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Abstract

In this paper, I defend the metalinguistic solution to the problem of mathematical omniscience

for the possible-worlds account of propositions by combining it with a computational model of

knowledge and belief. The metalinguistic solution states that the objects of belief and ignorance

in mathematics are relations between mathematical sentences and what they express. The most

pressing problem for the metalinguistic strategy is that it still ascribes too much mathematical

knowledge under the standard possible-worlds model of knowledge and belief on which these

are closed under entailment. I first argue that Stalnaker’s fragmentation strategy is insufficient to

solve this problem. I then develop an alternative, computational strategy: I propose a model of

mathematical knowledge and belief adapted from the algorithmic model of Halpern et al. which,

when combined with the metalinguistic strategy, entails that mathematical knowledge and belief

require computational abilities to access metalinguistic information, and thus aren’t closed under

entailment. As I explain, the computational model generalizes beyond mathematics to a version

of the functionalist theory of knowledge and belief that motivates the possible-worlds account in

the first place. I conclude that the metalinguistic and computational strategies yield an attractive

functionalist, possible-worlds account of mathematical content, knowledge, and inquiry.

1



1 Introduction

According to the possible-worlds account of propositions, there is only one necessarily

true proposition. Assuming that mathematical truths are necessary, it seems to follow

that whoever knows any necessary truth is mathematically omniscient, i.e., knows every

mathematical truth. But this is clearly false: everyone is ignorant of or mistaken about

some mathematical truth. The possible-worlds account thus faces the problem of mathe-

matical omniscience. The metalinguistic strategy for solving this problem, developed by

Robert Stalnaker (1976; 1984), is to characterize the nature of mathematical ignorance as

metalinguistic: when an agent seems to be ignorant of some mathematical truth, what

they are ignorant of is that somemathematical sentence expresses the one necessarily true

proposition.

The metalinguistic strategy faces a seemingly fatal problem: If one assumes the stan-

dard possible-worlds model of knowledge and belief on which these are closed under

entailment, it still ascribes too much mathematical knowledge to many people. This is

because the relevant metalinguistic propositions are entailed by other propositions that

these people know. I call this ‘the closure problem’. Given that the metalinguistic strategy

is considered to be the main and most developed strategy available to defenders of the

possible-worlds account, many have taken its apparent failure to give reason to abandon

the possible-worlds account in favor of more fine-grained accounts of propositions, such

as structured or impossible-worlds accounts.

My aim in this paper is to solve the closure problem for the metalinguistic strategy.

I first argue that Stalnaker’s fragmentation strategy for solving the closure problem is

insufficient (§4). I then develop an alternative approach, which I call ‘the computational

strategy’ (§5). The computational strategy starts from the observation—made, among

others, by Rohit Parikh (1987) and Joseph Y. Halpern et al. (1994)—that standard possible-

worlds models fail to capture the computational aspects of knowledge and belief. As I

explain, this is a particularly salient problem when modeling mathematical thought. The
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algorithmic models developed by Halpern et al. (1994), however, have some shortcom-

ings, and they are incompatible with the possible-worlds account of propositions. I thus

develop amodel of mathematical knowledge and belief that combines key elements of the

algorithmic models with the possible-worlds account. When added to the metalinguistic

strategy, this model entails, in outline, that mathematical knowledge and belief require

computational abilities to access metalinguistic information, and thus aren’t closed under

entailment. This solves the closure problem for the metalinguistic strategy. As I explain,

the computational model can be generalized beyond mathematics. Moreover, the gen-

eralized view that I develop is a version of the functionalist theory of knowledge and

belief that motivates the possible-worlds account in the first place. As I hope to show,

the case of mathematics turns out to be a fruitful starting point for developing a general

possible-worlds, functionalist account of content, belief, and knowledge.

There is another other kind of problem that is standardly raised against the metalin-

guistic strategy, which is that it seems to yield a counterintuitive account of mathematical

thought and inquiry.1 For instance, mathematical ignorance just doesn’t seem to be ig-

norance of meaning.2 I won’t address these counterintuitiveness problems in this paper.

But I think they can be shown to be misguided from a certain Carnapian perspective

that has been making a comeback in the philosophy of mathematics.3 From this perspec-

tive, mathematical truths are analytic and mathematical inquiry consists in discovering

whether certain mathematical sentences follow from meaning postulates or axioms, and

thus whether they express a necessarily true proposition. Mathematical inquiry is thus in

an important sense metalinguistic. Mathematical ignorance, in turn, is also metalinguistic

1Those who raise these counterintuitiveness problems include Stalnaker (1984, 74) himself, Field (1986, 111),

Robbins (2004, 62), Nuffer (2009), and Stanley (2010, fn. 9).

2Those who raise this specific counterintuitiveness problem include Robbins (2004, 64), Jago (2014, 61f.),

and Berto and Jago (2019, 164f.).

3The Carnapian perspective is defended by Carnap (1937; 1939), and more recently by Azzouni (2006);

Gabbay (2010); Rayo (2013); Donaldson (2015); Warren (2020); Ruffino, San Mauro, and Venturi (2021); and

Soysal (2021).
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in the sense that it is ignorance of whether a given sentence is analytic. At the same

time, mathematical ignorance is compatible with basic linguistic competence, which can

be characterized as knowledge of meaning postulates (and which, given the computa-

tional strategy, doesn’t entail mathematical omniscience). I won’t defend or rely on this

Carnapian perspective in this paper, but it motivates my defense of the metalinguistic

strategy. No existing account of content works very well when applied to mathematics.

The metalinguistic strategy combined with the possible-worlds account yields mathe-

matical propositions that are roughly as finely grained as they are on the fine-grained

accounts. But in my view, the metalinguistic construal, especially when combined with

the computational strategy, has deeper motivations from the philosophy of mathematics

and, as this paper will argue, from the psychology of mathematical inquiry.

2 The possible-worlds account, the standard model, and

functionalism

On the possible-worlds account, propositions are identified with functions from possible

worlds to truth-values, or, equivalently, with sets of possible worlds. In this paper, I

adopt the latter convention. Accordingly, a proposition, %, is true at some possible world,

F, just in case F ∈ %. I call ‘�’ the one necessarily true proposition, i.e., � = {F |

F is a possible world}. The possible-worlds account has been highly influential both

within and outside of philosophy in linguistics and computer science, among others, for

the elegant formal semantics that it yields, and the unified account of mental, linguistic,

and informational content that it provides. As Jens Christian Bjerring and Wolfgang

Schwarz (2017) recently argued, it is far from clear that the fine-grained alternatives to the

possible-worlds account have any of its theoretical attractions. The fine-grained accounts

also face problems of their own, notably, that they are overly fine-grained. For instance, no

two sentences ever express the same proposition on standard impossible-worlds accounts,

and many sentences that are intuitively synonymous are assigned different propositions
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by the structured-propositions accounts because they have different structures.4

Proponents of the possible-worlds account such as David Lewis (1979; 1986; 1994)

and Stalnaker (1976; 1984) standardly combine the possible-worlds account with a model

of knowledge and belief as truth in all accessible worlds, which I will call ‘the standard

model’. More specifically, the standard model characterizes the relationship between an

agent’s individual beliefs and her belief state, i.e., her total set of beliefs. On the standard

model, the belief state of an agent, (, at a time (henceforth ‘�(’) is the set of worlds that

are “doxastically accessible” to (, i.e., worlds that might, for all ( believes, be her world.

