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We study a system, µ LΠ, obtained by an expansion of  LΠ logic with fixed
points connectives. The first main result of the paper is that µ LΠ is standard
complete, i.e. complete with regard to the unit interval of real numbers
endowed with a suitable structure.
We also prove that the class of algebras which forms algebraic semantics for
this logic is generated, as a variety, by its linearly ordered members and that
they are precisely the interval algebras of real closed fields. This correspon-
dence is extended to a categorical equivalence between the whole category of
those algebras and another category naturally arising from real closed fields.
Finally, we show that this logic enjoys implicative interpolation.
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1 Introduction

Expansions of First Order Logic (FOL) with fixed point operators have been largely
studied, both to better understand inductive properties and to increase the expressive-
ness of FOL. To our knowledge, so far there is no study in this direction in many valued
logic. In this paper we explore this path, in the particular case of  LΠ logic, showing
that it bears to nice properties of the system as well as links with other well established
fields of Mathematics.

The aim is two folds. On the one hand adding fixed points is stimulating from the
algebraic point of view, since it adds new structure to  LΠ-algebras, leading to structures
similar to real closed fields. On the other hand, it is well known that fixed points in logic
are strictly related with inductive definitions, whence considering a many-valued system
whit fixed points explicitly present may give a new insight on inductive definition as well
as it may stimulate interesting topics in approximate reasoning.

 LΠ logic is a combination of two important many-valued logics,  Lukasiewicz and Prod-
uct logic. It was introduced in [EG99] and deeply explored from the algebraic point of
view in [Mon00]. It has been extensively studied, having acquired importance for many
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reasons: it has been used for formalizing conditional probability [HGE00, FM05] and
seems to be a good compromise between the foundational formalism of logic and the
flexibility of Fuzzy Logic [Mun94, Mun99]. Finally, it is the most expressive among
the t-norm based logics: it faithfully interprets  Lukasiewicz, Product and Gödel Logic.
Rational Pavelka Logic (when restrictied to finite deductions) is interpretable in  LΠ1

2
logic, which is an expansion of  LΠ with a constant 1

2 and the axiom 1
2 ↔ ¬

1
2 . Finally,

as shown in [MM07], every logic based on a continuous t-norm with a finite number of
idempotents can be defined in  LΠ1

2 .

Fixed point theories appear in many different fields of Mathematics, standing at the
hearth of computer science and being involved in many foundational aspects. The first
idea of expanding a logical system by adding fixed points can be found in a proposal by
Aho and Ulmann [AU79]. The first system introduced was the expansion of FOL with
minimum fixed points. Several important results were obtained since then, among which
some notable links between the expressivity of these logics and the problem P=NP (see,
for instance, [DG02]).

The main obstacle when introducing fixed points in a logical system is to guarantee the
existence of a semantical interpretation. Classically this problem is tackled considering
formulae as increasing operator over some structure.

Differently from FOL, in the case of many-valued logics based on continuous t-norms
there are at least two ways to find a semantics for fixed points operators, grounded on
the two known algebraic semantics for those logics. In a classical perspective, one could
look at the Kripke semantics of the logic under consideration and define the fixed point
of a formula precisely as in modal logic (µ-calculus, see [Koz83]; for details on Kripke
semantics for many-valued logic see [MS03] and [BP07]).

The second way to approach the problem is considering that, in suitable cases, many
valued connectives can be considered as functions from [0, 1]n into [0, 1], that are con-
tinuous. Therefore Brouwer’s theorem ensures a semantical interpretation of the fixed
point of a formula.

Theorem 1.1 (Brouwer 1909). Every continuous function from the closed unit ball Dn

to itself has a fixed point.

Despite the fact that many interesting notions (such as inductive definitions) may
appear more easily using the former method, in this article we bias for the latter because
of its originality. Still we believe that both approaches deserve consideration and we plan
to investigate, at some point, differences and similarities between them.

The paper is organized as follow. In the next section we give a short comparison of
the methods used here and the classical approach; in Subsection 2.1 we introduce basic
definitions useful throughout the paper, furthermore in Subsection 2.2 the definition
of  LΠ logic and  LΠ-algebras are given. In Section 3 we present µLΠ logic and its
algebraic counterpart, in Subsection 3.1 algebraic completeness is proved (Theorem 3.10).
In Section 4 we show that µLΠ logic enjoys standard completeness (Theorem 4.10),
establishing a link between linearly ordered µ LΠ-algebras and real closed fields (Corollary
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4.9). Section 5 is devoted to the proof that the class of algebras that form the algebraic
semantics for the above logic is categorically equivalent to a class of structures arising as
a generalization of real closed fields (see Definition 5.5 and Theorem 5.13). In Section 6
we prove that µ LΠ logic enjoys implicative interpolation (Corollary 6.3). We conclude
the paper with Section 7, in which we outline our future lines of research.

2 Preliminaries

In order to compare the classical approach with the one used in this work, we give a
sketch of the ideas used to construct a semantics for FOL with minimum fixed points,
similar constructions are used to form different expansions of FOL with fixed points. We
suggest to the reader interested in the argument to read [Mos74] for a detailed treatment
of the argument and [DG02] for a perspective on the recent developments.

The various expansions of FOL with fixed point sit between first and second order logic.
Given a second order formula ϕ(R, x) such that no second order quantifier appears in
ϕ, x and R are the only free variables and R is the only second order variable in ϕ, we
can associate an operator F , from the subsets of a structure A to subsets of A, by the
the following definition

F (S) = {a ∈ A | A |= ϕ([S/R], [a/x])}

where ϕ[x/y] denotes the formula ϕ in which all free occurrences of y are substituted by
x.
An occurrence of a variable x is said to appear positively if it is under the scope of an
even number of negations. If ϕ has only positive occurrences of the symbol R then the
associated operator is monotone increasing and the set F =

⋃
α F

α defined inductively
as follows:

F 0 = ∅
Fα+1 = {a ∈ A | A |= ϕ([Fα/R], [a/x])}

is its (least) fixed point, given by the famous Tarski’s theorem.

Theorem 2.1 ([Tar55]). Let L = 〈L,≤〉 be any complete lattice. Suppose f : L −→ L
is monotone increasing, i.e., for all x, y in L, x ≤ y implies f(x) ≤ f(y). Then f has a
least fixed point.

Such fixed point will be the interpretation of the symbol µR, x.ϕ, more precisely we will
have that

A |= µR, xϕ(t/x) iff tA ∈ F.

In the settings of many-valued logics the domains are still lattice-ordered but the
interpretations of formulae are seldom monotone increasing, hence Tarski’s theorem
becomes too weak. In this paper we propose a different approach which becomes available
when one has to deal with many-valued logics.

The most natural semantics for many-valued logics, and in particular for the logic
we study here, is a semantics which interprets formulae as functions form [0, 1]n to
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[0, 1]. Such semantics of many-valued logics is often called standard semantics. Roughly
speaking (but see forward for a formal definition) this amount to say that every formula
can be seen as a term of a particular algebra based on the real interval [0, 1] and vice-
versa; furthermore such a correspondence commutes with truth, in the sense that a
formula is a tautology in the logic if, and only if, any interpretation of the corresponding
term in that particular algebra is equal to 1.

