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Abstract. What kinds of fundamental limits are there in how capable artificial intelligence 
(AI) systems might become? Two questions in particular are of interest:  1) How much 
more capable could AI become relative to humans, and 2) how easily could superhuman 
capability be acquired? To answer these questions, we will consider the literature on 
human expertise and intelligence, discuss its relevance for AI, and consider how AI 
could improve on humans in two major aspects of thought and expertise, namely 
simulation and pattern recognition. We find that although there are very real limits to 
prediction, it seems like AI could still substantially improve on human intelligence. 

Introduction 
Since Turing (1950), the dream of artificial intelligence (AI) research has been the creation of a 
“machine that could think”. While current expert consensus believes the creation of such a 
system to still take several decades if not more (Müller & Bostrom 2016), recent progress in AI 
has still raised worries about the challenges involved with increasingly capable AI systems 
(Future of Life Institute 2015, Amodei et al. 2016). 
 
In addition to the risks posed by near-term developments, there is the possibility of AI systems 
eventually reaching superhuman levels of intelligence, eventually breaking out of human control 
(Bostrom 2014). Various research agendas and lists of research priorities have been suggested 
for managing the challenges that this level of capability would pose to society (Soares & 
Fallenstein 2014, Russell et al. 2015, Amodei et al. 2016, Taylor et al. 2016).  
 
For managing the challenges presented by increasingly capable AI systems, one needs to know 
how capable those systems might ultimately become, and how quickly. If AI systems can rapidly 
achieve strong capabilities, becoming powerful enough to take control of the world before any 
human can react, then that implies a very different approach than one where AI capabilities 
develop gradually over many decades, never getting substantially past the human level (Sotala 
& Yampolskiy, 2015). We might phrase these questions as: 
 

1. How much more capable can AIs become relative to humans? 
2. How easily (in terms of time and resources required) could superhuman capability be 

acquired? 
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Views on these questions vary. Authors such as Bostrom (2014) and Yudkowsky (2008) argue 
for the possibility of a fast leap in intelligence, with both offering hypothetical example scenarios 
where AI rapidly acquires a dominant position over humanity. On the other hand, Anderson 
(2010) and Lawrence (2016) appeal to fundamental limits on predictability – and thus 
intelligence – posed by the complexity of the environment.  
 
The argument for limits of intelligence (Anderson 2010, Lawrence 2016) could be summarized 
as saying that, past a certain point, increased intelligence is only of limited benefit, for the 
unpredictability of the environment means that you would have to spend exponentially more 
resources to evaluate a vastly increasing amount of possibilities.  
 
Noise also accumulates over time, reducing the reliability of your models. For many kinds of 
predictions, increasing the prediction window would require an exponential increase in the 
amount of measurements (Martela 2016). For instance, weather models become increasingly 
uncertain when projected farther out in time. Forecasters can only access a limited amount of 
observations relative to the weather system’s degrees of freedom, and any initial imprecisions 
will magnify over time and cause the accuracy to deteriorate (Buizza, 2002). In general, the 
accuracy of any long-term prediction will be limited by data uncertainty, model uncertainty, and 
the available computational time. Similar considerations would also apply to attempts to predict 
things such as the behavior of human societies. The advantage that even a superhuman 
intelligence might have over humans may be limited. 
 
On the other hand, it is not obvious whether this point of view really is in conflict with the 
assumption of AI being able to quickly grow to become powerful. There being limits to prediction 
does not imply that humans would be particularly close to the limits, nor that it would necessarily 
take a great amount of time to move from sub-human to superhuman capability. 
 
This article attempts to consider these questions by considering what we know about expertise 
and intelligence. After reviewing the relevant research on human expertise, we will discuss its 
relevance for AI, and consider how AI could improve on humans in two major aspects of thought 
and expertise, namely simulation and pattern recognition. Our current conclusion is that 
although the limits to prediction are real, it seems like AI could still substantially improve on 
human intelligence. The possibility of AI developing significant real-world capabilities in a 
relatively brief time seems like one that cannot be ruled out. 
 
Before examining these questions, we need to consider the definition of “capability” in more 
detail, and justify our focus on intelligence as prediction ability. 

Capability and intelligence as prediction ability 
Bostrom (2014, p. 39) defines a superintelligence as “any intellect that greatly exceeds the 
cognitive performance of humans in virtually all domains of interest”. Additionally, Bostrom 
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(2014, chap. 3) defines three subcategories of a superintelligence. A speed superintelligence 
thinks faster than humans; a collective superintelligence  is composed of many smaller intellects 
whose overall performance outstrips that of existing cognitive systems; and a quality 
superintelligence is one that is at least as fast as a human mind, and vastly qualitatively 
smarter. 
 
In a footnote to his original definition, Bostrom notes that this definition of superintelligence can 
be compared with Legg (2008), who defines intelligence as “an agent’s ability to achieve goals 
in a wide range of environments”. 
 
This definition, originally from Legg & Hutter (2007a), draws on a collection of 70 definitions of 
intelligence (Legg & Hutter 2007b) from various professional groups, dictionaries, psychologists, 
and AI researchers. Legg & Hutter (2007a) argue that this definition summarizes the essential 
features in the various surveyed definitions, in that they generally discuss an individual who is 
interacting with some environment that is not fully known, trying to achieve various goals in that 
environment, and learning and exploring during that interaction.  
 
Some definitions of intelligence list traits which are not explicitly included in this definition; for 
example, a group statement signed by 52 psychologists (Gottfredson 1997a) includes in 
intelligence "the ability to reason, plan, solve problems, think abstractly, comprehend complex 
ideas, learn quickly and learn from experience". However, Legg & Hutter (2007a) argue that all 
of these abilities are ones that allow humans to achieve goals, so are implicitly included in the 
Legg & Hutter definition. Additionally, Legg & Hutter suggest that their definition is more general, 
as there could exist intelligences which did not have all of these specific capabilities, but did 
have alternative capabilities which allowed them to achieve their goals. 
 
Legg & Hutter (2007a) offer a formalization of their definition, cast in a reinforcement learning 
framework. Briefly, the formalization involves an agent which interacts with an environment in 
discrete timesteps; on each timestep, the agent chooses an action and receives both an 
observation and a reward. An agent is (universally) intelligent to the extent that it can maximize 
its reward over the space of all environments drawn from a universal distribution. 
 
This definition and formalization is a view of intelligent performance as a learning and prediction 
problem: an agent is intelligent to the extent that it can learn to predict, using the smallest 
possible set of observations, which of its actions will deliver the greatest amount of reward in the 
environment that it is interacting with.  
 
Out of Bostrom’s (2014) superintelligence subtypes, a mind that was superintelligent under such 
a view would most likely fall under the category of a quality superintelligence. Some of the 
examples that Bostrom (2014) offers to illustrate the concept of quality intelligence include 
nonhuman animals that cannot achieve human cognitive capabilities even when “intensely 
trained by human instructors”, as well as human deficits such as autism spectrum disorders that 
may impair e.g. social functioning. Implicit in these examples is the notion that nonhuman 
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animals and individuals with cognitive deficits cannot achieve the same level of performance in 
various domains as unimpaired humans do, even when given the same opportunities to observe 
and learn about the domains in question. They lack the cognitive capabilities that would allow 
them to utilize their observations to learn to predict which kinds of actions would provide the 
greatest success in the relevant domains. 
 