( believes some particular proposition, % (henceforth also ‘�((%)’) just in case % is true

in all the worlds that are doxastically accessible to (, i.e., �((%) if and only if �( ⊆ %.

Knowledge is modeled similarly. The information state of an agent, S, at a time (henceforth

‘ℐ(’) is the set of worlds that are “epistemically accessible” to (, i.e., worlds that might,

for all ( knows, be her world. ℐ( can be understood as (’s total information at a time. (

knows some particular proposition, % (henceforth also ‘ ((%)’) just in case % is true in all

the worlds that are epistemically accessible to (, i.e.,  ((%) if and only ifℐ( ⊆ %.

The standard model, too, is widely applied within and outside of philosophy, and it

is part of standard epistemic logics. But it has two highly counterintuitive consequences,

which are part of what is called ‘the problem of logical omniscience’. First, on the standard

model, every agent knows �, since for any (, ℐ( ⊆ �. Second, if an agent knows all

of the propositions in some set, Π, and Π entails & (i.e., & is true in all worlds in which

every % ∈ Π is true, or
⋂
Π ⊆ &) then the agent also knows &, since ℐ( ⊆

⋂
Π ⊆ &.

I call this second consequence ‘closure under entailment’.5 Both of these consequences

also hold for belief. The problem of mathematical omniscience, then, is a special case of

the first consequence: assuming that mathematical truths are necessary, there is only one

mathematical proposition, �, and it is known and believed by everyone. Even if one

rejects the standard model, as I will in §5, there is a weaker version of the problem of

4For the former criticism, see, e.g., (Bjerring & Schwarz 2017, 30–32), for the latter, e.g., (Lewis 1970, 31f.).

5This principle is also sometimes called ‘full logical omniscience’ (Fagin et al., 1995, 335).
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mathematical omniscience that only assumes that the possible-worlds account holds and

that mathematical truths are necessary and thus identical to �: namely, whoever knows

� knows any true mathematical proposition (this is the version of the problem stated in

§1).

For Lewis and Stalnaker, the standard model isn’t an optional add-on to the possible-

worlds account of propositions; rather, both the possible-worlds account and the standard

model are motivated from their functionalist theory of knowledge and belief. In this

paper I focus on Stalnaker’s views, but much of the discussion applies to Lewis’s (1979;

1986) as well. For Stalnaker, propositional attitudes such as beliefs and desires are part

of a theory of rationality, i.e., a theory that is intended to explain the behavior of rational

agents (Stalnaker 1976, 80f.; 1984, 4). On this view, we attribute beliefs and desires tomake

sense of agents’ behavior, including (but not limited to) their linguistic behavior, such as

making assertions or answering questions. Beliefs and desires thus play certain functional

roles in explaining and characterizing action. The role of belief, specifically, is as follows:

To believe that % is to be disposed to act in ways that would tend to satisfy

one’s desires, whatever they are, in a world in which % (together with one’s

other beliefs) were true. (Stalnaker 1984, 15)

This is the “pragmatic” component of Stalnaker’s account of belief. Stalnaker’s account also

has a “causal” component according to which belief states indicate or carry information

about a state of the world under normal conditions, which is to say that, under normal

conditions, one has the belief that % only if % (Stalnaker 1984, 13f., 18). The complete

account, which is called the ‘causal-pragmatic account’, is as follows:

The causal-pragmatic account: An agent, (, believes that % iff:

1. ( is in a state that would carry the information that % in normal conditions,

and,

2. ( is disposed to act in ways that would tend to satisfy her desires in a world in

which %, together with (’s other beliefs, is true.
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According to Stalnaker, the causal-pragmatic account carries over to knowledge, for “belief

is what would be knowledge if the relevant normal conditions obtained, or [...] knowledge

is full belief when it is non-defective” (Stalnaker 2019, 2). Thus, on the causal-pragmatic

account, knowing that % entails being in a state that carries the information that % (with no

restriction to normal conditions), and having the capacity to make one’s actions depend

on one’s information (Stalnaker 1991, 437; 1999b, 260f.; 2019, 1f.).

Stalnaker argues that the causal-pragmatic account motivates the possible-worlds ac-

count of propositions and commits him to closure principles (Stalnaker 1976, 80–82; 1984,

23f., 82f.). These arguments have been criticized,6 and, as Stalnaker (2010, 145) acknowl-

edges, the causal-pragmatic account doesn’t entail either the possible-worlds account or

the standard model. But it does entail that belief and knowledge are closed under en-

tailment. To see this, let us assume the possible-worlds account of propositions (as we

will throughout the paper). On the causal-pragmatic account, belief distributes over in-

tersection, i.e., if an agent believes
⋂
Π, then she believes % for all % ∈ Π. (Assume that (

believes
⋂
Π, and let % ∈ Π. ( is thus in a state she would be in only if

⋂
Πwere the case

(in normal conditions). Since
⋂
Π ⊆ %, ( is also in a state she would be in only if % were

the case (in normal conditions). Moreover, since ( is disposed to act in ways that would

tend to satisfy her desires in worlds in which
⋂
Π, together with her other beliefs, is true,

she is also disposed to act in ways that would tend to satisfy her desires in worlds in which

%, together with her other beliefs, which include
⋂
Π, is true.) Given that if Π entails &

(i.e., if
⋂
Π ⊆ &) then

⋂
Π =

⋂
Π ∩ &, if an agent believes every proposition in Π, then

she also believes &. A parallel argument works for knowledge. Therefore, if we would

like to maintain the possible-worlds account of propositions, but not have knowledge and

belief be closed under entailment (for reasons that will become clear in §3), then we can’t

accept the letter of Stalnaker’s functionalist theory of knowledge and belief. In §5, I will

argue that we can nonetheless keep its spirit.

6For criticisms, see, e.g., (Speaks 2006) and (Stanley 2010).
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3 The metalinguistic strategy and the closure problem

Let me use ‘mathematical proposition’ to refer to the objects of mathematical belief or

doubt and to the contents usually expressed by and communicated with mathematical

sentences. The metalinguistic strategy for solving the problem of mathematical omni-

science is based on the claim that mathematical propositions are propositions about the

relationship between some mathematical sentence and the one necessarily true propo-

sition, � (Stalnaker 1976, 87f.; 1984, 73–76).7 For example, when Ola doesn’t seem

to know that 5, 801 is prime, what Ola is ignorant of isn’t �, but rather, that the

sentence ‘5, 801 is prime’ expresses �. So, on the metalinguistic strategy, mathemat-

ical propositions are propositions of the form {F | ) expresses � at F}, where ) is

a mathematical sentence.8 Given that, plausibly, for any distinct sentences ) and #,

{F | ) expresses � at F} ≠ {F | # expresses � at F}, the metalinguistic strategy

entails that although there are only two necessary propositions, ∅ and �, there are as

many distinct mathematical propositions as there are distinct mathematical sentences.