Since in the case of  LΠ logic, but also for BL,  Lukasiewicz logic and other ones, many
of those terms are in fact compositions of continuous operations on [0, 1], Brouwer’s
theorem ensures that there exists a fixed point for those terms. In our approach we
will generalize this introducing explicitly operations which give the minimum fixed point
of their associated terms. We will prove this new class of algebras to be exactly the
algebraic semantics of the logic introduced and to be generated as a variety by the  LΠ-
algebra [0, 1], endowed with the operations which give the minimum fixed point of their
corresponding terms.

2.1 BL, its algebraic semantics and notable extensions

Henceforth we work in the realm of continuous t-norm based logics. To formally specify
what this means we need a number of concepts which we will only sketch. The reader
not familiar with them may want to check the book [H98b] for an ample survey on the
subject.

Definition 2.2. A continuous t-norm is a function ∗ from [0, 1]2 to [0, 1] which is
continuous, commutative, associative and non-decreasing, i.e. such that if x ≤ y then
x ∗ z ≤ y ∗ z and finally: x ∗ 0 = 0 and x ∗ 1 = 1.
The residuum ⇒ of a t-norm is the unique operation which satisfy the following ad-
juntion:

x ≤ y ⇒ x if, and only if, x ∗ y ≤ z

Example 2.3. The most important continuous t-norms and their residua present in the
litterature are:
The  Lukasiewicz t-norm:

x∗Ly = max{0, x+y−1} and its residuum: x⇒∗L y =

{
min{1, 1− x+ y} if y ≤ x
1 otherwise.

The product t-norm: x ∗Π y = xy1 and its residuum: x⇒∗Π y =

{
y
x if y ≤ x
1 otherwise.

The Gödel t-norm: x ∗G y = min{x, y} and its residuum: x⇒∗G y =

{
y if y < x

1 otherwise.

Many motivations, which are out of the scope of this article, make reasonable to
study logics whose connectives “conjunction” and “implication” can be interpreted as a
continuous t-norm and its residuum.

1The ordinary product between real numbers
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In [H98b], Hájek introduced BL as a common system to cope with the logics based on
continuous t-norms.

Definition 2.4. Basic Logic (BL) is a propositional system, with connectives → and
& and a constant symbol ⊥ for falsity, axiomatized by the following formulae:

1. (ϕ→ ψ)→ ((ψ → θ)→ (ϕ→ θ)),

2. (ϕ&ψ)→ ϕ,

3. (ϕ&ψ)→ (ψ&ϕ),

4. (ϕ&(ϕ→ ψ))→ (ψ&(ψ → ϕ)),

5. (ϕ→ (ψ → θ))→ ((ϕ&ψ)→ θ),

6. ((ϕ→ ψ)→ θ)→ (((ψ → ϕ)→ θ)→ θ),

7. ⊥ → ϕ.

The only rule of the system is modus ponens.

In the modern approach, the three most known t-norm based logics can be described
as extensions of BL as follows.

Definition 2.5.

 Lukasiewicz logic is BL plus the axiom: ϕ = ¬¬ϕ, where ¬ϕ stands for ϕ→ ⊥;

Gödel logic is BL plus the axiom: (ϕ∧ϕ)→ (ϕ&ϕ), where ϕ∧ψ stands for ϕ&(ϕ→ ψ).

Product logic is BL plus the axiom: ¬ψ ∨ ((ψ → ϕ&ψ)→ ϕ), where ϕ∨ψ stands for
((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ);

We introduce now the concept of evaluation, this will allow to see the links between
t-norms, logical systems and classes of algebras. In particular it will possible to give a
formal explanation of what we mean by “t-norm based logic”. We only sketch the ideas,
the reader interested on the abstract correspondence may consult [BP89].

Given a propositional system L as above consider a class of algebras A whose type
corresponds to the one of the language of L. Once a bijective correspondence between
connectives of the language and operations of the algebras is established one can easily
define a function, which sends formulae to terms of the algebras and vice-versa. If, for
instance, the logical language has as set of connective the symbols &,→,⊥ as above and
the class of algebra has type 〈&̄, →̄, ⊥̄〉 then such a translation can be recursively defined
as:

• e(ϕ&ψ) = e(ϕ)&̄e(ψ),

• e(ϕ→ ψ) = e(ϕ)→̄e(ψ),
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• e(⊥) = ⊥̄.

Where e sends different propositional variables pi, pj in different individual variables
xi, xj . If we indicate with the symbol `L the logical consequence in the system L and
with |=A the equational consequence relation in A, then we will say that the logic L is
algebraically complete w.r.t. A if for any set of formulae {ϕ} ∪ Γ:

Γ `L ϕ if, and only if, Γ |=A e(ϕ) = 1.

If there exists an algebra S in A whose underlying set is the real interval [0, 1] and
whose operations &̄, →̄, ⊥̄ are respectively a t-norm, its residuum and 0, then we will
say that L is standard complete if

`L ϕ if, and only if, |=S e(ϕ) = 1.

When this happens we call S standard algebra and we say that L is “t-norm based”.
We also say that a system is “the logic of a particular (set of) t-norm”. The following
result motivates the choices of names used so far.

Theorem 2.6. [Cha58, H98b]

 Lukasiewicz logic is the logic of the  Lukasiewicz t-norm ∗L.

Product logic is the logic of the product t-norm ∗Π.

Gödel logic is the logic of the Gödel t-norm ∗G.

In [H98a] Hájek conjectured that BL were the logic of all continuous t-norms; this
turned out to be true, as shown in [CEGT00].

Being so strictly tied to the logic, the algebraic semantics turned out to be a major
instrument of study.

Definition 2.7. A BL-algebra is an algebra A = 〈A, ∗,⇒,∧,∨, 0, 1〉 that satisfies

• 〈A,∧,∨, 0, 1〉 is a lattice with greatest and least element,

• 〈A, ∗, 1〉 is a commutative monoid,

• ∗ and ⇒ form an adjoint pair, i.e. z ≤ (x⇒ y) iff x ∗ z ≤ y,

• x ∧ y = x ∗ (x⇒ y) (divisibility),

• (x⇒ y) ∨ (y ⇒ x) = 1 (pre-linearity).

Writing ¬x for x ⇒ 0, an MV-algebra is a BL-algebra that satisfies: ¬¬x = x and a
Π-algebra is a BL-algebra the satisfies: ¬x ∨ ((x⇒ x ∗ y)⇒ y).

Note that if we have a logic L which is standard complete w.r.t. a standard algebra S,
L will be algebraically complete w.r.t. the variety generated by S. The following result
establishes the missing link among the concepts we have introduced so far.
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Theorem 2.8.

[Cha58] The variety of MV-algebras is generated by the standard algebra 〈[0,1], ∗L,⇒∗L , 0〉.

[H98b] The variety of Π-algebras is generated by the standard algebra 〈[0,1], ∗Π,⇒∗Π , 0〉.

[H98b] The variety of Gödel algebras is generated by the standard algebra 〈[0,1], ∗G,⇒∗G ,
0〉.