Under this view, we can more precisely rephrase our first question, “how much more capable 
can AIs become relative to humans”, as “how much better than humans can AIs become in 
using small amounts of sense data to learn to predict which actions most effectively further their 
goals”. For the purposes of this discussion, we will also assume that “predicting which actions 
most effectively further one’s goals” is an accurate characterization of what human expertise (in 
any given domain) means. As we will discuss in the following section, the foundation of human 
expertise lies in acquiring the necessary knowledge to instantly see, when faced with some 
situation, the right course of action for that situation. 

The development of human expertise 
Ideally, we might turn to theoretical AI research for a precise theory about acquiring cognitive 
capabilities. Unfortunately AI research is not at this point yet. Instead we will consider the 
research on human expertise and decision-making.  

Expertise as mental representations 
There exists a preliminary understanding, if not of the details of human decision-making, then at 
least the general outline. A picture that emerges from this research is that expertise is about 
developing the correct mental representations (Klein 1999; Ericsson & Pool, 2016).  
 
A mental representation is a very general concept, roughly corresponding to any mental 
structure forming the content of something that the brain is thinking about (Ericsson & Pool, 
2016). 
 
Domain-specific mental representations are important because they allow experts to know what 
something means; know what to expect; know what good performance should feel like; know 
how to achieve the good performance; know the right goals for a given situation; know the steps 
necessary for achieving those goals; mentally simulate how something might happen; learn 
more detailed mental representations for improving their skills (Klein, 1999; Ericsson & Pool, 
2016). 
 
Although good decision-making is often thought of as a careful deliberation of all the possible 
options, such a type of thinking tends to be typical of novices (Klein, 1999). A novice will have to 
try to carefully reason their way through to an answer, and will often do poorly regardless, 
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because they do not know what things are relevant to take into account and which ones are not. 
An expert doesn’t need to – they are experienced enough to instantly know what to do. 
 
A specific model of expertise is the Recognition-Primed Decision-Making (RPD) model (Klein, 
1999). First, a decision-maker sees some situation, such as a fire for a firefighter or a design 
problem for an architect. The situation may then be recognized as familiar, such as a typical 
garage fire. Recognizing a familiar situation means understanding what goals make sense and 
what should be focused on, which cues  to pay attention to, what to expect next and when a 
violation of expectations shows that something is amiss, and knowing what the typical ways of 
responding are. Ideally, the expert will instantly know what to do. 
 
The expectations arising from mental representations also give rise to intuition. As one example, 
Klein (1999) describes the case of a firefighter lieutenant responding to a kitchen fire in an 
ordinary one-story residential house. The lieutenant’s crew sprayed water on the fire, but 
contrary to expectations, the water seemed to have little impact. Something about the situation 
seemed wrong to the lieutenant, who ordered his crew out of the house. As soon as they had 
left the house, the floor where they had been standing collapsed. If the firefighters had not 
pulled out, they would have fallen down to the fire raging in the basement. The lieutenant, not 
knowing what had caused him to give the order to withdraw, initially attributed the decision to 
some form of extra-sensory perception. 
 
In a later interview, the lieutenant explained that he did not suspect that the building had a 
basement, nor that the seat of the fire was under the floor that he and his crew were standing 
on. However, several of his expectations of a typical kitchen fire were violated by the situation. 
The lieutenant was wondering why the fire did not react to water as expected, the room was 
much hotter than he would have expected out of a small kitchen fire, and while a heat that hot 
should have made a great deal of noise, it was very quiet. The mismatch between the expected 
pattern and the actual situation led to an intuitive feeling of not knowing what was going on, 
leading to the decision to regroup. This is intuition: an automatic comparison of the situation 
against existing mental representations of similar situations, guiding decision-making in ways 
whose reasons are not always consciously available. 
 
In an unfamiliar situation, the expert may need to construct a mental simulation of what is going 
on, how things might have developed to this point, and what effect different actions would have. 
Had the floor mentioned in the previous example not collapsed, given time the firefighter 
lieutenant might have been able to put the pieces together and construct a narrative of a fire 
starting from the basement to explain the discrepancies. For a future-oriented example, a 
firefighter thinking about how to rescue someone from a difficult spot might mentally simulate 
where different rescue harnesses might be attached on the person, and whether that would 
exert dangerous amounts of force on them.  
 
Mental representations are necessary for a good simulation, as they let the expert know what 
things to take into account, what things could plausibly be tried, and what effects they would 
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have. In the example, the firefighter’s knowledge allows him to predict that specific ways of 
attaching the rescue harness would have dangerous consequences, while others are safe. 

Developing mental representations 
Mental representations are developed through practice. A novice will try out something and see 
what happens as a result. This gives them a rough mental representation and a prediction of 
what might happen if they try the same thing again, leading them to try out the same thing again 
or do something else instead.  
 
Just practice isn’t enough, however – there also needs to be feedback. Someone may do a 
practice drill over and over again and think that they are practicing and thus improving – but 
without some sign of how well that is going, they may just keep repeating the same mistakes 
over and over (Ericsson & Pool, 2016). 
 
The importance of quality feedback is worth emphasizing. Skills do not develop unless there is 
feedback that is conducive to developing better mental representations. In fact, there are entire 
fields in which experienced practitioners are not much better than novices, because the field 
does not provide them with enough feedback. Shanteau (1992) provides the following 
breakdown of professions for which there is agreement on the nature of their performance: 
 

Good performance Bad performance 
 
Weather Forecasters Clinical Psychologists 
Livestock Judges Psychiatrists 
Astronomers Astrologers 
Test Pilots Student Admissions 
Soil Judges Court Judges 
Chess Masters Behavioral Researchers 
Physicists Counselors 
Mathematicians Personnel Selectors 
Accountants Parole Officers 
Grain Inspectors Polygraph (Lie Detector) Judges 
Photo Interpreters Intelligence Analysts 
Insurance Analysts Stock Brokers 

 
In analyzing why some domains enable the development of genuine expertise and others don’t, 
Shanteau identified a number of considerations that relate to the nature of feedback. In an 
occupation like weather forecasting, the criteria you use for forecasting are always the same; 
you will always be facing the same task and can practice it over and over; you get quick and 
feedback on whether your prediction was correct; you can use formal tools to analyze what you 
predicted would happen and why that prediction did or didn’t happen; and things can be 
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analyzed in objective terms. This allows weather forecasters to develop powerful mental 
representations that get better and better at making the correct prediction. 
 
Contrast this with someone like an intelligence analyst. The analyst may be called upon to 
analyze very different clues and situations; each of the tasks may be unique, making it harder to 
know which lessons from previous tasks apply; for many of the analyses, one might never know 
whether they were right or not; and questions about socio-cultural matters tend to be much 
more subjective than questions about weather, making objective analysis impossible. In short, 
for much of the work that the analyst does, there is simply no feedback available to tell whether 
the analyst has made the right judgment or not. And without feedback, there is no way to 
improve one’s mental representations, and thus expertise. 
 
