtain-
ing the type of glass. We work with data for 214 building and
vehicle window glasses, measured against 9 criteria: (1) RI:
refractive index; (2) Na: sodium (unit measurement: weight
percent in corresponding oxide); (3) Mg: magnesium; (4) Al:
aluminium; (5) Si: silicon; (6) K: potassium; (7) Ca: calcium;
(8) Ba: barium; (9) Fe: iron. In the output (as a target) we give
information about the glass type.

As was done in the previous sections, the input param-
eters (criteria) are divided in two groups: parameters in
dissonance (parameters 2, 3, 4, 5, 6, and 9) and parameters
in consonance (see Table 9), with the results sorted in
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Table 4: Results from the simulations.

Number Description Number of
the inputs 𝑔1 𝑔2 𝑔3

Number of
weight

coefficients

1 Module 1—2, 4, and 7
Module 2—1, 3, 5, 6, and 8 8 2.2971 2.1991 2.2330 315

2 Module 1—2, 4, and 7
Module 2—3, 5, 6, and 8 (without 1) 7 2.2139 2.1650 2.1562 280

3 Module 1—2, 4, and 7
Module 2—1, 5, 6, and 8 (without 3) 7 2.2023 2.1498 2.1672 280

4 Module 1—2, 4, and 7
Module 2—1, 3, 6, and 8 (without 5) 7 2.2032 2.1559 2.1564 280

5 Module 1—2, 4, and 7
Module 2—1, 3, 5, and 8 (without 6) 7 2.1352 2.2455 2.1593 280

6 Module 1—2, 4, and 7
Module 2—1, 3, 5, and 6 (without 8) 7 2.1703 2.1578 2.1638 280

7 Module 1—2, 4, and 7
Module 2—5, 6, and 8 (without 1 and 3) 6 2.1844 2.1196 2.1457 245

8 Module 1—2, 4, and 7
Module 2—1, 3, and 6 (without 5 and 8) 6 2.1881 2.1500 2.1572 245

9 Module 1—2, 4, and 7
Module 2—1, 6, and 8 (without 3 and 5) 6 2.2057 2.2465 2.1572 245

10 Module 1—2, 4, and 7
Module 2—3, 5, and 6 (without 1 and 8) 6 2.1715 2.1531 2.1437 245

11 Module 1—2, 4, and 7
Module 2—3, 6, and 8 (without 1 and 5) 6 2.1679 2.1536 2.1370 245

12 Module 1—2, 4, and 7
Module 2—1, 3, and 5 (without 6 and 8) 6 2.2181 2.1415 2.1398 245

13 Module 1—2, 4, and 7
Module 2—1, 3, and 8 (without 5 and 6) 6 2.1883 2.1624 2.1551 245

14 Module 1—2, 4, and 7
Module 2—3 and 6 (without 1, 5, and 8) 5 2.1478 2.1885 2.1485 210

15 Module 1—2, 4, and 7
Module 2—3 and 5 (without 1, 6, and 8) 5 2.1542 2.1210 2.0914 210

16 Module 1—2, 4, and 7
Module 2—1 and 3 (without 5, 6, and 8) 5 2.1436 2.2551 2.1580 210

17 Module 1—2, 4, and 7
Module 2—3 and 8 (without 1, 5, and 6) 5 2.1777 2.2327 2.1981 210

18 Module 1—2, 4, and 7
Module 2—1 (without 3, 5, 6, and 8) 4 2.2006 7.0510 5.6472 210

19 Module 1—2, 4, and 7
Module 2—3 (without 1, 5, 6, and 8) 4 2.1554 6.6392 5.2857 175

20 Module 1—2, 4, and 7
Module 2—5 (without 1, 3, 6, and 8) 4 2.1856 6.8357 5.4230 175

21 Module 1—2, 4, and 7
Module 2—6 (without 1, 3, 5, and 8) 4 2.1873 3.6355 2.7732 175

22 Module 1—2, 4, and 7
Module 2—8 (without 1, 3, 5, and 8) 4 2.2109 6.1718 4.9165 175

descending order according to the membership part of the
intercriteria pairs.

In Table 10, the values from 7 neural network simulations
are presentedwith the respective identifiers of the criteria that
are feeding the inputs of each module.