2.2  LΠ Logic

 LΠ Logic was introduced in [EG99] to deal at the same time with  Lukasiewicz and
Product logics, its language contains two conjunctions and their respective residua. Its
axiomatization was simplified as follows in [Cin05]:

Definition 2.9. The language of  LΠ is built from propositional variables, combined
with the following connectives: &L and →L , &Π and →Π and ⊥.
 LΠ denotes the theory whose axioms and rules are the following:

1. All the axioms of  Lukasiewicz logic for &L and →L

2. All the axioms of Product logic for &Π and →Π

3. ϕ&Π¬L(ψ →L θ)↔L ¬L ((ϕ&Πψ)→L (ϕ&Πθ))

4. ∆(ϕ→L ψ)→L (ϕ→Π ψ)

5. The rules Modus Ponens and necessitation ( ϕ
∆(ϕ))

where, following Definition 2.5 we define ¬Lϕ = ϕ →L ⊥ and ¬Πϕ = ϕ →Π ⊥. Fur-
thermore ∆ϕ = ¬Π(¬Lϕ). Lattice operations are also definable as in Definition 2.5. In
particular axiom 4 states that the lattice operations defined by &Π,→Π and the ones
defined by &L,→L are the same.
 LΠ1

2 denotes the logic obtained from  LΠ by adding a propositional constant 1
2 together

with the axiom 1
2 ↔L ¬L 1

2

In order to study this logic from an algebraic point of view, the following class of
algebras were introduced:

Definition 2.10. A  LΠ-algebra is a structure A = 〈A, ∗L,⇒L, ∗Π,⇒Π, 0, 1〉 where :

1. 〈A, ∗L,⇒L, 0, 1〉 is a MV-algebra

2. 〈A, ∗Π,⇒Π, 0, 1〉 is a Π algebra

3. x ∗Π (y 	 z) = (x ∗Π y)	 (x ∗Π z)

4. ∆(x⇒L y)⇒L (x⇒Π y) = 1A

where x	 y = ¬L(x⇒L y), x⊕ y = ¬Lx⇒L y and ∆(x) is a shorthand for ¬Π¬Lx.
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In order to simplify the notation we will often drop the symbol L both from the
connectives and from the operations. Moreover we will use the symbol · or juxtaposition
for ∗Π, so x ∗Π y = x · y = xy.

Every linearly ordered  LΠ-algebra with more than two elements is necessarily infinite
and has one element such that ¬x⇔ x ([Mon00], Lemma 4.3). So, modulo an expansion
of the language, every infinite linearly orderd  LΠ-algebra is a member of the algebraic
semantics of  LΠ1

2 logic, and it is called  LΠ1
2 algebra.

3 µ LΠ Logic

In FOL, and in general in the first approach presented above, fixed points are restricted
to formulae having only positive occurrences of the relation free variable. Thanks to our
different approach this restriction does not apply here: even the formula ¬p has a fixed
point, namely 1

2 .
Nevertheless, in order to meet the requirements in Brower’s theorem (Theorem 1.1), we

need to restrict only to formulae whose interpretation is continuous. In particular the→Π

connective may cause problems because its functional interpretation has a discontinuity
on the point (0, 0). Of course there are formulae whose interpretation is continuous and
present occurrences of →Π, but we do not have any syntactical characterisation for all
the formulas whose interpretation is continuous. Hence, to be sure of the existence of a
semantical counterpart for the fixed point, we shall restrict ourselves only to formulae in
which the symbol →Π does not occur, we will call those formulae continuous formulae.

Notice that another approach could be based on  LΠq-algebras, introduced in [MS05].
There the discontinuity of →Π is overcome by defining a new connective →q which
approximates →Π as precisely as wanted, still being continuous.

It should also be noted that, in this approach, µ has to “bind” the propositional vari-
able which is under its scope. This is because the formula resulting from an application
of µ to a continuous formula it is not necessarily continuous and then it is not suitable for
a further application of µ. For this reason, loosely speaking, the same rules of first order
logic apply here for substitutions; however we don’t have to worry about this because,
as we will see in a moment, there is another suitable way of introducing fixed point in
the logic.

To circumvent the problems above we will introduce in the language a new connective
µϕ(x,ȳ)(ȳ) for any continuous formula ϕ. This will allow us, when switching to the
algebraic semantics of the logic, to consider fixed points as functions on the algebra,
rather then operator. If one think of any term t(x, ȳ) as a generalized connective then it
is easy to look also at µxt(x,ȳ)(ȳ) as a connective whose arity is the arity of t(x, ȳ) minus
one.

When we write t(x, ȳ), we mean that the variables x, ȳ actually occur in t. We will
use this notation for formulae, terms and functions.

It should made precise that µxt(x,ȳ)(ȳ) is hence a function which takes a tuple of
elements of a structure (the interpretation of ȳ) to another element of the structure (the
minimum fixed point of the function represented by t(x, ȳ) under that interpretation).
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Nevertheless, in order to simplify the exposition we will often refer by an abuse of
notation to µxt(x,ȳ)(ȳ) as the fixed point of t(x, ȳ).

Definition 3.1. The Fixed Point  LΠ Logic (µ LΠ logic for short) has the following
theory:
The language is an expansion of  LΠ language by an infinity of new connectives µxϕ(x,ȳ),
where ϕ is any continuous formula and the arity of µxϕ(x,ȳ) is the length of ȳ.
The axioms are2:

1. All axioms and rules from  LΠ Logic

2. µxϕ(x,ȳ)(ȳ)↔L ϕ(µxϕ(x,ȳ)(ȳ), ȳ)

3. ∆(ϕ(z, ȳ)↔L z)→L (µxϕ(x,ȳ)(ȳ)→L z)

4.
∧
i≤n ∆(ψi ↔L ξi)→ (µxϕ(x,ȳ)(ψ1, ..., ψn)↔L µxϕ(x,ȳ)(ξ1, ..., ξn))

All axioms have a rather clear meaning: axiom 2 says that µxϕ(x,ȳ)(ȳ) is a fixed point
of ϕ(x, ȳ); axiom 3 guarantees that the µ-connectives give the minimum fixed point;
finally axiom 4 says that we can substitute equivalent subformulae also under the scope
of a µ-connective.

Now we turn to an algebraic approach to this logic, introducing its algebraic counter-
part. Following the notation introduced so far we will call continuous term a term t
in which ⇒Π does not appear; we will call Cterm the set of continuous terms.

Definition 3.2. A µ LΠ algebra is an algebra of type

L = 〈L, ∗,⇒,⇒Π, ·, {µxt(x,ȳ)}t(x,ȳ)∈Cterm, 0, 1〉,

such that it satisfies the following conditions.

1. L = 〈L, ∗,⇒,⇒Π, ·, 0, 1〉 is a  LΠ-algebra

2. µxt(x,ȳ)(ȳ) = t(µxt(x,ȳ)(ȳ), ȳ)

3. If t(s, ȳ) = s then µxt(x,ȳ)(ȳ) ≤ s

Obviously this axiomatization is not finite, still it is worthwhile to note that µ LΠ-
algebras form a variety. Indeed from the axiomatization it is evident that µ LΠ-algebras
are a quasivariety, but the ∆ operator makes possible to define a discriminator (see
[MMT87], for the definition) and, as proved in [M75], any quasivariety with a discrimi-
nator is a variety.