A slightly different look on expertise is the heuristics & biases literature, which frequently 
portrays even experts as being easily mistaken. In contrast, the expertise literature that we have 
reviewed so far has viewed experts as being typically capable and as having trustworthy 
intuition. Kahneman & Klein (2009) make an attempt to reconcile the two fields, and come to 
agree that: 
 

● Expert intuition may be trustworthy, if the intuition relates to a 'high-validity' domain and 
the expert has had a chance to learn the regularities in that domain. 

● A domain is 'high-validity' if 'there are stable relationships between objectively 
identifiable cues and subsequent events or between cues and the outcomes of possible 
actions'.  

● Medicine and firefighting have fairly high validity, whereas predictions of the future value 
of individual stocks and long-term  forecasts of political events are domains with 1

practically zero validity. 
● “Some [domains] are both highly valid and substantially uncertain. Poker and warfare are 

examples. The best moves in such situations reliably increase the potential for success.” 
● “[A domain] of high validity is a necessary condition for the development of skilled 

intuitions. Other necessary conditions include adequate opportunities for learning the 
[domain] (prolonged practice and feedback that is both rapid and unequivocal). If [a 
domain] provides valid cues and good feedback, skill and expert intuition will eventually 
develop in individuals of sufficient talent. “ 

 
This consensus is in line with what we have covered so far, though it also includes the 
consideration of validity. One cannot learn mental representations that would predict a domain 
or dictate the right actions for different situations in a domain, if that domain is simply too 
complicated or chaotic to be predicted. Kahneman & Klein (2009) provide an illustrative 
example of domain being simply too hard to interpret: the question of how the history of the 20th 
century would have been different if the fertilized eggs that became Hitler, Stalin and Mao had 

1  Kahneman & Klein do not define what they mean by 'long-term', but geopolitical events up to a year or 
so away can be predicted with reasonable accuracy, with the accuracy falling towards chance for events 
3 to 5 years away. (Tetlock & Gardner 2015, p. 5). 
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been female. It seems clear that things would have developed very differently, but how exactly? 
There seems to be no way to know. 
 
Meanwhile, practice does help in more predictable domains. A recent meta-analysis 
(Macnamara, Hambrick, & Oswald, 2014) on the effects of practice on skill found that the more 
predictable an activity was, the more practice contributed to performance in that activity. 

Implications for AI 
Having reviewed some necessary background, we will now finally get back to the topic of 
superintelligence capabilities. 

Relevance for AI 
Similarly to humans, AI systems cannot reach intelligent conclusions by a mere brute force 
calculation of every possibility. Rather, an intelligence needs to learn to exploit predictable 
regularities in the world in order to develop further. All machine learning based systems are 
based on this principle: they learn models of the world that are in this sense similar to the 
mental representations that humans learn. 
 
However, the models employed by current machine learning systems are much more limited 
than the mental representations employed by humans (Lake et al. 2016). Machine learning 
systems are also developed for solving problems efficiently on existing computing hardware 
rather than for being biologically plausible. There is thus reason to expect even future AI 
systems to employ models which differ in various respects from the mental representations used 
by humans. As such, we will use the term “mental representations” when in the context of 
humans, and “models” when discussing the analogous structure in future AI systems. 
 
In a sense, mental representations contain the optimal solutions to the problems at hand (Klein 
1999): a human expert will have learned to identify the smallest set of cues that will let them 
know how to act in a certain situation; their mental representations encode information about 
how to choose the correct actions using the least amount of thought. In other words, an expert 
pays attention exactly to the features in the data which are relevant for making the decision, and 
acts accordingly. An AI’s models could use more data and become larger than human mental 
representations, and identify features which humans might have missed. There is however no 
advantage in using more data than necessary for making the correct decision, so at least a 
subset of the AI’s models is likely to be similar to mental representations in that they encode the 
smallest amount of features of the environment which allow for rapid and correct 
decision-making in a given context and for a given goal. 
 
It is possible that AIs would also come to have models for which this characterization was a 
poor fit and which were tailored for taking better advantage of e.g. an AI’s ability to process 
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more data at a time. We will not examine this more speculative possibility, as for our argument it 
is unnecessary to consider hypothetical models which are better than human mental 
representations; we are focused on establishing the possibility that roughly human-like models 
would already be enough to enable superhuman capability . 2

 
Like with human experts, machine learning also tries to focus its analysis on exactly the right 
number of cues that will provide the right predictions, ignoring any irrelevant information. 
Traditional machine learning approaches have relied extensively on feature engineering, a 
labor-intensive process where humans determine which cues in the data are worth paying 
attention to.  
 
A major reason behind the recent success of deep learning models is their capability for feature 
learning or representation learning: being able to independently discover high-level features in 
the data which are worth paying attention to, without (as much) external guidance (Bengio, 
Courville, & Vincent, 2012). Being able to identify and extract the most important features of the 
data allows the system to make its decisions based on the smallest amount of cues that allows 
it to reach the right judgment – just as human experts learn to identify the most relevant cues in 
the situations that they encounter. 
 
Finally, the aspect of increasingly detailed mental representations giving an expert a yardstick to 
compare their performance against (Ericsson & Pool 2016) has an analogue in reinforcement 
learning methods. In deep reinforcement learning, a deep learning model learns to estimate how 
valuable a specific state of the world is, after which the system takes actions to move the world 
towards that state (Mnih et al., 2015). Similarly, a human expert comes to learn that specific 
states (e.g. a certain feeling in the body when diving) are valuable, and can then increasingly 
orient their behavior so as to achieve this state. 
 
In summary, human experts use mental representations as the building blocks of their expertise, 
with the models employed by current state-of-the-art AI systems having a number of key 
similarities. As there have been no serious alternative accounts presented of how expertise 
might work,wewill assume that the capabilities of hypothetical superintelligences will depend, at 
least in part, on them developing the correct models to represent key features of the 
environment in a similar way as human mental representations do. 
 
This paper set out to consider two main questions: 
 

1. How much more capable can AIs become relative to humans? 

2  The reader may note that the AI possibly using many different kinds of models, some of them humanlike 
and some more advanced, has a parallel in the heterogeneity hypothesis of concepts (Machery 2009, 
2010), according to which the mental representations of humans do not form a natural kind and actually 
consist of many different kinds of mental structures that are used in different situations and for different 
purposes. 
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2. How easily (in terms of time and resources required) could superhuman capability be 
acquired? 

 
Let us now return to these. 
 
The argument for AI’s predictive capabilities being limited was that there are limits to prediction, 
and that predicting events an ever-increasing amount forward in time requires exponential 
reasoning power as well as measurement points, quickly becoming intractable. How capable 
could AI become despite these two points? 
 
The components of human expertise might be roughly divided into two: building up a battery of 
accurate mental representations, and being able to use them for mental simulations. Similarly, 
approaches to artificial intelligence can roughly be divided into pattern recognition and 
model-building (Lake, Ullman, Tenenbaum, & Gershman, 2016), depending on whether patterns 
in data or models of the world are treated as the primary unit of thought. 
 
