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1 Introduction

Critics of causal decision theory (CDT) have put forward various alleged counterex-

amples: cases in which, they claim, rationality and the recommendations of CDT

diverge.1 For the most part, proponents of CDT have been unconvinced, viewing

the intuitions the alleged counterexamples elicit with a mixture of suspicion and

opposition.2 The dispute is thus at an impasse, and one worries that unless there is

some way to move beyond judgements about cases, the dispute will devolve into

an unproductive clash of intuitions.

My goal in this paper is move beyond the impasse. I criticize CDT, not by

1See e.g. Ahmed (2013; 2014a; 2014b), Egan (2007), Hare and Hedden (2016), Hunter and Richter

(1978) and Weirich (2004).
2See e.g. Arntzenius (2008), Cantwell (2010), Harper (1986), Joyce (2012; 2018) and Williamson

(forthcoming). For relevant empirical data, see Eriksson and Rabinowicz (2013) and the studies

cited therein.

1



appeal to judgements about cases, but by explicit argument. I formulate a principle

of preference, which I call the Guaranteed Principle. I argue that the preferences

of rational agents satisfy the Guaranteed Principle, that the preferences of agents

who embody CDT do not, and hence that CDT is false.

2 The Guaranteed Principle

Say that a decision guarantees $n if the agent knows that some particular option

made available by the decision would yield $n if chosen; and say that a decision

forces $n if the agent knows that every option made available by the decision

would yield $n if chosen. If we assume that agents satisfy certain simplifying

assumptions,3 care only about money and value dollars linearly, then we can

formulate the Guaranteed Principle as follows:

(Guaranteed Principle) A rational agent always strictly prefers a deci-

sion that guarantees $n to a decision that forces $m < $n.

The motivation for the Guaranteed Principle is straightforward: a rational agent

never strictly prefers fewer options. If d1 is a decision that forces $n, and d2 is just

like d1 except that it makes additional options available,4 then a rational agent

3I assume that credences are conglomerable, that utilities are bounded, that there is no self-

locating uncertainty, and that the agents know that their utilities will not change and that they will

not suffer any information loss.
4A decision is a quadruple 〈C,u,A,K〉, where C is the credence function, u is the utility function,

2



weakly prefers d2 to d1. And a rational agent strictly prefers d1 to some decision,

d0, which forces $m < $n. So, by transitivity, we get the Guaranteed Principle.5

The Guaranteed Principle does not hold of imperfect agents, nor of agents

who expect to be imperfect. Take an extreme illustration. Suppose that the least

choiceworthy option made available by a decision that guarantees $n is very bad

indeed, and suppose that I have a lesion that makes me choose from among the

least choiceworthy options when I face decisions of that sort. Then, as a way of

protecting myself from my disposition to choose irrationally, I should prefer the

decision that forces $m to the decision that guarantees $n > $m.

But the Guaranteed Principle does not purport to hold true of imperfect agents.

It’s restricted to (perfectly) rational agents: the idealized agents that are the subject

matter of decision theory. If an agent fully expects to choose from among the most

choiceworthy options, as rational agents always do, then the agent must strictly

prefer a decision that guarantees $n to a decision that forces $m < $n.

A is the set of options and K is the set of dependency hypotheses.
5The Guaranteed Principle is akin to a causal dominance principle. One-boxers who object

to causal dominance reasoning might object to the Guaranteed Principle on similar, anti-causalist

grounds. My target in this essay is CDT, however, and proponents of CDT will not object to the

Guaranteed Principle on anti-causalist grounds.
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3 An alleged counterexample to CDT

I am going to use the Guaranteed Principle to argue that a particular alleged coun-

terexample to CDT succeeds. The example I will focus on is the following one,

from Spencer and Wells (2019: 34):

(The Frustrater) There is an envelope and two opaque boxes, A and

B. The agent has three options: she can take A, B or the envelope (aA,

aB or aE). The envelope contains $40. The two boxes together contain

$100. How the money is distributed between the boxes depends on a

prediction made yesterday by the Frustrater, a reliable predictor who

seeks to frustrate. If the Frustrater predicted that the agent would take

A, then B contains $100. If the Frustrater predicted that the agent would

take B, then A contains $100. If the Frustrater predicted that the agent

would take the envelope, each box contains $50. The agent knows all of

this.

There is a strong intuition that rationality requires taking the envelope. CDT,

however, does not recommend the envelope.