We give now some example to clarify the concepts of µ connectives.

Example 3.3. For sake of simplicity let us confine in this example to linearly ordered
µ LΠ-algebras (we will see in next section that this is not a very restrictive condition).
Consider the term x ∗ y, then it is easily seen that µxx∗y = 0 because 0 ∗ a = 0 for any
a. Note that also the term µxx = 0, but while the former is a unary term sending any
interpretation of y to 0 the latter is an actual constant.

2Since the µ connectives have different arieties we will use for them the prefix notation, whereas, to
not confuse the reader, we will keep the infix notation for the other connectives.
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Modulo an expansion of the language µ LΠ-algebras form a subvariety of the variety
of  LΠ algebras. Since the axioms of µ LΠ-algebras force the existence of an element
x satisfying ¬x ⇔ x in every algebra of the variety, they are also, again modulo an
expansion of the language, a subvariety of the variety of  LΠ1

2 . It is important to keep
in mind these relations as in the rest of the paper we will speak freely of  LΠ and  LΠ1

2
reduct for this class of algebras.

Example 3.4. To construct a concrete example of µ LΠ-algebra we consider the standard
 LΠ-algebra: 〈[0, 1], ∗,⇒,⇒Π, ·, 0, 1〉. To endow it with a family of functions {µxt(x,ȳ) |
t(x, ȳ) ∈ Cterm} we consider the function associating to any tuple ā ∈ [0, 1]n, the
minimum fixed point of the polynomial t(x, ā/ȳ), given by Theorem 1.1. If we call ft(x,ȳ)

such functions, then it is easily see that the algebra

〈[0, 1], ∗,⇒,⇒Π, ·, {ft(x,ȳ)}t(x,ȳ)∈Cterm, 0L, 1L〉,

satifies the conditions of Definition 3.2

We conclude this section with a proposition which can also be seen as a little exercise
to get acquaintance with fixed points.

One may wonder whether the introduction of a maximum fixed point would have
changed the setting. The following proposition answers negatively to the question.

Proposition 3.5. Given any continuous formula ϕ its maximum fixed point is definable
in the language of µ LΠ.

Proof. Let ϕ(x, ȳ) any continuous formula with ȳ possibly empty. We claim that m(ȳ) =
¬µxψ(x)(ȳ), where ψ(x, ȳ) = ¬(ϕ(¬x, ȳ)), gives the maximum fixed point of ϕ. Let us
first prove that it is a fixed point of ϕ.

Fix any tuple ȳ so that we can omit it in the following. We have m = ¬µxψ(x) so
¬m↔ µxψ(x), i.e. ¬m is a fixed point of ψ(x): ¬m↔ ψ(¬m). Hence ¬m↔ ¬ϕ(¬¬m)
which implies m ↔ ϕ(m). To show that m is the maximum among fixed points let v
be such that ϕ(v) ↔ v, then ψ(¬v) ↔ ¬v, so ¬v → µxψ(x) therefore v → ¬µxψ(x) ↔
µx¬ϕ(¬(x)) ↔ m.

3.1 Algebraic Completeness

The presence of the operator ∆ enhances drastically the expressibility of a logic. Whereas
in  LΠ logic ∆ is definable due to the presence of both ¬L and ¬Π, it can be introduced
independently by an axiomatic extension. We present such an extension in the case of
MV-algebra for further use.

Definition 3.6 ([H98b]). A MV∆-algebra is a MV-algebra with an operator ∆ that
satisfies:

(1) ∆(1) = 1.

(2) ∆(x⇒ y) ≤ ∆(x)⇒ ∆(y).
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(3) ∆(x) ∨ ¬∆(x) = 1.

(4) ∆(x) ≤ x.

(5) ∆(∆(x)) = ∆(x).

(6) ∆(x ∨ y) = ∆(x) ∨∆(y).

Notice that, on a linearly ordered structure the behavior of ∆ is the following:

∆(y) =

{
1 if y = 1
0 otherwise

,

so, in a logical perspective, it can be seen as a “crisp” operator stating that a given
formula is a theorem.

Example 3.7. Even if pleonastic, we give a further example on the use of fixed point,
showing how the delta operator can be defined in a linearly ordered  LΠ-algebra only
using the connectives ¬,⊕.

Using the fact that, in a linearly ordered structure,

µxx⊕y(y) =

{
0 if y = 0
1 otherwise

,

it is easy to see that ¬µxx⊕¬y(y) behaves exactly has the delta operator ∆(y).

Lemma 3.8. Any µ LΠ-algebra has the same congruences of its underlying MV∆-algebra.

Proof. Obviously, every µ LΠ congruence is a MV∆ congruence. For the other direction
note that the property, xθy if, and only if, (x⇔ y)θ1, holds for both kinds of congruences.
Suppose, for some n and i ≤ n, xi, yi are in a MV∆ congruence, θ. Then (xi ⇔
yi)θ1, hence ∆(xi ⇔ yi)θ∆(1) = 1 and since congruences are closed under ∧ we have∧
i≤n(∆(xi ⇔ yi))θ1. Note now that since ∆(z) ≤ z we also have that∧

i≤n
(∆(xi ⇔ yi)) ≤ (xi ⇔ yi) = µzt(z,w̄)(x1, ..., xn)⇔ µzt(z,w̄)(y1, ..., yn),

whence:
µzt(z,w̄)(x1, ..., xn)⇔ µzt(z,w̄)(y1, ..., yn)θ1

that is equivalent to
µzt(z,w̄)(x1, ..., xn)θµzt(z,w̄)(y1, ..., yn).

Theorem 3.9. Any µ LΠ-algebra is isomorphic to a subdirect product of linearly ordered
µ LΠ-algebras.

11
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Proof. By Birkoff subdirect representation Theorem, every µ LΠ-algebra is isomorphic
to a subdirect product of subdirectly irreducible µ LΠ-algebras. Since irreducibility is
completely determined by the lattice of congruences, by Lemma 3.8 a µ LΠ-algebra is
subdirectly irreducible if, and only if, its underlying MV∆-algebra is subdirectly irre-
ducible. But a MV∆-algebra which is subdirectly irreducible must be linearly ordered,
whence the statement of the theorem.

Theorem 3.10. If ϕ is a formula in the language of µ LΠ logic, then the following are
equivalent:

(i) ϕ is provable in µ LΠ;

(ii) For each linearly ordered µ LΠ-algebra A, A |= e(ϕ) = 1;

(iii) For each µ LΠ-algebra A, A |= e(ϕ) = 1;

where e is the canonical evaluation which sends formulae of the µ LΠ logic to their cor-
respondent terms in the language of µ LΠ-algebras.

Proof. (i) implies (ii) is easy to prove. For (ii) implies (iii) we argue by contraposition.
Suppose that for some µ LΠ-algebra A 2 e(ϕ) = 1, since validity of e(ϕ) = 1 is preserved
under subdirect product by Theorem 3.9 some subdirectly irreducible factor Ai does not
satisfies e(ϕ) = 1 but Ai is linearly ordered and the claim follows.