As this kind of a distinction seems to emerge both from psychology and AI research,wewill 
assume that AI’s expertise will also involve acquiring models (or equivalently, doing pattern 
recognition) as well as accurately using them in simulations. We will consider these two 
separately. 

Simulation 

Potential capability 
An interesting look at the potential benefits offered by improved simulation ability come from 
looking at Philip Tetlock’s Good Judgement Project (GJP), popularized in the book 
Superforecasting (Tetlock & Gardner, 2015) . Participating in a contest to forecast the 3

probability of various events, the best GJP participants – the so-called 'superforecasters' – 
managed to make predictions whose accuracy outperformed those of professional intelligence 
analysts working with access to classified data . This is particularly interesting as the 4

superforecasters had no particular domain expertise in answering most of the questions, with 
sample questions including ones such as 
 

● Will North Korea launch a new multistage missile before May 10, 2014? 

3  Except for when citations to other content are explicitly included, all the discussion about 
superforecasters and the Good Judgment Project uses Superforecasting as its source. 
4  Though this claim needs to be treated with some caution, as no official information about the intelligence 
analysts’ performance has been published. The claim is based on Washington Post editor David Ignatius 
writing that 'a participant in the project' had told him that superforecasters had 'performed about 30 
percent better than the average for intelligence community analysts who could read intercepts and other 
secret data' (Ignatius, 2013). The intelligence community has neither confirmed nor denied this statement, 
and Philip Tetlock has stated that he believes it to be true. 
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● Will Russian armed forces enter Kharkiv, Ukraine, by May 10, 2014? 
● Will there be a significant attack on Israeli territory before May 10, 2014? 
● Will Robert Mugabe cease to be President of Zimbabwe by September 30, 2011? 
● Will Greece remain a member of the EU through June 1, 2012? 

 
Tetlock & Gardner report the superforecasters’ accuracy in terms of Brier score, which is a scale 
between 0 and 2, with 0.5 indicating random guessing . On this scale, superforecasters had a 5

score of 0.25 at the end of GJP’s first year, compared to 0.37 of the other forecasters 
participating in the project. By the end of the second year, superforecasters had improved their 
Brier score to 0.07 (Mellers et al., 2014). Superforecasters could also project further out in time: 
their accuracy at making predictions 300 days out was better as the other forecasters’ accuracy 
at making predictions 100 days out. In terms of being on the right side of 50/50, GJP’s best 
wisdom-of-the-crowd algorithms (deriving an overall prediction from the different forecasters’ 
predictions) delivered a correct prediction on 86% of all daily forecasts (Tetlock, Mellers, & 
Rohrbaugh, 2014). 
 
The superforecasters’ success relied on a number of techniques, but a central one was the 
ability to consider and judge the relevance of a number of factors that might cause a prediction 
to become true or false. Tetlock & Gardner illustrate this technique by discussing how a 
superforecaster, Bill Flack, approached the question of whether an investigation of Yasser 
Arafat’s remains would reveal traces of polonium, suggestive of Arafat having been poisoned by 
Israel.  
 
Flack started by considering what it would take for the investigation to reach a particular 
outcome, and realized that he didn’t know what the chances were of polonium traces surviving 
in a body for several years. He started by investigating how polonium testing worked, and 
concluded that enough polonium could in fact survive for it to be found in the testing. 
 
Next, Flack considered what could cause polonium to end up in the body. Israel poisoning 
Arafat could have done it, but so could an Palestinian enemy that Arafat had. There was also 
the probability of the body being intentionally contaminated after Arafat’s death, by some faction 
trying to frame Israel for the death. Each possibility made a positive test result more probable, 
based on how probable those individual possibilities were. Next Flack moved on to investigate 
what it would take for any of the possibilities to be true. For the case of Israel poisoning Arafat, it 
required Israel having access to polonium; Israel being willing to take the risk of intentionally 
poisoning him; and Israel having the means to poison Arafat with the polonium. These 
possibilities served as starting points for researching the probability of the “Israel poisoned 
Arafat” hypothesis, after which Flack would break down and investigate what it would take for 
the other hypotheses to be true. 
 

5  A version of the scale which ranges between 0 and 1 is also commonly used. 
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Tetlock does not go into detail about the prerequisites for being able to carry out such analysis – 
other than noting that it’s slow and effortful – but there are some considerations that seem like 
plausible prerequisites. First, a person needs to have enough general knowledge to generate 
different possibilities for how an event could have come true. Next, they need the ability to 
analyze and investigate those possibilities further, either personally acquiring the relevant 
domain knowledge for evaluating their plausibility, or finding a relevant subject matter expert. In 
this example, Flack familiarized himself with the science of polonium testing until he was 
satisfied that it would be possible to detect polonium traces from a long time ago. 
 
This suggests a general procedure which AI could also follow in order to predict the possibility of 
something in which it does not yet have expertise. An AI that was trying to predict the outcome 
of some specific question could work tap into its existing general knowledge in an attempt to 
identify relevant causal factors; if it failed to generate them, it could look into existing disciplines 
which seemed relevant for the question. For each identified possibility, it could branch off a new 
subprocess to do research into that particular direction, sharing information as necessary with a 
main process whose purpose was to integrate the insights derived from all the relevant 
searches. 
 
Such a capability for several parallel streams of attention could provide a major advantage. A 
human researcher or forecaster who branches off to do research on a subquestion will need to 
make sure that they don’t lose track of the big picture, and needs to have an idea of whether 
they are making meaningful progress on that subquestion and whether it would be better to 
devote attention to something else instead. To the extent that there can be several parallel 
streams of attention, these issues can be alleviated, with a main stream focusing on the overall 
question and substreams on specific subpossibilities. 
 
How much could this improve on human forecasters? Forecasters performed better when they 
were placed on teams where they shared information between each other, which similarly 
allowed an extent of parallelism in prediction-making, in that different forecasters could pursue 
their own angles and directions in exploring the problem. The differences between individual 
forecasters and teams of forecasters with comparable levels of training ranged between 0.05 
and 0.10 Brier points at the end of the first year, and between 0.02 and 0.08 Brier points at the 
end of the second year (Mellers et al., 2014). In humans however, it seems likely that the extent 
of parallelism was constrained by the fact that each forecaster had to independently familiarize 
themselves with much of the same material, and that their ability to share knowledge between 
each other was limited by the speed of writing and reading. This suggests a possibility for 
further improvement. 
 
In general, accurate forecasting requires an ability to carry out sophisticated causal modeling 
about a variety of interacting factors. Tetlock & Gardner emphasize the extent to which 
superforecaster forums discuss many different “on the one hand”/”on the other hand” 
possibilities. In a discussion of whether Saudi Arabia might agree to OPEC production cuts in 
November 2014, one superforecaster noted that Saudi Arabia had large financial reserves so 
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could afford to let oil prices run low. On the other hand, he noted, Saudi Arabia needed to raise 
their social spending to bolster the support for the monarchy, but yet again, Saudi Arabian rulers 
might view the act of trying to control oil prices as futile. The superforecaster in question 
concluded that the question “felt no-ish, 80%”. (Saudis ended up not supporting production 
cuts.) 
 