The problems of mathematical omniscience of §2 are thus averted: it isn’t the case that

everyone knows every true mathematical proposition, or that whoever knows � knows

every true mathematical proposition.

As I have stated it, the metalinguistic strategy primarily gives an account of the nature

of the information that is believed or doubted in mathematics—it says that mathematical

information is metalinguistic. But of note is that the metalinguistic strategy also has

consequences for the semantics of ascriptions of propositional attitudes, i.e., accounts of

the truth-conditions of sentences of the form ‘( believes that %’. On Stalnaker’s (1984, 73f.;

1999a; 1999c) view, the semantics of ascriptions of propositional attitudes is more complex

7Others who endorse the metalinguistic strategy include Lewis (1986, 36; 1996, 552) and Braddon-Mitchell

and Jackson (2007, 200f.).

8It wouldn’t make a difference for my arguments to take mathematical propositions to be of the form

{F | ) expresses a truth at F}, along the lines of the “diagonal” propositions Stalnaker defines in (1978,

81), but here I follow Stalnaker’s exposition in (1976; 1984).
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and context-dependent than a simple theory of the form: ‘( believes that %’ is true if and

only if the referent of ‘(’ believes the proposition that is expressed by ‘%’. In particular,

when ‘%’ is a mathematical sentence, the ascription ‘( believes that %’ is true usually when

the object of belief is the metalinguistic proposition {F | ‘%’ expresses� at F}. I won’t

discuss theories of propositional attitude ascriptions in this paper (except some in §5.2),

but focus on the metalinguistic strategy as a theory of the nature of the subject matter of

mathematical inquiry.9

Themetalinguistic strategy faces the closureproblem: There are cases inwhich anagent

knows certain (contingent) propositions that entail that some truemathematical sentences

express�, and the metalinguistic strategy deems these metalinguistic propositions to be

the objects of the agents’ ignorance. Such cases (henceforth ‘closure-problem cases’)

are incompatible with the standard model of §2. Thus, although proponents of the

metalinguistic strategy don’t have to say that everyone (or whoever knows �) knows

every true mathematical proposition, their account still entails that there are many people

who have much more mathematical knowledge than they intuitively seem to have. The

closure problem has been raised by many, including by Stalnaker (1984, 76), who presents

the following kind of case.10 Let� be a set of axiom sentences (henceforth simply ‘axioms’),

and let ' be a set of rules of inference. Suppose Ola knows that every 08 ∈ � expresses

�. Suppose Ola also knows that if every 08 ∈ � expresses �, then every sentence that

9This is also how Stalnaker (1984, 73f.) frames the metalinguistic strategy.

10Field (1986, 111), Speaks (2006, 448–450), and Williamson (2016, fn. 1) are among those who raise the

closure problem, but they raise it in a slightly different way. On their view, whoever is linguistically

competent with, e.g., arithmetical expressions, will believe the metalinguistic proposition expressed by

(∗): “‘197 × 49 = 9, 653’ means that 197 × 49 = 9, 653.” This, together with the proposition expressed

by ‘197 × 49 = 9, 653’—viz. �, which everyone knows—entails the metalinguistic proposition that was

supposed to capture the speaker’s ignorance of the multiplication. However, as Stanley (2010, fn. 14) and

Stalnaker (2021, 187f.) note, defenders of the metalinguistic strategy should deny that such a speaker

believes the proposition expressed by (∗)—at best they believe that {F | (∗) is true at F}. In any case, the

computational strategy developed in §5 also solves this version of the closure problem.
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is derivable in 〈�, '〉 (henceforth ‘`〈�,'〉’) also expresses �. Now assume that `〈�,'〉 #.

Since this is necessarily true, Ola knows it. But then, what Ola knows entails that #

expresses �. Thus, by closure under entailment, Ola knows that # expresses �. This

holds for any derivable sentence #, and hence contradicts that Ola doesn’t know that #

expresses �, for some theorem #.

4 The fragmentation strategy

Stalnaker (1984, 79–88; 1991; 1999b; 2021) and others (such as Lewis (1982; 1986, fn. 27),

Agustín Rayo (2013), Adam Elga and Rayo (2021a; 2021b)) have proposed to solve the

closure problem by means of the fragmentation strategy. The first step of this strategy is

to claim that agents can be “fragmented” in the sense of having more than one belief state

at the same time. On this view, each belief state corresponds to a context the agent is in,

or a task that the agent is engaged in (Stalnaker 1984, 83, 86). Functionalism motivates

the possibility of fragmentation, since different behavioral dispositions can be displayed

in different kinds of contexts or for different kinds of tasks (Stalnaker 1984, 83). The

possibility of fragmentation entails that information, in turn, can be accessible for some

purposes or in some contexts, but inaccessible for others. Elga and Rayo (2021a, 39f.;

2021b, 3f.) give the example of a puzzle-solver for whom the information that ‘dreamt’

is a word of English with six letters and ending in ‘mt’ is inaccessible for the purpose

of solving a cross-word puzzle, but accessible for the purpose of answering the question

“Is ‘dreamt’ a word of English with six letters and ending in ‘mt’?”11 The final step of

the fragmentation strategy is to claim that deduction is the process of integrating one’s

different belief states by changing “one’s dispositions so that the actions one is disposed

to perform in the two kinds of situations are appropriate relative to the same belief state”

(Stalnaker 1984, 84). The “local reasoning” model of knowledge and belief, developed

by Fagin and Halpern (1987), is standardly associated with the fragmentation strategy. It

11Stalnaker (1991, 438) gives a similar example.
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differs from the standard model in that, among others, agents have multiple belief states,

and a notion of (“local”) belief is defined as truth in all possible worlds in some belief

state.12

It is highly plausible that agents can be fragmented. Many clear cases of fragmentation

have been described, including the case of the puzzle-solver above, or the case of the

“disavowed racist” whose actions towards people of a certain racial identity suggest she

has prejudices that she sincerely professes not to have (Stalnaker 2021, 190).13 The problem

with the fragmentation strategy is that it is highly implausible that every case in which

one is ignorant about some entailment of one’s beliefs is a case of fragmentation. One

can easily construct cases in which an agent clearly has all the relevant beliefs in one

fragment—the beliefs explain the one task the agent is involved in and there is only one

relevant context—and yet the agent doesn’t know all the entailments of these beliefs.

Consider, for instance, the case of Ola from §3. To simplify it, assume that there are only

two axioms, 01 and 02, in �. We have the following situation:

1.  Ola({F | 01 expresses� at F}) [assumption],

2.  Ola({F | 02 expresses� at F}) [assumption],

3.  Ola({F |At F, for any ), if 01 expresses� and 02 expresses� and `〈�,'〉 ), then )

expresses�}) [assumption],

4.  Ola({F |`〈�,'〉 # at F}) [since {F |`〈�,'〉 # at F} =�],

5.  Ola({F | # expresses � at F}) [by 1–4 and closure under entailment].

The fragmentation strategy for this closure-problem case denies 5 by claiming that it

must be the case that 1–3 aren’t all believed in the same belief state. In other words, the

12Another notion of (“implicit”) belief is defined as truth in all possible worlds in all belief states (Fagin &

Halpern 1987, 59).