(iii) implies (i) is proved by the usual construction of the Lindenbaum algebra. Indeed,
if a formula ϕ is not provable then e(ϕ) = 1 fails in the Lindenbaum algebra. Since the
Lindenbaum algebra of µ LΠ logic is a µ LΠ-algebra this implies that there exists at least
one µ LΠ-algebra in which e(ϕ) = 1 does not hold.

4 Standard Completeness

In order to prove standard completeness, in this section we will establish a link between
linearly ordered µ LΠ-algebras and real closed fields. This result will be generalized in
the next section. Nevertheless, considered the importance and the good properties that
real closed fields enjoy, this preliminary result has an interest in its own. In section 6,
for instance, it will be used to prove the implicative interpolation of µ LΠ logic.

Our construction is based on the results contained in [EGM01], for the reader’s ease
we replicate here some definitions.

Definition 4.1. Given a linearly ordered  LΠ1
2 algebra A, consider the structure Φ(A) =

12
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〈K,+,−,×,≤, 0K , 1K〉 defined in the following way:

K = {(z, x) | z ∈ Z, x ∈ A, x 6= 1}, 0K = (0, 0), 1K = (1, 0)

(n, x) + (m, y) =

{
(n+m,x⊕ y) if x⊕ y < 1
(n+m+ 1, x ∗ y) if x⊕ y = 1

−(n, x) =

{
(−n, 0) if x = 0
(−(n+ 1),¬x) if 0 < x < 1

(n, x) ≤ (m, y) if n < m or n = m and x ≤ y
(n, x)× (m, y) = (nm, x · y) +m(0, x) + n(0, y)

Where m(0, x) =


(0, x) + · · ·+ (0, x)︸ ︷︷ ︸

m−times

if m ≥ 0

−(0, x) + · · ·+ (−(0, x))︸ ︷︷ ︸
m−times

if m < 0

Φ(A) is a linearly ordered, commutative, domain of integrity and it can be extended to a
linearly ordered field by taking its field of fractions. The interval algebra of the resulting
field is A.

Vice-versa, given a linearly ordered field it is easy to construct a  LΠ-algebra: for what
said before, such a an algebra can be seen as a  LΠ1

2 as soon as it has more than two
elements.

Definition 4.2. Given a linearly ordered field K we define an  LΠ-algebra A, called the
 LΠ-interval algebra of K, in the following way

A = {x ∈ K | 0 ≤ x ≤ 1}
x ∗ y = max(0, x+ y − 1) x⇒ y = min{1, 1− x+ y} x · y = x× y

x⇒Π y =

{
1 if x ≤ y
z otherwise

where z is the only element such that y = x ∗ z

For a complete proof that the previous definitions are correct (i.e. they define respectively
a linearly ordered field and a linearly ordered  LΠ-algebra) see Theorem 7 in [EGM01]:

Theorem 4.3. Every linearly ordered  LΠ1
2 algebra is isomorphic to the  LΠ1

2 -interval
algebra of a linearly ordered field.

Our aim is now to find a similar result for µ LΠ-algebras. Obviously we need to enrich
the structure of linearly ordered fields with something corresponding to fixed points.
The natural choice are real closed fields.

Definition 4.4. A real closed field is a linearly ordered field such that:

• every positive element is a square: ∀x∃y(x = y2)

13
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• every polynomial of odd degree has a solution: ∀a1, ..., an∃x0(a0x
0
0 + ...+anxn0 = 0)

The next lemma shows how the behavior of a polynomial can be locally replicated in
the unit interval by another suitable polynomial.

Lemma 4.5. Given a polynomial f(x) with coefficients in a real closed field F , there
exists another polynomial g(x), with coefficients in the same structure, such that:

(i) the coefficients, the sum of their moduli and the roots of g(x) are all in the unit
interval of F ;

(ii) there exists an m ∈ F such that g(t) = 0 if, and only if, f(2mt−m) = 0.

Proof. Let f(x) = anx
n + ... + a1x + a0 and call x1, ..., xn its roots. By a Cauchy’s

theorem [Cau91] we have that

max
i≤n
|x|i ≤ max

i≤n−1
(n · |ai|)

1
n−i .

Set m = max{(n · |ai|) | 1 ≤ i ≤ n}. Note that we can assume, without loss of generality,
that at least one of the absolute values of the coefficients is greater than 1, otherwise
one could pass to the following step, then

max
{

(n · ai)
1

n−i | i ≤ n− 1
}
≤ m.

Let g′(x) the polynomial obtained by f(x) by the substitution x 7→ x+m
2m . If z is a root

of g′(x) then for some solution xī of f(x):

z =
xī +m

2m
≤ m+m

2m
= m,

and
z =

xī +m

2m
≥ 0 as |xī| ≤ m.

Hence all roots of g′(x) are in the unit interval of F , notice that x 7→ x+m
2m is a bijection

and g′(t) = 0 if, and only if, f(2mt − m) = 0. So condition (ii) is satisfied. As next
step we normalize the coefficients of g′(x) by dividing all of them by

∑
i≤n |ai|. Calling

the resulting polynomial g(x), it is readily seen that it meets condition (i), while the
transformation from g′(x) to g(x) does not interfere whit condition (ii).

We are ready now to spell out to construct a real closed field starting form a µ LΠ-
algebra. By Theorem 4.3 we know that given a  LΠ1

2 -algebra it is possible to build a
linearly ordered field. Since any µ LΠ-algebra has a (definable)  LΠ1

2 -reduct, one can,
with the same construction, associate to any µ LΠ-algebra a linearly ordered field. Let
us call it the field associated to a µ LΠ-algebra.

Theorem 4.6. Any field associated to a µ LΠ-algebra is a real closed field.

14
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Proof. Let K be the linearly ordered field given by the µ LΠ-algebra A. We will begin
by proving that K satisfyies the second condition of Definition 4.4. To this end we will
first restrict to a particular class of polynomials, which we call [0, 1]-polynomials.

An [0, 1]-polynomial is a polynomial of the form P (x) = anx
n+ ...+a1x+a0 such that

the sum of the absolute values of the coefficients as well as all its solutions are contained
in the set {k ∈ K | 0K ≤ k ≤ 1K}.

Given any [0, 1]-polynomial of odd degree P (x) we will prove that it has a solution in
K by looking at the image under the embedding of interpretation of the fixed point of a
particular µ LΠ-term. Indeed notice that if we are able to find a µ LΠ-term, p′(x), such
that p′(x) = 0 iff P (x) = 0, then letting p(x) = p′(x)⊕ x we have that µx.(p(x)) is the
wanted element.

We explain now how to construct such a p′(x). Given a polynomial P (x), as above,
we first arrange it in the form P ′(x) = |

∑
i∈J aix

i−
∑

i∈K aix
i| where all ai are positive.

After such arrangement we can safely replace every occurrence of + with ⊕ and the sign
minus with |x − y| (defined as (x 	 y) ∨ (y 	 x)). If we call āi the inverse image under
the embedding of ai and we put

p′(x) = |
⊕
i∈J

āi � xi −
⊕
i∈K

āi � xi|.

Then we have that p′(x) = 0 exactly when P (x) = 0, hence is the µ LΠ-term we were
looking for.