The information is divided into two groups: the first part
is the group of independent evaluation criteria (see Tables 11
and 12): criteria 2, 4, and 7 (see Table 4 for the crude oil probes

data), criterion 2 (see Table 5 for the iris plant data), and
criteria 2, 3, 4, 5, 6, and 9 (see Table 8 for the glass types data).
These data were used on the inputs of the first module of the
neural networks. The other criteria (dependent parameters)
were considered on the inputs of the second module of the
neural networks.

The inputs on the first module are not removable, because
the ICA approach tests the independence of the criteria. The
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Table 5: Relations among the criteria.

IF pair Criteria Type of intercriteria relation
⟨0.843; 0.538⟩ 3-4 Weak positive consonance
⟨0.819; 0.504⟩ 1-3 Weak positive consonance
⟨0.764; 0.486⟩ 1-4 Weak positive consonance
⟨0.416; 0.139⟩ 1-2 Dissonance
⟨0.366; 0.121⟩ 2-4 Dissonance
⟨0.364; 0.070⟩ 2-3 Dissonance

Table 6: Membership parts of the intuitionistic fuzzy pairs, giving
the intercriteria correlations between measurements of iris plant.

𝜇 1 2 3 4
1 1.000 0.416 0.819 0.764
2 0.416 1.000 0.364 0.366
3 0.819 0.364 1.000 0.843
4 0.764 0.366 0.843 1.000

Table 7: Nonmembership parts of the intuitionistic fuzzy pairs,
giving the intercriteria correlations between measurements of iris
plant.

] 1 2 3 4
1 0.000 0.486 0.121 0.139
2 0.486 0.000 0.538 0.504
3 0.121 0.538 0.000 0.070
4 0.139 0.504 0.070 0.000

results from applying the ICA method over tree types of data
show that most of the parameters are selected in a proper way
(criteria in dissonance). For some of the parameters that were
provided on the inputs of the second module, an approach
for reasonable elimination of some of these criteria can be
adopted.

4.4. Discussion. In the first step we use neural networks
without any removal of information and without removing
of the inputs. The corresponding results can be found on the
first rows in Tables 4, 8, and 10.

On the second step the data that have the highest and
lowest consonance coefficients (strong positive consonance,
positive consonance, strong negative consonance, and nega-
tive consonance) were removed. For example, in Table 4 we
use parameters 2, 4, and 7 in Module 1 and parameters 3, 5,
6, and 8 (without 1) in Module 2. In the study, parameter 1
is removed due to the high value of membership coefficient
𝜇 = 0.956 (between parameters 1 and 5). After simulating the
neural network an average deviation of theMNN 𝑔3 = 2.1562
(𝑔1 = 2.2139, 𝑔2 = 2.1650) is obtained.

The removed parameters do not have substantial influ-
ence on the result, because of decreasing the number of the
weight coefficients, and alongwith this the error of the output
values also decreases.

In the same way the second group of parameters (from
the pairs) were successively removed. This process continues
until finishing the pairs in the highest and lowest consonance.

Thenext step is to remove two parameters, for example, in
row 5 (Table 8) the situation with all parameters onModule 1,
and parameter 4 (without 1 and 3) inModule 2was presented.
In the study, parameters 1 and 3 are removed due to the
high value of membership coefficient 𝜇 = 0.81852 (between
parameters 1 and 3). After simulation of the neural network,
an average deviation of the MNN 𝑔3 = 0.5846 (𝑔1 = 0.5725,
𝑔2 = 0.0631) is obtained. The removed parameters 1 and 3
do not have substantial influence on the result, because of
decreasing the number of the weight coefficients, and along
with this the error of the output values also decreases.

The process can continue iteratively in the same way. In
summary, a new approach for building modular neural net-
works based on ICA, which uses intuitionistic fuzzy logic, has
been proposed and tested with three benchmark databases.
The simulation results are good, in this way verifying the
advantages of the hybrid method.

In Table 13 comparative analysis of the results of the three
different datasets is made. The table includes a short descrip-
tion of each dataset, the initial number of inputs (number
of the inputs before reduction), the number of inputs after
reduction, and average deviation of the output values of the
neural networks (𝑔3), as well as minimal value of average
deviation of the output values of the neural networks (𝑔3,
min), the number of weight coefficients without reduction
and with reduction, the percentage ratio between the average
deviation of the output values of the neural networks and the
minimal value of average deviation of the output values of
the neural networks, respectively, and the number of weight
coefficients without and with reduction.