13This example is introduced in (Schwitzgebel 2010) and discussed in (Elga & Rayo 2021a). For other cases,

see, e.g., (Lewis 1986, 31f.), or (Elga & Rayo 2021a; 2021b).
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fragmentation strategy says that Ola must be like the disavowed racist and act as though,

say, she believes that 01 expresses � in one context or for one kind of task, and that 02

expresses � in another context, but never both in the same. But why must this be so?

Let us assume that Ola’s task is to figure out whether # expresses �. Ola knows all the

axioms and rule of inference of 〈�, '〉, perhaps she even writes them all down as she

begins her task. Ola knows that derivations in 〈�, '〉 preserve expression of�—assume

Ola states that she is looking for a proof of # because she knows that # expresses � if it

is derivable. Ordinarily, we wouldn’t hesitate to say that all of 1–3 are true in this context.

Furthermore, there is no intuitive sense in which the axioms and rules of inference aren’t

accessible to Ola for the purpose of proving #—this is in contrast with the puzzle-solver

case where, intuitively, one piece of information is available for a simpler task but isn’t

available for a more complicated task. Here, there is no intuitive sense in which Ola no

longer knows the axioms and rules of inference when her task is to prove #.

More generally, it seems that for the one task of solving mathematical problems—or,

to take another example, for the one task of winning a chess game—thinkers have, or

at least can have, all the rules and axioms or board positions in one belief state. Just

as playing chess doesn’t make one cease to know the rules of the game and the board

positions, proving theorems doesn’t make one cease to know the axioms and rules of

inference. Solving the closure problem by diagnosing every closure-problem case as a

case of fragmentation is ad hoc—it isn’t backed by the intuitions that motivate the clear

cases of fragmentation.14

14Field (1986, 110f.) and Jago (2013, 1154f.) also raise this kind of problem. Jago (2014, 58f.) and Berto

and Jago (2019, 167f.) raise a similar problem: they argue that the fragmentation strategy cannot explain

that the difficult part of deduction isn’t putting the relevant premises together, but moving from those

premises to the conclusion.
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5 The computational strategy

We thus need a different approach for solving the closure problem for the metalinguistic

strategy. In the following, I propose what I call ‘the computational strategy’. Here is the

motivating idea. Inmany cases of failure of logical omniscience, the problem, intuitively, is

that the agent is unable to perform or to efficiently perform a certain kind of computation.

For instance, if Ola had an algorithm that she could run and that would output a proof of

# after a few seconds of reflection, we would be inclined to say that Ola knows that # is

true. Similarly, if Ola had a procedure to search through a set of theorems reliably stored

in her memory (for instance, via expert testimony) and that would output #, we would

be inclined to say that Ola knows that # is true. But if Ola has no algorithm for finding a

proof of #, no method to retrieve # from her memory, or if she has a method for finding a

proof of# but it would take her toomany resources—say, months of work—to find it, then

we wouldn’t say that she knows that # is true. To take another example, assume that Pars

knows that 1, 001 is composite. It seems plausible that Pars has some kind of algorithm

that underlies this knowledge, for instance, an algorithm to quickly factorize numbers; or

an algorithm to search through some memorized list of composite numbers that includes

1, 001, or through some memorized list of numbers divisible by 11 that includes 1, 001.

Many non-mathematical examples can also be given. Holmes and Watson have the same

evidence about a case. Holmes knows who the culprit is but Watson doesn’t, because

Holmes has an efficient way of computing who the culprit is based on the information

that he has, whereas Watson doesn’t. Ola and Pars have the same information about the

rules of chess and the current board position. Ola knows that Blackmates in three but Pars

doesn’t, because Ola has an efficient way of computing the mate, whereas Pars doesn’t.15

The idea that lack of computational abilities is the proper diagnosis of many cases of

failure of logical omniscience isn’t new. Stalnaker himself voices it in numerous places.16

15Example like these and others are given by Parikh (1987).

16See, e.g., (Stalnaker 1991, 436; 1996, 201f.; 1999b, 260–262; 2021, 190–192). However, for Stalnaker compu-
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Furthermore, it is the basis of a formal model of knowledge and belief called the ‘algorith-

mic’ model, developed by Halpern et al. (1994).17 In line with the functionalist account of

§2, the algorithmic model is motivated by the idea that knowledge and belief are capac-

ities or dispositions to act (Halpern et al. 1994, 256). According to Halpern et al. (1994,

256), the ability to act on the information that ) requires the ability to compute ), which

should thus be captured in an adequate model of knowledge and belief. Formally, the

algorithmic model supplements the standard model of §2: in addition to epistemically

accessible worlds, agents have knowledge algorithms that take as input a sentence, ), and

return either ‘Yes’, ‘No’, or ‘?’.18 There are different ways of interpreting these outputs. As

Halpern and Riccardo Pucella (2011, 222) put it, the algorithm returns ‘Yes’ if the agent

can compute that ) is true, ‘No’ if the agent can compute that ) is false, and ‘?’ otherwise.

In Halpern et al. (1994, 257f.) and Fagin et al. (1995, 394), an answer of ‘Yes’ instead means

that the agent “can compute that she knows ),” where ‘know’ here is understood in the

standard model’s sense (i.e., one knows ) in this sense just in case ) is true in all epistem-

ically accessible worlds), and an output of ‘No’ means that the agent can compute that she

doesn’t know ) in this sense. In either case, the algorithmic model defines knowledge (or

‘algorithmic knowledge’) as follows: an agent (algorithmically) knows ) just in case the

agent’s knowledge algorithm outputs ‘Yes’ on input ).19

Motivated by the idea that one’s knowledge should be part of one’s information,

Halpern et al. propose the constraint that knowledge algorithms should be sound, i.e.,

an output of ‘Yes’ should entail that ) is known in the standard model’s sense (and

tation is always a kind of defragmentation (which I reject).

17Similar approaches include that of Konolige (1986), Parikh (1987), and Aaronson (2013). For comparisons,

see (Fagin et al. 1995, 411–413). For comparisons between the algorithmic approach and other approaches,

see (Halpern & Pucella 2011).

18In (Halpern et al. 1994), knowledge algorithms also take as input a variable representing the agent’s local

state, but since we are concerned with single-agent and static knowledge and belief throughout the paper,

we can set it aside (as Halpern and Pucella (2011) do in their exposition).