This suggests that AI with sufficient hardware capability could achieve considerable prediction 
ability by its capability to explore many different perspectives and causal factors at once. The 
simulations of humans tend to be limited to around three causal factors and six transition states 
(Klein, 1999). The discussion of the superforecasters clearly brought up many more 
possibilities, and their accuracy suggests moderate ability to integrate all those factors together. 
Yet comments such as 'feels no-ish' suggests that they still couldn’t construct a full-blown 
simulation in which the various causal factors would have influenced each other based on 
principled rules which could be inspected, evaluated, and revised based on feedback and 
accuracy. This seems especially plausible given that Klein speculates the limits in the size of 
human simulations to come from working memory limitations.  
 
AI systems with larger working memory capacities might be able to construct much more 
detailed simulations. Contemporary computer models can involve simulations with thousands or 
tens of thousands variables, though flexibly incorporating diverse models into a single 
simulation will probably take considerably more memory and computing power than what is 
used in today’s models. 
 

Example: parallel streams of attention with a LIDA-like architecture 
 
How could different streams of attention within AI share information between each other? 
Recall that we have defined the development of expertise as the ability to accumulate 
patterns which are used to identify relevant cues and to indicate what predictions should be 
derived out of those. A computational model for attention and consciousness is Global 
Workspace Theory (Baars, 2002; 2005), of which a particular AI implementation is the LIDA 
model (Franklin & Patterson, 2006; Franklin, Madl, D’Mello, & Snaider, 2014; Madl, Franklin, 
Chen, Montaldi, & Trappl, 2016). LIDA is a model of the mind that is inspired by psychological 
and neuroscientific research and attempts to capture its main mechanisms.  
 
We can use LIDA to get a rough example of what having several 'streams of attention' would 
mean, and how information could be exchanged between them. The purpose of this example 
is not to suggest that an AI would necessarily work by this mechanism, but merely to make 
the speculation about streams of attention slightly more grounded in existing theories of how a 
general intelligence (the human mind) might work. Thus, to the extent that LIDA is correct as 
a model of human intelligence, and to the extent that the example in this box is correct about 
LIDA allowing for there to be several attentional streams at the same time, this provides some 
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information about it being possible to have several such streams in minds in general, and how 
that might concretely work. 
 
LIDA works by means of an understand-attend-act cycle. In each cycle, low-level sensory 
information is initially interpreted so as to associate it with higher-level concepts to form a 
'percept', which is then sent to a workspace. In the workspace, the percept activates further 
associations in other memory systems, which are combined with the percept to create a 
Current Situational Model, an understanding of what is going on at this moment. 
 
The entirety of the Current Situational Model is likely to be too complex for the agent to 
process, so it needs to select a part of it to elevate to the level of conscious attention to be 
acted upon. This is carried out using 'attention codelets', small pieces of code that attempt to 
train attention on some particular piece of information, each with their own set of concerns of 
what is important. Attention codelets with matching concerns form coalitions of what to attend, 
competing against other coalitions. Whichever coalition ends up winning the competition will 
have its chosen part of the Current Situational Model 'become conscious', broadcast to the 
rest of the system, and particularly Procedural Memory. 
 
The Procedural Memory holds schemes, or templates of different actions that can be taken in 
different contexts. Schemes which include a context or an action that matches the contents of 
the conscious broadcast become available as candidates for possible actions. They are 
copied to the Action Selection mechanism, which chooses a single action to perform. The 
selected action is further sent to Sensory-Motor Memory, which contains information of how 
exactly to perform the action. The outcome of taking this action manifests itself as new 
sensory information, beginning the cognitive cycle anew. 
 
Here is a description of how this process – or something like it – might be applied in the case 
of AI seeking to predict the outcome of a specific question, such as the 'will Saudi Arabia 
agree to oil production cuts' question discussed above. The decision to consider this question 
has been made in an earlier cognitive cycle, and information relevant to it is now available in 
the inner environment and the Current Situational Model. The concepts of Saudi Arabia and 
oil production trigger several associations in the AI’s memory systems, such as the fact that 
oil prices will affect Saudi Arabia’s financial situation, and that oil prices are also influenced by 
other factors such as global demand. Two coalitions of attention codelets might form, one 
focusing on the current financial situation and another on influences on oil prices. 
 
In LIDA, these codelets would normally compete, and one of them would win and trigger a 
specific action, such as a deeper investigation of Saudi Arabia’s financial situation. In our 
hypothetical AI however, it might be enough that both coalitions manage to exceed some 
threshold level of success, indicating them both to be potentially relevant. In that case, new 
instances of the Procedural Memory, Action Selection and Sensory-Motor Memory 
mechanisms might be initialized, with one coalition sending its contents to the first set of 
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instances and the other to another. These streams could then independently carry out 
searches of the information that was deemed relevant, also having their own local Situational 
Models and Workspaces focusing on content relevant for this search. As they worked, these 
streams would update the various memory subsystems with the results of their learning, 
making new associations and attention codelets available to all attentional streams. Their 
functioning could be supervised by a general high-level attention stream, whose task was to 
evaluate the performance of the various lower-level streams and allocate resources between 
them accordingly. 

 
These simulations do not necessarily need to incorporate an exponentially increasing number of 
variables in order to achieve better prediction accuracy. As previously noted, superforecasters 
were more accurate at making predictions 300 days out than the rest of the forecasters in GJP 
were at making predictions 100 days out. Given that at least some of the superforecasters only 
used a few hours a day on making their predictions, and that they had many predictions to rate, 
they probably did not consider a vastly larger amount of factors than the rest of the forecasters. 
 
Klein (1999) offers an example of a professor who used  three causal factors (the rate of 
inflation, the rate of unemployment, and the rate of foreign exchange) and a few transitions to 
relatively accurately simulate how the Polish economy would develop in response to the 
decision to convert from socialism to a market economy. In contrast, less sophisticated experts 
could only name two variables (inflation and unemployment) and not develop any simulations at 
all, basing their predictions mostly on their ideological leanings. 
 
Having large explicit models also allows for the models to be adjusted in response to feedback. 
The professor’s estimate was in many extents correct, but failed to predict the government 
being less ruthless and more cautious than it had said it would be closing down unproductive 
plants. The government’s caution could thus be added as an additional variable to be 
considered for the next model. The addition of this variable alone might then considerably 
increase the accuracy of the simulation. 
 
Tetlock & Gardner report that the superforecasters used highly granular probability estimates – 
carefully thinking about whether the probability of an event was 3% as opposed to 4%, for 
instance – and that the granularity actually contributed to accuracy, with the predictions getting 
less accurate if they were rounded to the closest 5%. Given that such granularity was achieved 
by integrating various possibilities and considerations, it seems like an ability to consider and 
integrate an even larger amount of possibilities might provide even increased granularity, and 
thus a prediction edge. 
 