This proves that all [0, 1]-polynomial of odd degree have a solution in K. Now, by
Lemma 4.5, given any polynomial P (x) with coefficient in K we can associate to it a
[0, 1]-polynomial, which has a solution in K. Since the solutions of the two polynomials
are linked by the correspondence x 7→ x+m

2m , this guarantees that also P (x) has a solution
in K.

The proof that K satisfy also the first condition of Definition 4.4, i.e that every element
of K is a square of an element in K, is similar. One has only to notice that in a µ LΠ-
algebra every element a can be written as b · b where b = µx|x·x−a|⊕x.

Corollary 4.7. Every linearly ordered  LΠ1
2 -algebra can be embedded in at most one

linearly ordered µ LΠ-algebra (up to isomorphism).

Proof. Suppose that a linearly ordered  LΠ1
2 -algebra A can be embedded in two non-

isomorphic linearly ordered µ LΠ-algebras B and C. Since the fields FA,FB and FC ,
associated respectively to A,B and C are definable in the language of  LΠ-algebras, FB
and FC are not isomorphic and FA embeds in both of them. This is a contradiction, for
both FB and FC are real closed fields.

The correspondence between linearly ordered µ LΠ-algebras and real closed fields, holds
also in the other direction, i.e

Theorem 4.8. The  LΠ1
2 interval algebra of every real closed field is a reduct of a µ LΠ-

algebra.

15
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Proof. We need to prove that if we take the unitary interval of a real closed field this
can be endowed with the structure of a µ LΠ-algebra. Take a real closed field R and call
A the  LΠ1

2 algebra given by Theorem 4.3. The only thing that has to be checked is that
µ can be defined in A for any term t(x) not containing ⇒Π. To this end note that t(x)
can be represented in the R as ∨

i∈I

∧
j∈J

Pij(x),

where Pij are polynomial in R. So our problem reduces to prove that in R holds:

∃x(0 ≤ x ≤ 1 and (
∨
i∈I

∧
j∈J

Pij(x)) = x). (1)

But this formula is true in the reals (by Theorem 1.1) and every real closed field is
elementary equivalent to the reals hence the formula holds also in R. So µx.t(x) is
defined as the minimum witness of Equation (1).

Corollary 4.9. Every linearly ordered µ LΠ-algebra is isomorphic to the interval algebra
of some real closed field. Conversely every real closed field is isomorphic to a real closed
field associated to a linearly ordered µ LΠ-algebra.

Proof. By construction every µ LΠ-algebra is isomorphic to the µ LΠ-interval algebra of
its associated real closed field. In the same way, every real closed field is isomorphic to
the real closed field associated to its µ LΠ-interval algebra.

Theorem 4.10. µ LΠ is standard complete, i.e. a formula ϕ is provable in µ LΠ if, and
only if, e(ϕ) = 1 is true on the µ LΠ-algebra on [0, 1].

Proof. One direction is obvious. For the other one let us reason by contraposition and
suppose that a formula ϕ is not provable in µ LΠ, then by Theorem 3.10 the equation
e(ϕ) = 1 does not hold in some linearly ordered µ LΠ-algebra A. Denote by R the field
associated to A, which is real closed by Theorem 4.6. Call ψ the first order formula which
express the failure of e(ϕ) = 1 in the unitary interval of R. Since R is a elementary
equivalent to the reals, ψ fails in the reals, witnessing the failure of e(ϕ) = 1 in its
interval algebra.

5 Categorical Equivalence

In this section we strengthen the result contained in Corollary 4.9. If we want to extend
such a representation to any µ LΠ-algebra we have to face the fact that real closed fields
are linearly ordered. Hence such structures must be substituted by a more general ones
which allow a lattice-order structure. Note that the näıve idea to use just subdirect
product of real closed fields does not suit, for in a subdirect product some solution of
some polynomial can be missing.

After recalling some necessary definitions we will cope with the problem described
above. We will describe some “characteristic” terms which will serve to axiomatize the
structures that we need.
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Definition 5.1 (cf [BKW77]). A lattice ordered abelian group, `-group for short, is a
structure G = 〈G,+,−,∨,∧, 0〉 such that 〈G,+,−, 0〉 is an abelian group and 〈G,∨,∧〉
is a lattice. Furthermore if ≤ is the partial order induced by ∨,∧ then for all a, b, x ∈ G
if a ≤ b then a+ x ≤ b+ x.
In an `-group G, an element u is called strong unit, if for every g ∈ G there is a natural
number n such that g ≤ u+ ...+ u︸ ︷︷ ︸

n times

.

A lattice ordered ring is a structure R = 〈R,+,−,×,∨,∧, 0〉 such that:

〈R,+,−,×, 0〉 is a ring,

〈R,+,−,∨,∧, 0〉 is a `-group and

for all a, b, x ∈ R if a ≤ b and x ≥ 0 then a× x ≤ b× x.

An f-ring is a lattice ordered ring which is the subdirect product of linearly ordered
rings.
In the following a commutative f-ring with strong unit will be called c-1-f-ring.

In [Mon00] a class of particular c-1-f-rings was introduced.

Definition 5.2. An f-semifield is a c-1-f-ring equipped with an additional operation
−1 that satisfies:

1. x2 × x−1 = x

2. 0−1 = 0

3. |x−1 − y−1| ≤ |x− y| × (|x−1 × y−1|+ |x− y|−1 × (|x−1|+ |y−1|))

Remark 5.3. Note that, the concept of linearly ordered f-semifield and linearly ordered
field are equivalent even if they formally differ by the explicit presence of the operator
−1.

In the same article  LΠ1
2 -algebras were proved to be categorical equivalent to f-semifields.

We want to lift this result to µ LΠ-algebras.
In this general setting we will call f-polynomial every combination of meets and joins

of polynomials. In order to cope with f-polynomial we will need terms which can give
us information on the value that they can take. One of such terms, already used in
litterature is ∇. It is defined as ∇(x) = x× x−1, hence, in a linearly ordered f-semifield,
it takes value 0, if x = 0 and 1 otherwise. For this reason ∇ can be seen as the dual of
the ∆ of  LΠ-algebras. Whence it makes sense to define: δ(x) as 1−∇(1− x).

Finally we define N(x) = 1 − ∇(x + |x|), its meaning become more clear looking at
its value in a linearly ordered f-semifield. Indeed in every linearly ordered f-semifield we
have that

δ(x) =

{
1 if x = 1
0 otherwise

N(x) =

{
1 if x ≤ 0
0 otherwise

17
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We are now ready to give the definition of the structure that will substitute real closed
field in our further results. In order to stress the similarity with real closed fields, we give
an equivalent version of Definition 4.4, form which the definition of real closed f-semifield
was inspired.

Definition 5.4. A real closed field is linearly ordered field in which every polynomial
which changes its sign in the interval [a, b] has a root in the interval [a, b].

Definition 5.5. A real closed f-semifield is a structure:

F = 〈F,+,−,×,−1, {fn}n∈N,∨,∧, 0, 1〉

which enjoys the following properties:

• F = 〈F,+,−,×,−1,∨,∧, 0, 1〉 is a f-semifield.