19For exposition, see also (Fagin et al. 1995, ch. 10).
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thus also that ) is true), and an output of ‘No’ should entail that ) isn’t known in the

standard model’s sense (Halpern et al. 1994, 259). According to Halpern et al. (1994,

259), algorithmic knowledge without the requirement of soundness can be understood

as a model of belief: one believes ) just in case one has an algorithm that outputs ‘Yes’

when queried about ), but ) needn’t be true or part of one’s information. On the

algorithmic model, one can make finer-grained distinctions between different kinds or

grades of knowledge and belief by considering differences in the algorithms and in the

resources used by the different algorithms. But because there are no general constraints

on algorithms, (sound) algorithmic knowledge doesn’t suffer from problems of logical

omniscience. In particular, having an algorithm that outputs ‘Yes’ given ) doesn’t entail

having an algorithm that outputs ‘Yes’ given #, even if ) entails # or is equivalent to it.

The algorithmic model looks promising for defenders of the metalinguistic strategy: it

doesn’t entail closure under entailment, it gives plausible diagnoses of failures of math-

ematical omniscience in closure-problem cases, and it fits with the functionalist motiva-

tions of the possible-worlds account. But it also has some shortcomings. For one, the

algorithmic model is under-specified as an account of knowledge and belief. The algo-

rithmic model states that an agent knows ) if and only if the agent’s knowledge algorithm

outputs ‘Yes’ given ). To turn this into a functionalist account of knowledge, we should

specify a realistic interpretation of knowledge algorithms that draws a connection between

knowledge algorithms and agents’ capacities to act on the basis of relevant information.

The algorithmic model is also simplistic in a number of ways. For example, on the algo-

rithmic model, knowledge is always and only manifested in linguistic behavior, which is

implausible. Knowledge should be applicable in response to a broader range of inputs

(i.e., not only if one is asked to determine the truth-value of some sentence), and it should

yield a broader range of manifestations or outputs (i.e., not only ‘Yes’). The algorithmic

model also ignores the relevance of desires to action: one will only output a sentence’s

truth-value if one desires to give a correct answer. These shortcomings aren’t surprising:

the algorithmic model, unlike, for instance, the causal-pragmatic account, is a formal
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model that isn’t in the business of providing a realistic functionalist account of knowledge

and belief.

A much more important problem with the algorithmic model given our purposes

is that as it stands, it is incompatible with the possible-worlds account of propositions.

On the algorithmic model, the algorithms in question operate on sentences and not on

propositions. The algorithmic model can thus only be understood as either providing

a theory of the truth-conditions of sentences of the form ‘( knows that %’ (i.e., a theory

of knowledge ascription as discussed in §3), or as modeling knowledge of sentences as

opposed to (possible-worlds) propositions.20 This isn’t an accidental feature of the algo-

rithmic model. For instance, a desideratum of the algorithmic model is that a knowledge

algorithm can output ‘Yes’ given ) but either ‘No’ or ‘?’ given # even when ) and # are

necessarily equivalent (Fagin et al. 1995, 398f.), whichworks precisely because ) and# are

sentences and not contents (in which case ) = #).21 Furthermore, the algorithmic model

is designed to capture an agent’s ability to answer questions about sentences—the agent

(or her algorithm) is given a sentence and responds ‘Yes’, ‘No’, or ‘?’.22 The algorithmic

model thus in effect captures a linguistic ability, which is why the algorithms operate on

sentences. From this perspective, it isn’t clear what it would even mean to give the agent

(or the algorithm) sets of possible worlds instead of sentences. As I explained in §3, my

primary concern in this paper is to give a theory of the nature of mathematical proposi-

tions and not a semantics of ascriptions of propositional attitudes. Furthermore, it would

be unfortunate to have a disjunctive theory of knowledge and belief where their objects

are sometimes sentences, and at other times propositions. As it stands, the algorithmic

model thus can’t serve our purposes.

20For discussion and the related notion of “linguistic” knowledge and belief, see (Parikh 1987; 2008). See

also (Pucella 2004, Appendix A) for a related notion of computational knowledge of sentences.

21Parikh (1987; 2008) also notes this desideratum for his notion of linguistic knowledge.

22For these kind of motivations for the algorithmic model, see, e.g., (Fagin et al. 1995, 392), (Pucella 2004, 4f.,

23). Parikh’s (1987) notion of linguistic knowledge explicitly captures verbal abilities to answer questions.
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In the following, I develop a version of the algorithmic model that is adapted to the

possible-worlds account and that also provides a more realistic account of knowledge

and belief. I call it the ‘computational’ account. As I explain, the computational account

is a close variant of the causal-pragmatic account of §2 that also improves upon it for

reasons independent of closure under entailment. Conjoining the computational account

with the metalinguistic strategy will solve the closure problem and yield an attractive,

functionalist account of mathematical thought and inquiry. I proceed as follows. I first

motivate afirst-pass computational account that is restricted tometalinguistic propositions

(§5.1). The first-pass account is still simplistic in some respects, but it is instructive, and it

captures much of the original motivating idea concerning mathematical knowledge and

belief. I then explain how to improve the first-pass account and to generalize it beyond

metalinguistic propositions (§5.2).

5.1 A first-pass computational account

I henceforth take on board the causal component of the causal-pragmatic account of §2:

knowledge requires information possession, and belief requires information possession

under normal conditions. Since knowledge on the standard model is often used inter-

changeablywith information possession,23 it is natural to further assume that the standard

model is a correct model of information possession (under normal conditions). Thus, I

assume that the standardmodel is partially correct about knowledge and belief, i.e.,  ((%)

only ifℐ( ⊆ %, and �((%) only if�( ⊆ %.24

The pragmatic component of the causal-pragmatic account encapsulates the idea that

knowledge and belief are capacities or dispositions to act. It is this component, I claim, that

23Epistemically accessible worlds are standardly taken to encapsulate one’s information; see, e.g., (Halpern

et al. 1994, 256f.).

24This assumption has the same consequence as adopting the soundness requirement on knowledge algo-

rithms discussed in §5.1, viz., (algorithmic) knowledge entails knowledge in the standard model’s sense,

and therefore also truth.
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should bemodeled in terms of algorithms. This is a natural idea. It is highly plausible that

whenever one is disposed to exhibit some behavior, this is because one has an (internal)

algorithm that produces this behavior. Replacing ‘( is disposed to act ...’ by ‘( has an

algorithm that outputs some action ...’ in clause 2 of the causal-pragmatic account would

thus plausibly yield extensionally equivalent accounts. But, as I will explain, taking

seriously the idea that knowledge and belief require having certain algorithms involves

rejecting clause 2 of the causal-pragmatic account, as well as the standard model that it

motivates.

I start by focusing exclusively onmetalinguistic propositions. This is because adapting

the algorithmicmodel to the possible-worlds account is easiest in the case ofmetalinguistic

propositions. Since metalinguistic propositions are about sentences, we can simply follow

the algorithmic model in taking the algorithms in question to operate on sentences, while

departing from the algorithmic model in taking the objects of knowledge and belief to be

possible-worlds propositions. So, we can take knowledge and belief of a metalinguistic

proposition {F | ) expresses � at F} to require an algorithm that operates on ). The

next step is to specify what exactly these algorithms should do. Plausibly, and in line

with the original motivating idea above, an algorithm underlying one’s knowledge of a

metalinguistic proposition should efficiently compute that the relevant sentence is true

when the agent needs to act on this information, for instance, when the agent is asked

to determine the truth-value of the sentence. It seems plausible that if Ola knows that

# is true, then if she is asked to determine whether # is true, she should be able to give

an affirmative answer. Moreover, the answer she gives shouldn’t be a random guess, but

be based on some reliable process, such as calculating, proving, or retrieving something

from (reliably stored) memory. Knowledge should thus require the algorithm in question

to be reliable. Belief shouldn’t have the reliability requirement. If Ola believes that #

is true, then if she is asked to determine whether # is true, she will give an affirmative

answer, but she may have no proof, computation, or reliable memory backing this answer.