In summary, AI could be able to run vastly larger simulations than humans could, with this 
possibility being subject to computing power limitations; given this, its simulations could also be 
explicit, allowing it to adjust and correct them in response to feedback to provide improved 
prediction accuracy; and it could have several streams of attention running concurrently and 
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sharing information between each other. Existing evidence from human experts suggests that 
large increases to prediction capability might not necessarily need a large increase in the 
number of variables considered, and that even small increases can provide considerable 
additional gains.  
 
The amount of predictive edge that this could give to an AI as compared to a human or a group 
of humans is unclear, but humans do tend to prefer simple stories and explanations that are 
compact enough that all of the important details can be kept in mind at once. Simple hypotheses 
often turn out to be insufficient because the world is more complicated than a simple hypothesis 
allows for. Even in domains such as engineering, where there exist formal ways of modeling the 
entire domain, a task such as the design of a modern airplane or operating system contains too 
much complexity for a single person to comprehend. While the impact of uncertainty can never 
be eliminated, being able to take more of the world’s underlying complexity into account than 
humans do, may provide an AI with a predictive edge at least in some domains. 

Rate of capability growth 
How fast could AI develop the ability to run comprehensive and large simulations?  Creating 6

larger simulations than humans have access to seems to require extensive computational 
resources, either from hardware or optimized software. As an additional consideration, we have 
previously mentioned limited working memory restricting the capabilities of humans, but human 
working memory is not the same thing as RAM in computer systems. If one were running a 
simulation of the human brain in a computer, one could not increase the brain’s available 
working memory simply by increasing the amount of RAM the simulation had access to. Rather, 
it has been hypothesized that working memory differences between individuals may reflect 
things such as the ability to discriminate between relevant and irrelevant information (Unsworth 
& Engle, 2007), which could be related to things like brain network structure and thus be more 
of a software than a hardware issue.  Yudkowsky (2013) notes that if increased intelligence 7

would be a simple matter of scaling up the brain, the road from chimpanzees to humans would 
likely have been much shorter, as simple factors such as brain size can respond rapidly to 
evolutionary selection pressure. 
 
Thus, advances in simulation size depend on progress in both hardware and algorithms. 
Hardware progress in hard to predict, but advances in algorithmic capabilities seem doable 
using mostly theoretical and mathematical research. This would require the development of 
expertise in mathematics, programming, and theoretical computer science. 
 

6  This section does not consider how fast the AI could develop the necessary mental representations to 
be used in the simulations. That question will be discussed in the next section. 
7  Though it is worth noting that g does correlate to some extent with brain size, with a mean correlation of 
0.4 in measurements that are obtained using brain imaging as opposed to external measurements of 
brain size (Rushton & Ankney, 2009). This would seem to suggest that the raw number of neurons and 
thus 'general hardware capacity' would also be relevant. 
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Much of mathematical problem-solving is about having a library of procedures, reformulations, 
and heuristics that one can try (Polya, 1990), as well as developing a familiarity and 
understanding of many kinds of mathematical results, which one may then later on recognize as 
relevant. This seems like the kind of task that relies strongly on pattern-matching abilities, and 
might in principle be in reach by an advanced deep reinforcement learning system that was fed 
a sufficiently large library of heuristics and worked proofs to let it develop superhuman 
mathematical intuition . Modern-day theorem provers often know what kinds of steps are valid, 8

but not which steps are worth taking; merging them with the 'artificial intuition' of deep 
reinforcement learning systems might eventually produce systems with superhuman 
mathematical ability. 
 
Progress in this field could allow AI systems to achieve superhuman abilities in math research, 
considerably increasing their ability to develop more optimized software to take full advantage of 
the available hardware. To the extent that relatively small increases in the number of variables 
considered in a high-level simulation would allow for dramatically increased prediction ability (as 
is suggested by e.g. the superforecasters being better predictors with thrice the prediction 
horizon of less accurate forecasters), moderate increases in the size of the AI’s simulations 
could translate to drastic increases in terms of real-world capability.  
 
Yudkowsky (2013) notes that although the evolutionary record strongly suggests that 
algorithmic improvements were needed for taking us from chimpanzees to humans, the record 
rules out exponentially increasing hardware always being needed for linear cognitive gains: the 
size of the human brain is only four times that of the chimpanzee brain. This further suggests 
that relatively limited improvements could allow for drastic increases in intelligence. 

Pattern recognition 
The capability to run large simulations isn’t enough by itself. The AI also needs to acquire a 
sufficiently large number of patterns to be included in the simulations, to predict how different 
pieces in the simulation behave. 

Potential capability 
When it comes to well-defined tasks, current AI systems excel at pattern recognition, being able 
to analyze vast amounts of data and build them into an overall model, finding regularities that 
human experts never would have. For instance, human experts would likely have been unable 
to anticipate that men who 'like' the Facebook page 'Being Confused After Waking Up From 
Naps' are more likely to be heterosexual (Kosinski, Stillwell, & Graepel, 2013). Similarly, the 
Go-playing AI AlphaGo, whose good performance against the expert player Lee Sedol could to 
a large extent be attributed to its built-up understanding of the kinds of board patterns that 

8  See Whalen (2016) for preliminary work in this direction. 
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predict victory, managed to make moves that Go professionals watching the game considered 
creative and novel. 
 
The ability to find subtle patterns in data suggests that AI systems might be able to make 
predictions in domains which humans currently consider impossible to predict. We previously 
discussed the issue of the (predictive) validity of a domain, with domains being said to have 
higher validity if 'there are stable relationships between objectively identifiable cues and 
subsequent events or between cues and the outcomes of possible actions' (Kahneman & Klein, 
2009). A field could also be valid despite being substantially uncertain, with warfare and poker 
being listed as examples of fields that were valid (letting a skilled actor improve their average 
performance) despite also being highly uncertain (with good performance not being guaranteed 
even for a skilled actor). 
 
We already know that the validity of a field also depends on an actor’s cognitive and 
technological abilities. For example, weather forecasting used to be a field in which almost no 
objectively identifiable cues were available, relying mostly on guesswork and intuition, but the 
development of modern meteorological theory made it a much more valid field (Shanteau, 
1992). Thus, even fields which have low validity to humans with modern-day capabilities, could 
become more valid for more advanced actors. 
 
A possible example of a domain that is currently relatively low-validity, but which could become 
substantially more valid, is that of predicting the behavior of individual humans. Machine 
learning tools can already generate personality profiles harvested from people’s Facebook 'likes' 
that are slightly more accurate than the profiles made by people’s human friends (Youyou et al. 
2015), and can be used to predict private traits such as sexual orientation (Kosinski et al. 2013). 
This has been achieved using a relatively limited amount of data and not much intelligence; a 
more sophisticated modeling process could probably make even better predictions from the 
same data. 
 
Taleb (2007) has argued for history being strongly driven by 'black swan' events, events with 
such a low probability that they are unanticipated and unprepared for, but which have an 
enormous impact on the world. To the extent that this is accurate, it suggests limits on the 
validity of prediction. However, Tetlock & Gardner (2015) argue that while the black swans 
themselves may be unanticipated, once the event has happened its consequences may be 
much easier to predict. Although superforecasters have shown no ability to predict black swans 
such as the 9/11 terrorist attacks, they could predict the answers to questions like “Will the 
United States threaten military action if the Taliban don’t hand over Osama bin Laden?” and 
“Will the Taliban comply?”. 
 