• for every f-polynomial p(x) =
∨
j∈J

∧
k∈K

∑
i≤n

aijkx
i and every ai, bi, t ∈ F :

1. N(p(x)p(y))×N(x− y) ≤ N(x− f(x, y, p))×N(f(x, y, p)− y)×
× [1−∇(p(f(x, y, p)))]

2. [1−∇(p(t))]×N(t− y)×N(x− t) ≤ N [f(x, y, p)− t]

3.
n∨
i=0

(∇(|ai − bi|)) ≥ ∇(|fn(an, ..., a0)− fn(bn, ..., b0)|)

where f(x, y, p) is a shorthand for fn(x, y, a000, .., aijk) with fn of the suitable arity.

The reader may check that in the case of a linearly ordered f-semifield the meaning of
the axioms is the following. Axiom 1 gives the intended role of the family of functions
fn, namely to force the existence of zeros also in a subdirect product of those structures,
for all polynomials which change their sign; axiom 2 guarantees that the solutions given
by the f is minimal; axiom 3 ensures that the family of functions is compatible with the
congruences of the underlying f-semifield.

Note that a linearly ordered real closed f-semifield only differs from a real closed
field by the explicit presence of the family of functions fi, as proved in the following
proposition.

Proposition 5.6. In a real closed field every f-polynomial which changes its sign in a
given interval has a solution it that interval.

Proof. The proof is by induction on the number of polynomials composing the f-polyno-
mial. If this is 1, then the f-polynomial is a polynomial and the statement follows from
the axioms of real closed fields.

Suppose now that the f-polynomial, call it f(x), is formed by n polynomials and it
is equal to f ′(x) ∧ p(x) where f(x) is a f-polynomial formed by n − 1 polynomials and
p(x) is a polynomial. To prove the theorem let us assume that f(x) changes its sign in
an interval [a, b] and suppose, to fix the ideas, that f(a) > 0 and f(b) < 0.
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The proof now splits in several subcases.
If f(a) = f ′(a) and f(b) = f ′(b) then by induction hypothesis there exists t such that
f ′(t) = t. If f(t) = f ′(t) there is nothing to prove, otherwise, since we are in a linearly
ordered structure, we have that f(t) = p(t) < f ′(t) = 0, so p(a) ≥ 0 and p(t) < 0,
which again implies the existence of a t′ 6= t such that p(t′) = 0. If f(t′) 6= p(t′) then
f ′(t′) < p(t′) = 0, hence f ′(t′) < 0 and f ′(a) ≥ 0 which in turns implies the existence of
a t′′ 6= t′ (and different from t) for which f ′(t′′) = 0. But this reasoning must stop after
a finite number of times, thus leading to a zero for f(x) in the interval.

The case in which f(a) = p(a) and f(b) = p(b) is identical. Also the case where
f(a) = f ′(a) and f(b) = p(b) or f(a) = p(a) and f(b) = f ′(b) are easy to reduce to
the same reasoning. Finally for the case in which f(x) = f ′(x) ∨ p(x) the proof works
dually.

Lemma 5.7. Every real closed f-semifield has the same congruences of its underlying
f-semifield.

Proof. One way is obvious. For the other direction, given a real closed f-semifield F ,
we only have to check that the family of functions fi is compatible with the congruence
of the underlying f-semifield F−. First of all let us note that given an ideal J , x ∈ J
if, and only if ∇(x) ∈ J (because x = x∇(x)). Suppose now that aiθbi for any i ≤ n
then this means that there exists an ideal of F , call it J , such that ai − bi ∈ J , hence
∇(|ai − bi|) ∈ J so even

∨n
i=0(∇(ai − bi)) ∈ J and by axiom 3 of Definition 5.5 we have

∇|fn(an, ..., a0)− fn(bn, ..., b0)| ∈ J , hence fn(an, ..., a0)θfn(bn, ..., b0).

From this and Proposition 5.6 it easily comes the following proposition.

Proposition 5.8. Every real closed f-semifield has a reduct which is the subdirect product
of linearly ordered real closed f-semifields

Our next aim is to link µ LΠ-algebras to real closed f-semifields. To this end we need
some preliminary facts on how to manipulate f-polynomials on real closed f-semifields.

Lemma 5.9. Given a f-polynomial f(x) on an f-semifield F which changes its sign
in the interval [0, 1], there exist a term p(x) of the  LΠ1

2 interval algebra of F and an
interpretation i such that f(t) = 0 iff i(p(t)) = 0.

Proof. Given f(x) =
∨
j∈J

∧
k∈K

∑
i≤n

aijkx
i, let m =

∑
i≤n,j∈J,k∈K

aijk and consider the f-

polynomial
g(x) =

∨
j∈J

∧
k∈K

∑
i≤n

aijk
m

xi =
∨
j∈J

∧
k∈K

∑
i≤n

bijkx
i.

Arranging every polynomial in g(x) as∑
i≤n

(bijk ∨ 0)xi −
∑
i≤n

(bijk ∧ 0)xi
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it is easy to realize that f(t) = 0 if, and only if, in the interval algebra of F holds

i

∨
j∈J

∧
k∈K

∣∣∣∣∣∣
⊕
i≤n

(yijk ∨ 0)� ti −
⊕
i≤n

(yijk ∧ 0)� ti
∣∣∣∣∣∣
 = 0

where i is an interpretation which sends each variable yijk in bijk.

Theorem 5.10. Every µ LΠ-algebra is isomorphic to the interval algebra of some closed
f-semifield.

Proof. Given a µ LΠ-algebra A consider the f-semifield F associated to its  LΠ reduct.
We will construct a family of definable fn in order to make F a real closed f-semifield.

Given P (x), an f-polynomial and an interval [a, b] in F consider the bijection σ :
[0, 1] −→ [a, b] given by σ(x) = (b− a)x+ a, and the new f-polynomial P ′(x) = P (σ(x)),
then by the construction of Lemma 5.9 we get a  LΠ1

2 term, p(x), associated to P ′(x)
and an interpretation i. Let f(a, b, P ) = σ−1(i(µx.[(p(x)⊕ x])).

To show that indeed those f satisfy the axioms in Definition 5.5, let Pi(x) be the ith

projection of P (x) in the subdirect representation of F . In the factors of the represen-
tation, both parts of the inequality of axioms 1 are evaluated either to 0 or to 1. Let
a, b ∈ Ai, if N(Pi(a)Pi(b)) × N(a − b) = 0 then there is nothing to check. Otherwise,
supposing a ≤ b, we have to show that a ≤ f(a, b, Pi) ≤ b and Pi(f(a, b, Pi)) = 0. The
first two inequalities hold, because a ≤ σ(x) ≤ b. For the last one, note that by Lemma
5.9 P ′(i(µx.[p(x)⊕ x])) = 0 hence P (σ−1(i(µx.[(p(x))⊕ x]))) = 0.

Axiom 2 is satisfied because, by axiom 2 of Definition 3.2, µx.[p(x)⊕x] is the smallest
element for which p(x) = 0 and σ preserves the order.

Axiom 3 directly follows from the fact that the fn are definable.

The established link holds also in the other direction

Theorem 5.11. Every real closed f-semifield contains a µ LΠ-interval algebra.