The following first-pass accounts are meant to capture these intuitive ideas. Starting with
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knowledge:

Mathematical Knowledge 1: An agent, (, knows that {F | ) expresses � at F} iff:

1. ( is in a state that carries the information that {F | ) expresses � at F} (i.e.,

ℐ( ⊆ {F | ) expresses � at F}), and,

2. ( has an algorithm that reliably outputs ‘True’ if ( is asked to determine )’s

truth-value, using at most resources '.

Mathematical Knowledge 1 yields a notion ofmathematical knowledge that isn’t closed

under entailment. Even if one knows propositions (including perhaps metalinguistic

ones) that entail that some ) expresses �, and one thus possesses the information that

) expresses � (since information possession is as before closed under entailment), it

doesn’t follow that we have an algorithm that reliably outputs ). For instance, Ola may

have an algorithm that reliably lists the axioms and rules of inference, but none that lists

theorems, or none that lists theorems within some reasonable bound ' on resources. The

closure problem thus doesn’t arise if one adopts Mathematical Knowledge 1.

Clause 2 of this account is its key algorithmic component. Let us examine it closer.

First, one might worry that mathematical knowledge requires actually having performed

some calculation or found a proof, and thus find clause 2 to be too weak. One could

for this reason modify clause 2 to require also that the algorithm in question has termi-

nated, for instance, by adding “and the algorithm has output ‘True’.”25 However, on a

dispositional understanding of knowledge in line with functionalism, it is more natural to

take mathematical knowledge to require having the ability to output some metalinguistic

informationwithin certain bounds: as Stalnaker (1991; 1999b) discusses, on a functionalist

conception, we would like to make sense of the idea that knowledge is “available” for the

25This would be closer to Parikh’s (1987) account: on his definition, ( linguistically-knows ) if and only if (

has said ‘Yes’ to the question whether ) is true, and whenever she says ‘Yes’ to ) she knows ) in the sense

of the standard model, and whenever she says ‘No’ to ) she knows ¬) in that sense (Parikh 1987, 4).
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purpose of determining action, or that it can “easily be used to determine an output”

(Stalnaker 1999b, 261)—such as answering ‘True’—without having actually output it.

Second, consider constraints one might put on the algorithms. In algorithmic models,

the algorithms in question are only assumed to be effectively computable and to terminate

(Pucella 2004, 23). Here, one can make these assumptions as well—after all, it is highly

plausible that cognition in general can be explained in terms of effectively computable al-

gorithms.26 Otherwise, and in line with algorithmic models, we should have a permissive

understanding of algorithms so as to account for different ways in which one might have

mathematical knowledge. For instance, an agent might have an algorithm that reliably

outputs ‘True’ if asked to determine )’s truth-value because she has an algorithm that

finds either a proof or a refutation of all sentences of some particular type (such as basic

numerical equations) and outputs ‘True’ if the sentence has a proof, and ) is of that type.

Alternatively, the agent can have an algorithm that searches through some set of sentences

that are stored in her memory via a reliable process (such as, the process of accepting the

testimony of experts mathematicians) and outputs ‘True’ if the input sentence is in that

set, and ) is in that set.

Third, consider the bound on resources, '. I mean ‘resource’ here to be understood

broadly and to include, for instance, time, attention, or energy. If we understand knowl-

edge to be a certain kind of capacity to act, then it is plausible that there are bounds on

the resources one can use to have knowledge. As before, one will intuitively not count as

knowing that 38, 629 is prime if one only has a highly inefficient algorithm to check for

primality; for instance, if it would take one months of work to figure this out. If one holds

that ascriptions of knowledge are in general context-dependent, one can add here that in

different situations, there are going to be different bounds that are relevant for attributing

mathematical knowledge.27

26These assumptions aren’t essential, however; e.g., Pucella (2004, 188) considers using relativized Turing

machines.

27Stalnaker (1991, 437) suggests this possibility.
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More generally, if knowledge is a certain kind of capacity, then it makes sense that

knowledge should be evaluable along a number of different dimensions and degrees, and

not be a binary matter of either having or lacking information. Mathematical Knowledge

1 yields a notion of mathematical knowledge that lends itself to such fine-grained evalu-

ations, and thus has another advantage over both the standard model and the fragmen-

tation account. For instance, if Ola is very proficient at mental arithmetic, her knowledge

of 197 × 49 = 9, 653 differs in some ways from Pars’s, who only (reliably) memorized a

number of multiplications, of which 197 × 49 = 9, 653 happens to be one. In particular,

Ola’s knowledge unlike Pars’s displays mathematical abilities. Perhaps Ola is also faster

at answering such questions, and her knowledge is thus more useful for certain kinds of

tasks. These kinds of differences between Ola’s knowledge and Pars’s knowledge will be

captured by the differences in both the algorithms and the resources that they use.

Finally, consider the reliability requirement. This requirement yields a broadly relia-

bilist account of knowledge, which is fitting given the functionalist outlook I am adopting

here. At the same time, it isn’t essential to the account, for one canmodify clause 2 tomake

different restrictions on the processes that output ‘True’ given ). In general, the reliability

of an algorithm should be measured with respect to a class of sentences of some type. For

instance, (might know that ‘90 is composite’ is true, because she has an algorithmwhich,

when asked to determine the truth-value of sentences of the form ‘30...3= is composite’

where 3= ∈ {0, 2, 4, 6, 8}, outputs ‘True’. But she might have no algorithm that reliably

outputs ‘True’ whenever she is asked to determine the truth-value of ‘= is composite’, for

an arbitrary =.28

Along the same lines asMathematical Knowledge 1, we can outline a first-pass account

of mathematical belief:

Mathematical Belief 1: An agent, (, believes that {F | ) expresses � at F} iff:

28Pucella (2004, 47–60) and Halpern and Pucella (2005) formulate a relevant weaker notion of soundness in

terms of randomized algorithms that is meant to formally represent a probabilistic reliability requirement

on knowledge algorithms.
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1. ( is in a state that would carry the information that {F | ) expresses � at F}

in normal conditions (i.e.,�( ⊆ {F | ) expresses� at F}), and,

2. ( has an algorithm that outputs ‘True’ if ( is asked to determine )’s truth-value,

using at most resources '.

On this account, believing that {F | ) expresses � at F} can be understood to require

having a disposition to assent to ). This is in line with the general accounts of belief of

Hartry Field (1978) or Jeff Speaks (2006), only restricted tometalinguistic propositions. For

the same reasons as forMathematical Knowledge 1, the notion of belief that Mathematical

Belief 1 yields isn’t closed under entailment, and thus the closure problem doesn’t arise if

one adopts Mathematical Belief 1.