According to CDT, an agent should always choose so as to maximize U. Let

W = {w1, ...,wn} be the set of possible worlds; let C be the agent’s credence function;

and let u be the agent’s utility function. We then can define the V-value of any

proposition p:
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V(p) =
∑

W C(w|p)u(w).

Note that V obeys the rule of averaging: if Z is a set of propositions that C-partitions

p – in other words, if exactly one member of Z is true at every p-world to which C

assigns nonzero probability – then V(p) =
∑

Z C(z|p)V(pz). Let A = {a1, ..., am} be the

set of options, and let K = {k1, ..., k j} be the set of dependency hypotheses, where a

dependency hypothesis is a maximally specific proposition about how things the

agent cares about do and do not depend causally on their present choice.6 The

U-value of any a ∈ A, then, is:

U(a) =
∑

K
∑

W C(k)C(w|ak)u(w) =
∑

K C(k)V(ak).

The agent facing The Frustrater knows that the envelope contains $40, so, equat-

ing dollars and units of value, U(aE) = 40. The agent does not know how the money

is distributed between the boxes, but knows that the boxes together contain $100.

Therefore, no matter how the agent divides her credence, U(aA)+U(aB) = 100.7 Two

numbers smaller than 40 cannot sum to 100, so, no matter how the agent divides

her credence, aA and/or aB maximize U.

Some find the intuition elicited by The Frustrater sufficiently compelling. They

need no further argument. The case, itself, convinces them to reject CDT.

6Cf. Lewis (1981: 11).
7There are three relevant dependency hypotheses: either A contains $100, B contains $100 or

each box contains $50 (kA, kB or kE). U(aA) + U(aB) = C(kA)(V(aAkA) + V(aBkA)) + C(kB)(V(aAkB) +

V(aBkB)) + C(kE)(V(aAkE) + V(aBkE)) = C(kA)(100 + 0) + C(kB)(0 + 100) + C(kE)(50 + 50) = 100.
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But I know – both from the literature and from personal experience – that

some remain unconvinced.8 So it’s worth trying to undergird the intuition with

argument.

4 An argument against CDT

Say that an agent embodies a decision theory just if the agent knows that she always

chooses an option recommended by the decision theory. An agent who embodies

CDT knows that she always chooses a U-maximizing option. I am going to argue

that rational agents do not embody CDT.

To get the argument going, consider the following elaboration of The Frustrater:

(Two Rooms) An agent must enter either Room #1 or Room #2. If she

enters Room #1, she gets $35. If she enters Room #2, she faces The

Frustrater. The agent knows all of this.9

The ‘decision’ in Room #1 forces $35. The decision in Room #2 – namely, The

Frustrater – guarantees $40. The Guaranteed Principle thus entails that a rational

agent strictly prefers Room #2 to Room #1.
8See e.g. Joyce (2018).
9Yesterday the Frustrater made a prediction about what the agent would do were she to enter

Room #2. If the Frustrater predicted that the agent would take A, then B contains $100. If the

Frustrater predicted that the agent would take B, then A contains $100. If the Frustrater predicted

that the agent would take the envelope, then each box contains $50. The agent knows that the

Frustrater predicted the truth of exactly one of these three counterfactuals.
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If CDT is true, then a rational agent embodies CDT. So we have the first premiss

of the argument, which is a claim of material implication:

(P1) If CDT is true, then an agent who embodies CDT strictly prefers Room #2 to

Room #1.

The second premiss is a claim about the pairwise preferences of an agent who

embodies CDT:

(P2) An agent who embodies CDT strictly prefers Room #1 to Room #2.

To see that (P2) is true, we need to run through some calculations.

Let a#1 and a#2 be the options of entering Room #1 and Room #2, respectively.

There are three relevant dependency hypotheses: either A contains $100, B contains

$100 or each box contains $50 (kA, kB or kE). We know that U(a#1) = 35, since Room

#1 forces $35. What U(a#2) is depends on how the agent divides her credence:

(1) U(a#2) = C(kA)V(a#2kA) + C(kB)V(a#2kB) + C(kE)V(a#2kE).

Let aA, aB and aE be the options available in Room #2, and let’s assume that each

entails a#2. The agent is certain that she will choose A or B if she enters Room #2,

so {aA, aB} C-partitions the following propositions: a#2kA, a#2kB and a#2kE. Therefore,

by the rule of averaging,

(2) V(a#2kA) = C(aA|a#2kA)V(aAkA) + C(aB|a#2kA)V(aBkA);

(3) V(a#2kB) = C(aA|a#2kB)V(aAkB) + C(aB|a#2kB)V(aBkB); and
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(4) V(a#2kE) = C(aA|a#2kE)V(aAkE) + C(aB|a#2kE)V(aBkE).