Proof. If F is a real closed f-semifield then it has a  LΠ-interval algebra, A. To prove
that A can be endowed with the structure of a µ LΠ-algebra we need to find a fixed
point for every term t(x) in A that is⇒Π-free. Let T (x) the corresponding f-polynomial
in F . If T (0) = 0, then set µx.t(x) = 0, otherwise consider T ′(x) = T (x) − x. Note
that T ′(0) = T (0) − 0 > 0 and T ′(1) = T (1) − 1 ≤ 0 hence T ′(0)T ′(1) ≤ 0 so, letting
t = f(0, 1, T ′), we have T ′(t) = 0 which means T (t) = t.

Definition 5.12. Let Φ̄ the functor from the category of µ LΠ-algebras to the one of real
closed f-semifields. Φ̄ assigns to each µ LΠ-algebra, the real closed f-semifield constructed
as in Theorem 5.10 .

Let Ψ̄ the functor from the category of real closed f-semifields to the one of µ LΠ-
algebras. Ψ̄ assigns to every real closed f-semifield, the µ LΠ-algebra of Theorem 5.11.

To define Φ̄ and Ψ̄ on morphisms just note that a function is a morphism of µ LΠ-
algebras if, and only if, it is a morphism of  LΠ-algebras. Then Φ̄ and Ψ̄ act as Φ and Ψ
the functors defined as in [Mon00].
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Theorem 5.13. The category of µ LΠ-algebras and the category of real closed f-semifields
are equivalent.

Proof. We have to prove that there are natural isomorphisms,

η : Φ̄Ψ̄ ∼= idF and β : Ψ̄Φ̄ ∼= idLP.

In other words we have to show that for any pair A,B of µ LΠ-algebras, and any f :
A −→ B a morphism, and for every pair F ,G of real closed f-semifields with a morphism
g : F −→ G there exist two pairs of morphisms, βA, βB and ηF , ηF such that the
following diagrams commute:

A
f //

βA

��

B

βB

��
Ψ̄Φ̄(A)

Ψ̄Φ̄(f)
// Ψ̄Φ̄(B)

F
f //

ηF

��

G

ηG

��
Φ̄Ψ̄(F)

Φ̄Ψ̄(g)
// Φ̄Ψ̄(G)

Considering the  LΠ1
2 reducts, βA and βB exist and they are also morphisms of µ LΠ-

algebras. Moreover A and Ψ̄Φ̄(A), as well as B and Ψ̄Φ̄(B) are isomorphic as  LΠ1
2 -

algebras by construction and since all the constructions involved in Ψ̄ and Φ̄ are definable,
they are isomorphic as µ LΠ-algebras. The case of real closed f-semifields is similar.

6 Amalgamation

We conclude this work with an easy application of the ideas contained in [Mon06]. In
this article the relation between amalgamation and interpolation are pointed out and
explored in the most important cases. A key remark is that, due to the absence of
a deduction theorem for most of these logic, deductive interpolation and implicative
interpolation are not equivalent in this framework.

Given a class of structures K, let Klin be the linearly ordered members of K. In
[Mon06], Lemma 3.3 and 3.4 the following result is proved.

Lemma 6.1. Let K a quasi-variety of BL-algebras possibly with additional operators
such that Klin has the amalgamation property. Then K has the amalgamation property.

Theorem 6.2. Linearly ordered µ LΠ-algebras enjoy amalgamation.

Proof. For sake of simplicity we show only that for every A,B and C linearly ordered
µ LΠ-algebras such that A = B ∩ C, there exist D and embeddings h and k of B and C
respectively into D such that the restriction of h and k to A coincide. This will readily
implies the theorem. Let I,J and K be the real closed fields built respectively from
A,B and C, we can safely suppose I = J ∩ K. By the amalgamation property for real
closed fields we know that there is a real closed field L and embeddings h and k from
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J ,K into L such that h and k coincide on I, but then h and k coincide also on A. Hence
the interval algebra of L plus the restrictions of h and k to J and K is the amalgam we
were looking for.

Since in commutative residuated lattices the amalgamation property is equivalent to
the interpolation for the correspondent logic (see [GO06]), this proves:

Corollary 6.3. µ LΠ logic enjoys deductive interpolation.

7 Conclusions and Open Problems

We expanded  LΠ logic with new connectives which allow to define fixed points of a
subset of formulae in the language of  LΠ. In Theorem 3.10 we proved that the algebraic
structures defined in Definition 3.2 are precisely the algebraic semantics of this logic.
This result helped us to prove Theorem 4.10 which states that µ LΠ logic enjoys standard
completeness.

The proof of Theorem 4.10 sheds light on the tight relation between the algebraic
semantics of µ LΠ logic and real closed fields. This correspondence is explored and
generalized in Section 5 where, in Theorem 5.13, we proved that the class of algebras
that form the algebraic semantics for the above logic is categorically equivalent to the
class of real closed f-semifields (see Definition 5.5).

Real closed f-semifields can be seen as the meeting point of real closed fields and
f-rings. Indeed, to generalize the correspondence between linearly ordered  LΠ-algebras
and real closed fields, one needs new structures with the properties of both calsses above.
On one hand the result established in Proposition 3.9 tells that the structures suitable
for a generalization of the above correspondence need all to be subdirect product of
linearly ordered structures; on the other hand the presence of fixed point functions in
µ LΠ-algebras forces the existence of solutions for a suitable class of polynomials which
must be kept when taking subdirect product. The methods we used to guarantee that
both properties are met at the same time is to include in the language of real closed fields,
explicit functions which give the solutions of their associated polynomial. The relation
between real closed fields and real closed f-semifields can be found through Proposition
5.6 and Proposition 5.8.

The last result of the paper uses, as a simple application, the correspondence be-
tween linearly ordered  LΠ-algebras and real closed fields, to show that µ LΠ logic enjoys
implicative interpolation (Corollary 6.3).

We wish to stress once more that our approach to fixed points in logic is radically
different from the classical one, and that this is possible just because we deal with
many-valued logics. Working with a new modus operandi, during our research we found
many interesting questions which we did not have the time to answer. We propose
some of them here both to present our future lines of research and with the ambition to
stimulate the interest of other researches.

We are exploring at the moment the results of adding a (min or max) fixed point
operator to BL, or  Lukasiewicz logics. Note that the only extension of BL logic
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having a continuous residuum and standard completeness is  Lukasiewicz logic.
Whereas in  Lukasiewicz logic all connectives have a contiunuous interpretation, in
the case of BL the fixed points which are are guaranteed to exist are for formulae
in which only the symbols ∗,∨,∧ occur.

We had to menage an annoying connective here (namely →Π) would be possible to de-
velop the same work in PMV-algebras? Note that in  Lukasiewicz logic ∆ is already
definable as µx¬(¬y&x), so µPMV and µ LΠ should have interesting relations.

µ LΠ logic is decidable, due to the elimination of quantifiers in real closed fields, but
which is its complexity? (The problem is not trivial since a sharp bound on the
complexity of  LΠ is unknown)

Does µ LΠ Logic enjoys deductive interpolation or, putting in a semantical perspective,
does the class of µ LΠ-algebras enjoys the strong amalgamation property?

Characterize the free algebra of µ LΠ (i.e. find an equivalent of McNaughton’s theorem
for µ LΠ).

Is it possible to lift all the machinery to first order many-valued logic?
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