From the data in the table, it is seen that reducing the
number of input parameters and, respectively, the number
of inputs of the MNN, the value of average deviation of the
output values of theMNNdecreases (93,65%–98,2%).On this
basis, we further observe decrease of the number of weight
coefficients (60%–80%).

5. Conclusions

The number of the neurons is one of the major parameters
that need to be defined during the realization of the MNN.
Of course, the higher number of neurons in a neural network
has the effect of slowing down the learning process. Here, we
use the intuitionistic fuzzy logic basedmethod of intercriteria
analysis to reduce the number of input parameters of the
modular neural network. This leads to reduction of the
weightmatrices and thus allows implementation of the neural
network in limited hardware, saving time and resources in
training. The method can also be used to assess the indepen-
dence of the criteria against which data are measured. Three
different real datasets with measurements of glass types,
crude oil probes, and iris plant specimens were used to verify
the accuracy and efficiency of the proposed approach. As
future work, we envision using the proposed approach with
other types of complex problems or more real life situations,
like in the design of intelligent controllers for robotic systems
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Table 8: Results from the simulations.

Number Description Number of
the inputs 𝑔1 𝑔2 𝑔3

Number of
weight

coefficients

1 Module 1—2
Module 2—1, 3, 4 4 0.5725 0.0084 0.5726 175

2 Module 1—2
Module 2—3, 4 (without 1) 3 0.5725 0.0321 0.5749 140

3 Module 1—2
Module 2—1, 4 (without 3) 3 0.5725 0.6667 1.2898 140

4 Module 1—2
Module 2—1, 3 (without 4) 3 0.5725 0.0527 0.5793 140

5 Module 1—2
Module 2—4 (without 1, 3) 2 0.5725 0.0631 0.5846 105

6 Module 1—2
Module 2—3 (without 1, 4) 2 0.5725 0.0807 0.5907 105

7 Module 1—2
Module 2—1 (without 3, 4) 2 0.5725 0.6667 1.2898 105

Table 9: Relations among the criteria.

IF pair Criteria Type of intercriteria relation
⟨0.760; 0.234⟩ 1-7 Weak positive consonance
⟨0.564; 0.423⟩ 4-5 Dissonance
⟨0.547; 0.409⟩ 4-6 Strong dissonance
⟨0.532; 0.455⟩ 2-4 Strong dissonance
⟨0.532; 0.404⟩ 3-6 Strong dissonance
⟨0.527; 0.425⟩ 1-3 Strong dissonance
⟨0.513; 0.481⟩ 1-2 Strong dissonance
⟨0.497; 0.493⟩ 2-7 Strong dissonance
⟨0.488; 0.470⟩ 5-6 Strong dissonance
⟨0.441; 0.509⟩ 2-3 Strong dissonance
⟨0.419; 0.571⟩ 5-7 Dissonance
⟨0.410; 0.090⟩ 8-9 Dissonance
⟨0.384; 0.604⟩ 4-7 Dissonance
⟨0.383; 0.607⟩ 2-6 Dissonance
⟨0.371; 0.579⟩ 3-7 Dissonance
⟨0.368; 0.594⟩ 1-6 Dissonance
⟨0.353; 0.596⟩ 3-5 Dissonance
⟨0.318; 0.672⟩ 1-4 Weak dissonance
⟨0.316; 0.237⟩ 6-9 Weak dissonance
⟨0.314; 0.645⟩ 6-7 Weak dissonance
⟨0.311; 0.236⟩ 3-9 Weak dissonance
⟨0.304; 0.240⟩ 7-9 Weak dissonance
⟨0.300; 0.693⟩ 1-5 Weak dissonance
⟨0.299; 0.245⟩ 1-9 Weak dissonance
⟨0.288; 0.659⟩ 3-4 Weak dissonance
⟨0.272; 0.057⟩ 4-8 Weak dissonance
⟨0.262; 0.697⟩ 2-6 Weak dissonance
⟨0.257; 0.070⟩ 2-8 Weak dissonance
⟨0.253; 0.291⟩ 4-9 Weak dissonance
⟨0.253; 0.291⟩ 5-9 Weak dissonance
⟨0.210; 0.334⟩ 2-9 Weak negative consonance
⟨0.203; 0.123⟩ 5-8 Weak negative consonance
⟨0.162; 0.164⟩ 7-8 Weak negative consonance
⟨0.123; 0.202⟩ 1-8 Negative consonance
⟨0.113; 0.213⟩ 6-8 Negative consonance
⟨0.059; 0.249⟩ 3-8 Negative consonance
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Table 10: Results from the simulations.