Both V(aAkA) and V(aBkB) equal 100, since the agent gets $100 if aAkA or aBkB.

Both V(aBkA) and V(aAkB) equal 0, since the agent gets $0 if aBkA or aAkB. And both

V(aAkE) and V(aBkE) equal 50, since the agent gets $50 if aAkE or aBkE. Therefore,

(5) V(a#2kA) = C(aA|a#2kA)(100) + C(aB|a#2kA)(0);

(6) V(a#2kB) = C(aA|a#2kB)(0) + C(aB|a#2kB)(100); and

(7) V(a#2kE) = C(aA|a#2kE)(50) + C(aB|a#2kE)(50).

Plugging (5)-(7) back into (1), we get:

(8) U(a#2) = C(kA)(C(aA|a#2kA)(100)+C(aB|a#2kA)(0))+C(kB)(C(aA|a#2kB)(0)+C(aB|a#2kB)(100))+

C(kE)(C(aA|a#2kE)(50) + C(aB|a#2kE)(50)).

What these credences and conditional credences are depends on how reliable

the agent takes the Frustrater to be. In a more realistic case, the agent might take the

Frustrater to be rather, but not extraordinarily, reliable. But let’s suppose, to make

things simple, that the agent takes the Frustrater to be almost perfectly reliable. In

that case, the agent is virtually certain that some box contains $100, and virtually

certain that she will take a box that contains $0 if she enters Room #2 – in other

words, C(kE) ≈ 0, C(aA|a#2kA) ≈ 0 and C(aB|a#2kB) ≈ 0. It therefore follows that:

(9) U(a#2) ≈ 0.10

10U(a#2) < U(a#1) in more realistic cases, too. For example, if C(kA) = C(kB) = 0.4, C(aA|a#2kA) =
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If there were diachronic (conjunctive, long-arm) options, then we might be

able to reconcile CDT with the Guaranteed Principle. An agent facing Two Rooms

would have four diachronic options: a#1, aA, aB and aE. If we assign each of

these a U-value, the ones that maximize U are aA and/or aB, since U(a#1) = 35,

U(aE) = 40, and U(aA) + U(aB) = 100. It is not completely clear what preferences

among decisions are if there are diachronic options; but if we think of decisions as

containing only synchronic options, and we think of diachronic options as having

synchronic options as parts, then we could say that an agent strictly prefers decision

di to decision d j just if some synchronic option in di is a part of some diachronic

option that is strictly preferred to every diachronic option that has any synchronic

option in d j as a part. An agent who embodies CDT strictly prefers aA and/or aB to

a#1. So, if there were diachronic options, an agent who embodies CDT would, in

this sense, strictly prefer Room #2 to Room #1, and the conflict between CDT and

the Guaranteed Principle would be removed. But, unfortunately for CDT, there

aren’t any such things.11 An agent deciding between Room #1 and Room #2 faces a

straight choice between two (real, synchronic) options. And if the agent embodies

CDT, the agent will choose Room #1, since U(a#1) > U(a#2). Therefore, (P2) is true.12

C(aB|a#2kB) = 0.2, and C(aA|a#2kE) = C(aB|a#2kE) = 0.5, then U(a#2) = (0.4)((0.2)(100) + (0.8)(0)) +

(0.4)((0.8)(0) + (0.2)(100)) + (0.2)((0.5)(50) + (0.5)(50)) = 26 < 35.
11See Hedden (2015), Joyce (1999) and Pollock (2002). For a defence of diachronic options, see

McClennan (1990).
12CDT is sometimes formulated in terms of imaging; cf. Sobel (1994), Lewis (1981) and Joyce

(1999). If Ca is C imaged on a, then U(a) is taken to be
∑

W Ca(w)u(w). Credence shifted by imaging
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The two premisses of the argument entail the falsity of CDT. I have argued that

both premisses are true. So I think that we have here a sound argument against

CDT.