These first-pass accounts of mathematical knowledge and belief are promising addi-

tions to the metalinguistic strategy. They provide a plausible, functionalist account of

mathematical knowledge and belief. They enable defenders of the metalinguistic strategy

to avoid the closure problem. And they capture the specifically computational aspect of

failures of logical omniscience in closure-problem cases. But the first-pass accounts still

need some improvements. Just like the algorithmic model, they are simplistic in their ac-

count of the inputs and outputs of knowledge and belief, and in ignoring the relevance of

desires to action. They are also restricted to metalinguistic propositions. In the following,

I outline a proposal that builds upon the first-pass accounts to address these issues.

5.2 Improving and generalizing the first-pass accounts

Taking cues from the causal-pragmatic account, a natural idea is to construe the algorithms

in the first-pass accounts more generally as outputting desire-satisfying behavior instead

of just ‘True’. However, we can’t simply replace clause 2 of the causal-pragmatic account

for knowledge with, say:

2′. ( has an algorithm that reliably produces desire-satisfying behavior in worlds in

which {F | ) expresses� at F}, together with (’s other beliefs, are true, and using
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at most resources '.

Such an account would entail closure under entailment for the same reasons as the causal-

pragmatic account does, as seen in §2.

To avoid closure under entailment, we should consider why exactly the first-pass

accounts avoid it. The first-pass accounts put constraints on the kinds of algorithms one

must have in order to know a given mathematical proposition. Knowledge and belief

that {F | ) expresses � at F} require having a specifically )-involving algorithm: one

that can answer questions about the truth-value of ). The first-pass accounts thus in

effect put constraints on the kinds of tasks one must be able to achieve (if one so desires)

in worlds in which some mathematical proposition (together with one’s other beliefs) is

true. These accounts differ in this respect from the causal-pragmatic account, where there

is no restriction on the relevant actions or tasks associated with the knowledge or belief

that %. This, as I will explain, is the key virtue of the first-pass accounts that we ought to

preserve in both improving and generalizing them.

Accordingly, here is an improved proposal for mathematical knowledge:

Mathematical Knowledge 2: An agent, (, knows that {F | ) expresses � at F} iff:

1. ( is in a state that carries the information that {F | ) expresses � at F} (i.e.,

ℐ( ⊆ {F | ) expresses � at F}), and,

2. ( has an algorithm that reliably produces desire-satisfying behavior in worlds

in which {F | ) expresses � at F}, together with (’s other beliefs, are true,

with respect to )-related tasks, and using at most resources '.

For the same reasons as those seen in §5.1, Mathematical Knowledge 2 yields an account

of knowledge that isn’t closed under entailment. For instance, Ola may have algorithms

that produce desire-satisfying behaviorswith respect to axiom-related tasks, but none that

produce desire-satisfying behaviors with respect to theorem-related tasks. The closure

problem thus doesn’t arise if one adopts Mathematical Knowledge 2. A computational

account of mathematical belief can be developed similarly, changing clause 1 to indication
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under normal conditions, and changing clause 2 to ‘would produce desire-satisfying

behavior’. In the following I focus on knowledge, for the discussion carries over exactly

to belief.

Mathematical Knowledge 2 doesn’t have the limitations of Mathematical Knowledge

1. The relevance of desires to action is taken into account, and the relevant actions are

construed more broadly. In particular, one can take )-related tasks to go beyond answer-

ing questions about the truth-value of ). For instance, it is plausible that mathematical

knowledge of a theorem also requires being able to use it in further (mathematical) ar-

guments, for instance, as an assumption in further proofs. Using ) in mathematical

arguments should thus also count as a )-related task. It may be that which and how

many tasks count as “)-related” will vary depending on context. I will set aside such

context-dependence here, but note that the account can accommodate it either via the

fragmentation strategy (by endorsing that agents can have different information sets in

different context), or by adding that what specific )-related tasks count as relevant for

knowledge that {F | ) expresses� at F} depends on context.

Having improved the first-pass account of mathematical knowledge, the next step is to

generalize it. Once again, I propose to do this by putting constraints on the kinds of tasks

onemust be able to achieve in order to know that %. Thismodification is an independently

plausible amendment of the causal-pragmatic account. Recall that on the causal-pragmatic

account, the functional role of the belief that % is being disposed to act in ways that would

tend to satisfy one’s desires in worlds in which %, together with one’s other beliefs, are true,

i.e., in worlds in which all of one’s beliefs are true. Assume that ( believes that % and that

( believes that &, where % ≠ &. On the causal-pragmatic account, the functional roles of

both beliefs turn out to be the same: believing that % requires acting in ways that satisfy

(’s desires in a world in which % and & and the rest of (’s beliefs are true, and believing

that & requires the same. But it is highly counterintuitive that every belief in an agent’s

belief state has the same functional profile. For instance, my belief that there is dessert in

the fridge surely has a different functional role than my belief that someone was elected

24



President: the former explains my dispositions to perform actions of one type—such as

eating the dessert or saying that there is dessert in the fridge—while the latter explains

my dispositions to perform actions of an entirely different type. Eric Schwitzgebel (2002,

251) captures this idea using the notion of a belief’s dispositional stereotype, i.e., dispositions

that people would ordinarily regard as characteristic of having that belief. On this view,

believing that there is dessert in the fridge has a dispositional stereotype which includes

the disposition to say that there is dessert in the fridge (in appropriate circumstances)

and the disposition to go to the fridge (if one wants dessert), whereas the dispositional

stereotype of the belief that someone was elected President is entirely distinct. Most

broadly dispositionalist accounts of belief capture these differences in the functional roles

of an agent’s different beliefs.29 It is a problem for the causal-pragmatic account that it

doesn’t.

Putting constraints on the kinds of tasks one must be able to achieve in order to know

or believe that % is one way to remedy this problem. For instance, one can maintain that

knowledge that there is dessert in the fridge requires having algorithms that produce

desire-satisfying behaviors specifically with respect to dessert- and fridge-related tasks,

such as consuming dessert; answering questions such as ‘Is there dessert in the fridge?’; or

emptying the fridge. And these dessert- and fridge-related tasks will be different from the

tasks relevant to thebelief that someonewas electedPresident. There are thus independent

reasons to think that the functional role of belief given by the pragmatic component of

the causal-pragmatic account should have an implicit constraint on relevant tasks, just

like first- and second-pass computational accounts of mathematical knowledge and belief.

Accordingly, here is a generalized proposal:

Computational Knowledge: An agent, (, knows that % iff:

1. ( is in a state that carries the information that % (i.e.,ℐ( ⊆ %), and,

2. ( has an algorithm that reliably produces desire-satisfying behavior in worlds

29See, e.g., the discussion of dispositionalism in (Schwitzgebel 2019).
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in which %, together with (’s other beliefs, are true, with respect to tasks �, and

using at most resources '.