N: Description Number of
the inputs 𝑔1 𝑔2 𝑔3

Number of
weight

coefficients

1 Module 1—2, 3, 4, 5, 6, 9
Module 2—1, 7, 8 9 0.7658 0.8796 1.6721 350

2 Module 1—2, 3, 4, 5, 6, 9
Module 2—7, 8 (without 1) 8 0.7658 0.8696 1.6584 315

3 Module 1—2, 3, 4, 5, 6, 9
Module 2—1, 8 (without 7) 8 0.7658 0.9277 1.7492 315

4 Module 1—2, 3, 4, 5, 6, 9
Module 2—1, 7 (without 8) 8 0.7658 1.5826 2.8488 315

5 Module 1—2, 3, 4, 5, 6, 9
Module 2—8 (without 1, 7) 7 0.7658 0.8756 1.6626 280

6 Module 1—2, 3, 4, 5, 6, 9
Module 2—7 (without 1, 8) 7 0.7658 1.7190 3.0898 280

7 Module 1—2, 3, 4, 5, 6, 9
Module 2—1 (without 7, 8) 7 0.7658 1.6378 2.9400 280

Table 11: Membership parts of the intuitionistic fuzzy pairs, giving the intercriteria correlations of glass.

𝜇 1 2 3 4 5 6 7 8 9
1 1.000 0.513 0.527 0.318 0.300 0.368 0.760 0.123 0.299
2 0.513 1.000 0.441 0.532 0.383 0.262 0.497 0.257 0.210
3 0.527 0.441 1.000 0.288 0.353 0.532 0.371 0.059 0.311
4 0.318 0.532 0.288 1.000 0.564 0.547 0.384 0.272 0.253
5 0.300 0.383 0.353 0.564 1.000 0.488 0.419 0.203 0.253
6 0.368 0.262 0.532 0.547 0.488 1.000 0.314 0.113 0.316
7 0.760 0.497 0.371 0.384 0.419 0.314 1.000 0.162 0.304
8 0.123 0.257 0.059 0.272 0.203 0.113 0.162 1.000 0.410
9 0.299 0.210 0.311 0.253 0.253 0.316 0.304 0.410 1.000

Table 12: Nonmembership parts of the intuitionistic fuzzy pairs, giving the intercriteria correlations.

] 1 2 3 4 5 6 7 8 9
1 0.000 0.481 0.425 0.672 0.693 0.594 0.234 0.202 0.245
2 0.481 0.000 0.509 0.455 0.607 0.697 0.493 0.070 0.334
3 0.425 0.509 0.000 0.659 0.596 0.404 0.579 0.249 0.236
4 0.672 0.455 0.659 0.000 0.423 0.409 0.604 0.057 0.291
5 0.693 0.607 0.596 0.423 0.000 0.470 0.571 0.123 0.291
6 0.594 0.697 0.404 0.409 0.470 0.000 0.645 0.213 0.237
7 0.234 0.493 0.579 0.604 0.571 0.645 0.000 0.164 0.240
8 0.202 0.070 0.249 0.057 0.123 0.213 0.164 0.000 0.090
9 0.245 0.334 0.236 0.291 0.291 0.237 0.240 0.090 0.000

Table 13: Results from the simulations.

Number Description

Number of
the inputs
before

reduction

Number of
the inputs

after
reduction

𝑔3 𝑔3
min

Number of
weight

coefficients
without
reduction

Number of
weight

coefficients
with

reduction

𝑔3
%

Number of
weight

coefficients
%

1 Data with parameters
of crude oil 8 5 2.2330 2.0914 315 210 93,65 66,67

2 Data of iris plant
parameters 4 2 0.5726 0.5446 175 105 95,11 60

3 Data of glass
parameters 9 7 1.6721 1.6626 350 280 98,2 80
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or in the design of pattern recognition systems for human
identification based on biometric measures. We believe that
for real world situations some pertinent modifications or
improvements to our model could be needed, but the essence
of the solution to the problems is already provided in the
proposed approach. As another leg of future investigation in
the proposed direction, we consider a three-module MNN,
which will be fed with the following inputs: one with the
intercriteria pairs exhibiting positive consonance, another
with the intercriteria pairs exhibiting negative consonance,
and the third one with the pairs exhibiting dissonance.
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