And it’s not hard to see where CDT goes wrong. It’s not irrational for an agent

who embodies CDT to strictly prefer Room #1 to Room #2 – that’s not where the

mistake lies. After all, agents who embody CDT almost always get $0 upon facing

The Frustrater, and $35 is better than $0. The mistake lies in embodying CDT,

and, specifically, in being disposed to choose so as to maximize U upon facing The

Frustrater. An agent who knows that she will choose so as to maximize U upon

facing The Frustrater knows that she has a strong disposition to choose an empty

is confined by dependency hypotheses. But a question arises: in Two Rooms, when we image on a#2,

how do we divide the shifted credence between aA and aB? According to Lewis (1981), if we set time

travel aside, then: for any option a and any proposition p, Ca(p) =
∑

K C(k)C(p|ak). Thus, according

to Lewis, credence shifted by imaging on a#2 is distributed between aA and aB in proportion to

original credence. If Lewis’s equation holds in Two Rooms, then my defence of (P2) carries over to

imaging-based CDT straightforwardly. But, as a helpful editor pointed out, one could hold a rival

view about imaging, on which the credence shifted by imaging on a#2 is divided equally between aA

and aB, irrespective of original credence. If this rival view is accepted, my defence of (P2) does not

carry over straightforwardly; for then
∑

W
∑

K C(k)C(w|ak)u(w) and
∑

W Ca(w)u(w) need not be equal.

However, as the helpful editor also pointed out, my main contention still can be defended. If the

rival view of imaging is accepted, then Two Rooms is unstable: U(a#2) is inversely proportional to

C(a#2). If the agent divides their credence so that U(a#2) = U(a#1), then the agent will be indifferent

between Room #1 and Room #2 – thus violating the Guaranteed Principle, which requires that the

agent strictly prefer Room #2 to Room #1.
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box, and it is rational for her to protect herself from this choice-making disposition

by violating the Guaranteed Principle and strictly preferring Room #1 to Room #2.

But a rational agent, unlike an agent who embodies CDT, never needs to protect

herself from her own choice-making dispositions. A rational agent facing Two

Rooms fully expects to take the envelope upon entering Room #2 and therefore

satisfies the Guaranteed Principle, strictly preferring Room #2 to Room #1.

5 Diachronic exploitation

Cases like Two Rooms reveal that the preferences of agents who embody CDT violate

the Guaranteed Principle. Such cases also reveal that agents who embody CDT are

diachronically exploitable. But, though I think the falsity of CDT follows from its

conflict with the Guaranteed Principle, I do not think the falsity of CDT follows

from the diachronic exploitability of agents who embody CDT.

Say that a sequence of options made available by a sequence of decisions ensures

$n if the agent knows that if she took the sequence – i.e., chose each option in the

sequence – she would get $n; and say that an agent facing a sequence of decisions

is diachronically exploited just if (1) there is a sequence of options available to the

agent that ensures $n and (2) the agent takes a sequence that ensures $m < $n.

In Two Rooms, the sequence of entering Room #2 and taking the envelope ensures

$40. But an agent who embodies CDT takes the ‘sequence’ of entering Room #1,

which ensures $35. So, as past critics of CDT have pointed out, agents who embody

11



CDT are diachronically exploitable.13

But there are cases that convince me that diachronic exploitability and perfect

rationality are compatible. One example is the following:14

(Ahmed’s Insurance) There is a transparent box and an opaque box.

The agent has two options: she can take either only the opaque box

or both boxes (a1 or a2). The transparent box contains $10. What the

opaque box contains depends on a prediction made yesterday by a

reliable predictor. If the predictor predicted that the agent would take

both boxes, the opaque box contains −$50, a debt the agent must repay.

If the predictor predicted that the agent would take only the opaque

box, the opaque box contains $50. At the second stage, before looking

into the opaque box, the agent faces a second decision. She can either

bet $75 at 1:3 that the predictor predicted correctly or bet $25 at 3:1 that

the predictor predicted incorrectly (b1 or b2). The agent knows all of this

from the outset.