The key difference between the computational and the causal-pragmatic accounts is the

restriction in clause 2 to the relevant tasks �. We arrived at this amendment by taking

seriously the idea that knowledge requires having certain algorithmsor abilities toproduce

action, and from the computational account of mathematical knowledge where these

algorithms plausibly operate on sentences or perform other specifically sentence-related

tasks.

One difference between Computational Knowledge andMathematical Knowledge 2 is

that it is less straightforward to specify which tasks are relevant for which proposition. In

the case of a metalinguistic proposition {F | ) expresses � at F}, the relevant tasks are

)-related tasks. But which are the relevant tasks � in the case of a general proposition %?

Becausemy focus here is on the case ofmathematics, I leave amore extensive investigation

of this question for future work. But it is plausible that the dispositional stereotypes we

associate with different contents will at least help determine which tasks � are relevant

for which contents %. Using the example above, the dispositional stereotype for the belief

that there is dessert in the fridge will determine that the tasks relevant for knowledge

that there is dessert in the fridge are tasks related specifically to the dessert in the fridge,

such as eating it; giving it to someone; or throwing it in the trash. And these are distinct

from the tasks relevant for knowledge that someone was elected President, because we

associate a different dispositional stereotype with that belief.

Once again, because of the restriction on relevant tasks, the notion of knowledge

defined by Computational Knowledge isn’t closed under entailment. If % entails &, and

one knows that %, one thereby possesses the information that &, but one needn’t know

that &, because the tasks associated with knowledge that % might (and likely will) differ

from the tasks associated with knowledge that & whenever % ≠ &. For instance, let �

be the set of worlds in which the axioms are true and the rules are truth-preserving (i.e.,

worlds in which “the basics” are true), and ) the set of worlds in which some complicated
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theorem # is true. Let us assume that � entails ) (i.e., � ⊆ )). The tasks associated with

knowledge that � are tasks related to axioms and rules of inference, such as listing them,

or perhaps using them in basic derivations. But having the ability to produce desire-

satisfying behavior with respect to these tasks doesn’t entail having the ability to produce

desire-satisfying behavior with respect to #-related tasks, such as giving the right answer

to the question of whether # is true.

Given that Computational Knowledge isn’t restricted to metalinguistic propositions

(none of which are necessarily equivalent), it yields an account of knowledge that is

closed under necessary equivalence. For instance, given that � = � ∩ ) in our example,

one knows � if and only if one knows �∩), even though one doesn’t thereby know ). Ac-

cordingly, knowledge doesn’t distribute over intersections, unlike on the causal-pragmatic

account, as seen in §2. Of course, given that we have adopted the metalinguistic strategy,

closure under necessary equivalence doesn’t entail mathematical omniscience. It also

doesn’t entail logical omniscience, or knowledge of all necessary truths or equivalences,

since, as Stalnaker (1976, 86–91; 1984, 72–75) explains, the metalinguistic strategy applies

beyondmathematical propositions to all (seemingly) necessary and necessarily equivalent

propositions: in each case, we interpret the objects of belief or ignorance to be relations

between certain sentences and what they express.

The fact that knowledge doesn’t distribute over intersections given Computational

Knowledge does, however, have consequences for one’s theory of propositional attitude

ascriptions. In particular, onewill have reason to reject that sentences of the form ‘( knows

that � and �’ are true if and only if the referent of ‘(’ knows the proposition that is the

intersection of the propositions expressed by ‘�’ and ‘�’ (for simplicity, let me call this set

‘�∩�’). For example, if Ola knows the basics, i.e.,  Ola(�), and � = �∩), then Ola knows

the proposition �∩), i.e.,  Ola(�∩)). But we shouldn’t be able to conclude from this that

‘Ola knows the basics and the theorem’ is true. As I explained in §3, I am not concerned

with developing a theory of propositional attitude ascriptions in this paper. However, I

do think that proponents of the metalinguistic and computational strategies have clear
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motivations for denying a theory of attitude ascriptions on which ‘( knows that � and �’

is true if and only if  ((� ∩ �). In particular, if knowledge that % is a capacity to satisfy

one’s desires with respect to certain tasks �, then we should expect knowledge ascriptions

to be sensitive to this task-relativity. It seems clear, for instance, that an ascription such as

‘Ola knows the basics and the theorem’ conveys that Ola has both basics-related abilities

and theorem-related abilities. But knowledge of a given proposition, whether or not it

is an intersection of sets, will require abilities that are related to only one salient set of

tasks �. This gives a clear motivation for denying the simple theory of conjunctive attitude

ascriptions. The theory of propositional attitude ascriptions on the computational strategy

will thus be complex and probably also context-dependent, which, as seen in §3, is in line

with accepting the metalinguistic strategy in the first place.

6 Conclusion

My concern in this paper has been the closure problem for the metalinguistic solution

to the problem of mathematical omniscience: if we assume the standard possible-worlds

model of knowledge and belief under which they are closed under entailment, people

who know some basic facts about meaning and mathematics end up knowing too much

mathematics. To solve this problem, I proposed to replace the standard possible-worlds

model of knowledge and belief with a computational account. This computational ac-

count is a close variant of Stalnaker’s functionalist account, and it states that knowing

mathematical propositions requires having algorithms that achieve desire-satisfaction

with respect to sentence-related tasks. The computational account doesn’t entail closure

under entailment. As I argued, it gives plausible diagnoses of mathematical achieve-

ment and ignorance especially in closure-problem cases, and it can be generalized to all

propositions.

I focused on the case of mathematics in part because the problem of mathematical om-

niscience is often taken to be the most serious problem for the possible-worlds account,
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and in part because my background motivation is to develop an account of mathematical

content fitting with a Carnapian perspective on the nature of mathematical truth. How-

ever, the results of this paper apply beyond mathematics to all necessary propositions,

and, as we saw in §5.2, they can be even further generalized. At the most general level,

the account we reached says that ignorance is always in part informational and in part

computational. In a priori necessary domains, the information in question is metalinguis-

tic, and the computations are sentence-involving. Moreover, one can have all the relevant

metalinguistic information and still be ignorant of some a priori truth. In such cases, as

Stalnaker notes:

The information which one receives when one learns about deductive rela-

tionships does not seem to come from outside of oneself at all. It seems to be

information which, in some sense, one has had all along. What one does is to

transform it into a usable form [...]. (Stalnaker 1984, 86)

Stalnaker goes on to claim that “transforming information into a usable form” is amatter of

putting different belief states or fragments together. I proposed instead that “transforming

information into a usable form” is a matter of having certain computational abilities—

specifically, algorithms that produce desire-satisfying behavior relative to certain tasks.

This general view of content, thought, and inquiry is to be developed further, but thinking

about the problem case of mathematics already brought us a long way forward.30

30I am grateful to Ash Asudeh, Sharon Berry, Tom Donaldson, Jens Kipper, Arc Kocurek, Caroline Lavorel,

Dan Waxman, an anonymous reviewer, participants of the graduate seminar on hyperintensionality at

the University of Rochester, and audiences at the Center for Language Sciences at the University of

Rochester, the London Group for Formal Philosophy, and Umeå University for very helpful comments and

suggestions.
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