Thus, even though AI might be unable to predict some very rare events, once those events 
have happened, it could utilize its built-up knowledge of how people typically react to different 
events in order to predict the consequences better than anyone else. 
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Rates of capability growth 
How quickly could AI acquire more detailed models? Here again opinions differ. Hibbard (2016) 
argues, based on Mahoney’s (2008) argument for intelligence being a function of both 
resources and knowledge, that explosive growth is unlikely. Benthall (2017) makes a similar 
argument. On the other hand, authors such as Bostrom (2014) and Yudkowsky (2008) suggest 
the possibility for fast increases. 

How to improve learning speed? 

We know that among humans, there are considerable differences in the extent to which people 
learn. Human cognitive differences have a strong neural and genetic basis (Deary, Penke, & 
Johnson, 2010), and strongly predict academic performance (Deary et al., 2007), 
socio-economic outcomes (Strenze, 2007), and job performance and the effectiveness of 
on-the-job learning and experience (Gottfredson, 1997b). There also exist child prodigies who 
before adolescence achieve a level of performance comparable to an adult professional, without 
having been able to spend comparable amounts of time training (Ruthsatz, Ruthsatz, & 
Stephens, 2013). In general, some people are able to learn faster from the same experiences, 
notice relevant patterns faster, and continue learning from experience even past the point where 
others cease to achieve additional gains.  9

 
While there is so far no clear consensus on why some people learn faster than others, there are 
some clear clues. Individual differences in cognitive abilities may be a result of differences in a 

9  Readers who are familiar with the 'deliberate practice' literature may wonder if that literature might not 
contradict these claims about the impact of intelligence. After all, the deliberate practice research 
suggests that talent is irrelevant, and that deliberate, well-supervised training is the only thing that 
matters.  
 
However, as noted by the field’s inventor, deliberate practice is a concept that is applicable to some very 
specific – one might even say artificial – domains. Deliberate practice can only be applied in fields in 
which there are objective metrics, highly developed objectively-measurable expertise, and active 
competition to improve the existing practices. Areas that don’t qualify are “anything in which there is little 
or no direct competition, such as gardening and other hobbies, for instance, and many of the jobs in 
today’s workplace— business manager, teacher, electrician, engineer, consultant, and so on”, as there 
are no objective criteria for performance (Ericsson & Pool 2016). 
 
Fields that have well-defined, objective criteria for good performance are ones which are the easiest to 
master using even current-day AI methods – in fact, they’re basically the only ones that can be truly 
mastered using current-day AI methods. 
 
A somewhat cheeky way to summarize these results would be by saying that, in the kinds of fields that 
could be mastered by AI methods that exhibit no general intelligence, general intelligence isn’t the most 
important thing. This even seems to be Ericsson’s own theoretical stance: that in these fields, general 
intelligence eventually ceases to matter because the expert will have developed specialized mental 
representations that they can just rely on in every situation. So these results are not very interesting to 
those of us who are interested in domains that do require general intelligence. 
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combination of factors, such as working memory capacity, attention control, and long-term 
memory (Unsworth et al., 2014). Ruthsatz et al. (2013), in turn, note that 'child prodigies' skills 
are highly dependent on a few features of their cognitive profiles, including elevated general 
IQs, exceptional working memories, and elevated attention to detail'.  
 
Many tasks require paying attention to many things at once, with a risk of overloading the 
learner’s working memory before some of the performance has been automated. For an 
example, McPherson & Renwick (2001) consider children who are learning to play instruments, 
and note that children who had previously learned to play another instrument were faster 
learners. They suggest this to be in part because the act of reading musical notation had 
become automated for these children, saving them from the need to process notation in working 
memory and allowing them to focus entirely on learning the actual instrument. 
 
This general phenomenon has been recognized in education research. Complex activities that 
require multiple subskills can be hard to master even if the students have moderate competence 
in each individual subskill, as using several of them at the same time can produce an 
overwhelming cognitive load (Ambrose et al. 2010, chap. 4). Recommended strategies for 
dealing with this include reducing the scope of the problem at first and then building up to 
increasingly complex scopes. For instance, 'a piano teacher might ask students to practice only 
the right hand part of a piece, and then only the left hand part, before combining them' (ibid). 
 
An increased working memory capacity, which is empirically associated with faster learning 
capabilities, could theoretically assist in learning in allowing more things to be comprehended 
simultaneously without them overwhelming the learner. Thus, AI with a large working memory 
could learn and master at once much more complicated wholes than humans.  
 
Additionally, we have seen that a key part of efficient learning is the ability to monitor one’s own 
performance and to notice errors which need correcting; this seems in line with cognitive 
abilities correlating with attentional control and elevated attention to detail. McPherson & 
Renwick (2001) also remark on the ability of some students to play through a piece with 
considerably fewer errors on their second run-through than the first one, suggesting that this 
indicates 'an outstanding ability to retain a mental representation of [...] performance between 
run-throughs, and to use this as a basis for learning from [...] errors'. In contrast, children who 
learned more slowly seemed to either not notice their mistakes, or alternatively to not remember 
them when they played the piece again. 
 
Whatever the AI analogues of working and long-term memory, attentional control, and attention 
to detail are, it seems at least plausible that these could be improved upon by drawing 
exclusively on relatively theoretical research and in-house experiments. This might enable AI to 
both absorb vast datasets, as current-day deep learning systems do, and also learn from 
superhumanly small amounts of data. 
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Limits of learning speed 

How much can the human learning speed be improved upon? This remains an open question. 
There are likely to be sharply diminishing returns at some point, but we do not know whether 
they are near the human level. Human intelligence seems constrained by a number of biological 
and physical factors that are unrelated to gains from intelligence. Plausible constraints include 
the size of the birth canal limiting the volume of human brains, the brain’s extensive energy 
requirements limiting the overall amount of cells, limits to the speed of signaling in neurons, an 
increasing proportion of the brain’s volume being spent on wiring and connections (rather than 
actual computation) as the number of neurons grows, and inherent unreliabilities in the 
operation of ion channels (Fox, 2011). There doesn’t seem to be any obvious reason for why 
the threshold for diminishing gains from intelligence to learning speed would just happen to 
coincide with the level of intelligence allowed by our current biology. Alternatively, there could 
have been diminishing returns all along, but ones which still made it worthwhile for evolution to 
keep investing in additional intelligence. 
 
The available evidence also seems to suggest that within the human range at least, increased 
intelligence continues to contribute to additional gains. The Study of Mathematically Precocious 
Youth (SMPY) is a 50-year longitudinal study involving over 5,000 exceptionally talented 
individuals identified between 1972 and 1997. Despite its name, many its participants are more 
verbally than mathematically talented. The study has led to several publications; among others, 
Wai et al. (2005) and Lubinski & Benbow (2006) examine the question of whether ability 
differences within the top 1% of the human population make a difference in life.  
 