There are two relevant dependency hypotheses: either the opaque box contains

$50 or −$50 (k50 or k−50). The agent can thus foresee the eight possible outcomes of

the four possible sequences:

13See Ahmed (2014a) and Oesterheld and Conitzer (MS).
14So-named because it is a variation on Ahmed’s (2014a) Newcomb Insurance. This section also

draws heavily on Ahmed (MS).
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k50 k−50

a1b1 $75 −$125

a1b2 $25 $25

a2b1 −$15 −$15

a2b2 $135 −$65

The sequence a1b2 ensures $25; the sequence a2b1 ensures −$15; and an agent

who embodies CDT is likely to the take the sure-loss sequence, a2b1. The agent

knows that the predictor is much more than 75% reliable whichever option is

chosen. So, no matter what the agent chooses at the first stage, CDT – like any sane

decision theory – recommends b1: that the agent bet that the predictor predicted

correctly at the second stage. Since the agent who embodies CDT knows that she

will choose b1 at the second stage, the U-value of taking both boxes is −15, the

sure-loss value of a2b1, and the U-value of taking only the opaque box is:

U(a1) = C(k50)V(a1b1k50) + C(k−50)V(a1b1k−50) = C(k50)(75) + C(k−50)(−125).

Whether U(a2) or U(a1) is greater depends on how the agent divides her credence

between k50 and k−50. But suppose that the agent divides her credence equally, as

she very well might. Then,

U(a1) = (0.5)(75) + (0.5)(−125) = −25 < −15 = U(a2).

The agent will thus take the sure-loss sequence, a2b1, even though a sure-gain

sequence was available.
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But, so far as I can tell, there is nothing irrational about taking the sure-loss

sequence. To see why, it’s helpful to represent the sequential decision as an in-

trapersonal game played between two time-slices of the agent.15 Let C be the

credence function of the first slice, and let’s suppose that the credence function

of the second slice comes from C via conditionalizing on the option chosen at

the first stage. Let t be the proposition that the predictor predicted correctly

and suppose that C(t) = C(t|a1) = C(t|a2) = 0.9. Let’s also continue to suppose

that C(k50) = C(k−50). We then can represent Ahmed’s Insurance as a two-player

game, using the U-values as the payoffs. In each cell, axby, of the payoff matrix

below, the first coordinate is U(axby) from the perspective of the first slice, i.e.,

C(k50)V(axbyk50) + C(k−50)V(axbyk−50), and the second coordinate is U(axby) from the

perspective of the second slice, i.e., C(k50|ax)V(axbyk50) + C(k−50|ax)V(axbyk−50):

b1 b2

a1 (−25, 55) (25, 25)

a2 (−15,−15) (35,−45)

As the payoff matrix makes clear, the game takes the form of a prisoner’s

dilemma.16 Both slices want to maximize the U-value of the joint strategy played.

The first slice maximizes the U-value of the joint strategy played by taking both

15Here I follow Ahmed (MS).
16Whether the game is a prisoner’s dilemma depends on how the agent divides her credence

between k50 and k−50. But prisoner’s dilemma or not: if C(k−50) > 0.45, the only Nash equilibrium is

the sure-loss sequence, a2b1. (If C(k−50) < 0.45, the only Nash equilibrium is a1b1.)
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boxes, no matter what the second slice does. The second slice maximizes the U-

value of the joint strategy played by betting that the predictor predicted correctly,

no matter what the first slice does. The two choices together lead to diachronic

exploitation. But it seems to me as it will seem to many proponents of CDT: that

both choices are rational.

It’s worth noting that the game-theoretic perspective that helps proponents of

CDT respond to the threat posed by Ahmed’s Insurance does not help proponents of

CDT respond to the threat posed by Two Rooms. Suppose that the agent facing Two

Rooms thinks that A and B are equally likely to contain $100. Then, if we again use

the U-values of sequences as the payoffs, we get the following trivial payoff matrix:

A B E

Room #1 (35, 35) (35, 35) (35, 35)

Room #2 (50, 50) (50, 50) (40, 40)

This payoff matrix does not explain why an agent who embodies CDT strictly

prefers Room #1 to Room #2. In fact, it only makes the preference more puzzling;

for both slices agree that the U-value of every joint strategy available in Room #2

exceeds the U-value of every joint strategy available in Room #1.
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6 Conclusion

I have argued that the preferences of rational agents satisfy the Guaranteed Princi-

ple, that the preferences of agents who embody CDT do not, and hence that CDT is

false. In so doing, I have argued that a particular alleged counterexample to CDT

– namely, The Frustrater – really is a counterexample.17

17For comments, questions and encouragement, I am grateful to two anonymous referees and a

helpful Associate Editor; to Arif Ahmed, David Builes, Kevin Dorst, Adam Elga, Branden Fitelson,

James Joyce, Sarah Moss, Agustı́n Rayo, Bernhard Salow, Haley Schilling, and Robert Stalnaker;

and to an audience at the 2020 APA Central Division.
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