Comparing the top (Q4) and bottom (Q1) quartiles of two cohorts within this study shows both to 
significantly differ from the ordinary population, as well as from each other. Out of the general 
population, about 1% will obtain a doctoral degree, whereas 20% of Q1 and 32% of Q4 did. 
0.4% of Q1 achieved tenure at a top-50 US university, as did 3% of Q4. Looking at a 1 to 
10,000 cohort, 19% had earned patents, as compared to 7.5% of the Q4 group, 3.8% of the Q1 
group, or 1% of the general population. 
 
It is important to emphasize that the evidence we’ve reviewed so far does not merely mean that 
AI could potentially learn faster in terms of time: it also suggests that the AI could potentially 
learn faster in terms of training data. The smaller datasets AI needs in order to develop accurate 
models, the faster it can adapt to new situations.  
 
Besides the considerations we have already discussed, there seems to be potential for 
accelerated learning through more detailed analysis of experiences. For example, chess players 
improve most effectively by studying the games of grandmasters, and trying to predict what 
moves the grandmasters would have made in any situation. When the grandmaster play 
deviates from the move that the student would have made, the student goes back to try to see 
what they missed (Ericsson & Pool, 2016). This kind of detailed study is effortful however, and 
can only be sustained for limited amounts at a time. With enough computational resources, the 
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AI could routinely run this kind of analysis on all sense data it received, constantly attempting to 
build increasingly detailed models that would correctly predict the data. 

How much interaction is needed? 

Some commentators, such as Hibbard (2016) argue that knowledge requires interaction with the 
world, so the AI would be forced to learn over an extended period of time as the interaction 
takes time. 
 
From our previous review, we know that feedback is needed for the development of expertise. 
However, one may also get feedback from studying static materials. As we noted before, chess 
players spend more time studying published matches and trying to predict the grandmaster 
moves – and then getting feedback when they look up the next move and have their prediction 
confirmed or falsified – than they do actually playing matches against live opponents (Ericsson 
& Pool, 2016). The Go-playing AlphaGo system did not achieve its skill by spending large 
amounts of time playing human opponents, but rather studying the games of humans and 
playing games against itself (Silver et al. 2016). And while any individual human can only study 
a single game at a time, AI systems could study a vast number of games in parallel and learn 
from all of them . 10

 
An important difference is that domains such as chess and Go are formally specified domains, 
which AI can perfectly simulate. For a domain such as social interaction, the AI’s ability to 
accurately simulate the behavior of humans is limited by its current competence in the domain. 
While it can run a simulation based on its existing model of human behavior, predicting how 
humans would behave based on that model, it needs external data in order to find out how 
accurate its prediction was. 
 
This is not necessarily a problem however, given the vast (and ever-increasing) amount of 
recorded social interaction happening online. YouTube, e-mail lists, forums, blogs, and social 
media services all provide rich records of various kinds of social interaction, for AI to test its 
predictive models against without needing to engage in interaction of its own. Scientific papers – 
increasingly available on an open access basis – on topics such as psychology and sociology 
offer additional information for the AI to supplement its understanding with, as do various guides 
to social skills. All of this information could be acquired simply by downloading it, with the main 
constraints being the time needed to find, download, and process the data, rather than time 
needed for social interactions.  
 
As noted earlier, relatively crude statistical methods can already extract relatively accurate 
psychological profiles out of data such as people’s Facebook 'likes' (Kosinski et al., 2013, 
Youyou et al., 2015), giving reason to suspect that a general AI could develop very accurate 
predictive abilities given the kind of a process described above. 

10  See Mnih et al. (2016) for a discussion of how incorporating parallel learning improves upon on modern 
deep learning systems. 
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Several other domains, such as software security and mathematics seem similarly amenable to 
being mastered largely without needing to interact with the world outside the AI, other than 
searching for relevant materials. Some domains such as physics would probably need novel 
experiments, but AI focusing on the domains that were the easiest and fastest for it to master 
might find sufficient sources of capability from those alone.  
 
Given the above considerations, it does not seem like AI’s speed of learning would necessarily 
be strongly interaction-constrained. 

Conclusions 
We set out to consider the fundamental practical limits of intelligence, and the limits to how 
quickly an AI system could acquire very high levels of capability. 
 
Fictional representations of high intelligence often depict a picture of geniuses as masterminds 
who have an almost godlike prediction ability, laying out intricate multi-step plans where every 
contingency is planned for in advance (TVTropes 2017a). When discussing “superintelligent” AI 
systems, one might easily think that the discussion was postulating something along the lines of 
those fictional examples, and rightly reject it as unrealistic. 
 
Given what we know about the limits of prediction, for AI to make a single plan which takes into 
account every possibility is surely impossible. However, having reviewed the science of human 
expertise, we have found that experts who are good at their domains tend to develop powerful 
mental representations which let them react to various situations as they arise, and to simulate 
different plans and outcomes in their heads.  
 
Looking from humans to AIs, we have found that AI might be able to run much more 
sophisticated mental simulations than humans could. Given human intelligence differences and 
empirical and theoretical considerations about working memory being a major constraint for 
intelligence, the empirical finding that increased intelligence continues to benefit people 
throughout the whole human range, and the observation that it would be unlikely for the 
theoretical limits of intelligence to coincide with the biological and physical constraints that 
human intelligence currently faces, it seems like AIs could come to learn considerably faster 
from data than humans do. It also seems like in many domains, this could be achieved by using 
existing materials as a source of feedback for predictions, without necessarily being constrained 
by time taken for interacting with the external world. 
 
Thus, it looks that even though an AI system couldn’t make a single superplan for world 
conquest right from the beginning, it could still have a superhuman ability to adapt and learn 
from changing and novel situations, and react to those faster than its human adversaries. As an 
analogy, experts playing most games can't precompute a winning strategy right from the first 
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move either, but they can still react and adapt to the game's evolving situation better than a 
novice can, enabling them to win . 11

 
Many of the hypothetical advantages – such as a larger working memory, the ability to consider 
more possibilities at once, and the ability to practice on many training instances in parallel – that 
AI might have seem to depend on available computing power. Thus the amount of hardware the 
AI had at its disposal could limit its capabilities, but there exists the possibility of developing 
better-optimized algorithms by initially specializing in fields such as programming and theoretical 
computer science, which the AI might become very good at. 
 
One consideration which we have not yet properly addressed is the technology landscape at the 
time when the AI arrives (Tomasik 2014/2016, sec. 7). If a general AI can be developed, then 
various forms of sophisticated narrow AI will also be in existence. Some of them could be used 
to detect and react to a general AI, and tools such as sophisticated personal profiling for 
purposes of social manipulation will likely already be in existence. Considering how these 
influence the considerations discussed here is an important question, but one which is outside 
the scope of this article. 
 
In summary, even if AI could not create a complete master plan from scratch, there seems to be 
a reasonable chance that could still come to substantially outperform humans in many domains, 
developing and using superior expertise than what humans were capable of. How fast AI 
systems could develop to such a level would depend on the speed at which algorithmic and 
hardware improvements became available. They could potentially be very fast, if e.g. the 
required algorithmic insights were more on the level of scaling up the size of the AI’s simulations 
and number of attentional streams, rather than requiring any genuinely new ideas compared to 
what allowed the AI to achieve a rough human level in the first place. 
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