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Abstract 

In learning mathematics, children must master fundamental logical relationships, 

including the inverse relationship between addition and subtraction.  At the start of 

elementary school, children lack generalized understanding of this relationship in the 

context of exact arithmetic problems: they fail to judge, for example, that 12 + 9 – 9 yields 

12.  Here, we investigate whether preschool children’s approximate number knowledge 

nevertheless supports understanding of this relationship. Five-year-old children were 

more accurate on approximate large-number arithmetic problems that involved an inverse 

transformation than those that did not, when problems were presented in either non-

symbolic or symbolic form. In contrast they showed no advantage for problems involving 

an inverse transformation when exact arithmetic was involved. Prior to formal schooling, 

children therefore show generalized understanding of at least one logical principle of 

arithmetic.  The teaching of mathematics may be enhanced by building on this 

understanding. 
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Children’s understanding of the relationship between addition and subtraction 

 To a large degree, mathematics is the discovery and use of general, abstract 

principles that make hard problems easy.  The inverse relationship between addition and 

subtraction is a case in point.  Problems of the form x + y – z = ? are intractable for those 

who lack knowledge of specific arithmetic facts (e.g., what is x + y?), and they require 

two successive calculations for those who possess the relevant knowledge.  In contrast, 

problems of the form x + y – y = ? can immediately be solved, without arithmetic fact 

knowledge or calculation, by anyone who understands the logical relationship between 

addition and subtraction.  The present research explores the origins of this understanding 

in children on the threshold of formal instruction in arithmetic. 

 Previous research suggests that children’s understanding of this relationship 

develops over many years of instruction in elementary mathematics. Children who have 

received arithmetic instruction perform more accurately on inverse problems of the form 

x + y – y than on matched problems of the form x + y - z (e.g. Bisanz & LeFevre, 1990; 

Bryant, Christie & Rendu, 1999; Gilmore & Bryant, 2006, Gilmore 2006; Rasmussen, Ho 

& Bisanz, 2003; Siegler & Stern, 1998; Stern 1992), but they appear to learn about this 

principle in a piecemeal fashion. For example, children may recognize that subtracting 4 

cancels the operation of adding 4, but they fail to recognize inversion as a general 

principle that can be applied to all numbers (Bisanz & LeFevre, 1990).  Furthermore, 

these studies all involved children who were already receiving formal instruction in 

arithmetic, and thus the roots of this understanding are unclear. 

Studies involving preschool children have not demonstrated generalized 

understanding of inversion. While some 4 year-old children correctly solved inverse 



 

 

4 

problems involving addition and subtraction of one or two objects (Klein and Bisanz, 

2000; Villette, 2002), this ability was restricted to children who were able to perform 

addition and subtraction computations. Thus, it is not clear on what basis children solved 

these problems. Some 4-year-old children were found to solve inverse problems more 

accurately than control problems, when problems were presented with concrete items 

(Rasmussen et al., 2003). However, mean performance was less than 50%, the inverse 

effect size was small, and no child solved all the inverse problems correctly.  Moreover, 

each of these studies employed problems involving very small numerosities (e,g, addends 

and subtrahends less than 5). Thus, there is no evidence that children understand the logic 

of inversion applied to numbers of any size, prior to the onset of formal schooling.   

To our knowledge, all previous studies of children’s understanding of inversion 

have used problems involving exact numbers, typically presented in verbal or written 

symbolic form.  It is possible, therefore, that preschool children have a conceptual 

understanding of the relationship between addition and subtraction, but fail to apply their 

understanding to exact symbolic arithmetic problems.  This understanding may be 

revealed through the use of problems of approximate arithmetic on numbers presented in 

nonsymbolic form.   

Two lines of research provide reasons to consider this possibility.  One set of 

studies tested young children’s understanding of the inverse relationship between adding 

and subtracting one (Lipton & Spelke, 2006).  Children who were unable to count beyond 

60, and who could not judge whether “86” denoted a larger or smaller number than “67,” 

were shown a jar of marbles and were told that there were (e.g.) “86 marbles” in the jar. 

Children judged that the jar no longer contained 86 marbles after a single object was 
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added or removed, whereas it still contained 86 marbles after the marbles were stirred 

with no addition or subtraction:  findings that indicate that “86” denoted a specific, exact 

numerosity.  When one marble was removed from the jar and then a different marble was 

added, these children judged that the jar again contained 86 marbles.  Thus, children 

appeared to appreciate the inverse relationship between adding and subtracting one 

object.  The study does not reveal, however, whether children understand that the 

relationship holds for addition and subtraction of quantities larger than one.    

A second set of studies focuses on preschool children’s abilities to add and 

subtract large, approximate nonsymbolic numerosities.  Adults and preschool children 

who are shown an array of dots or a sequence of sounds or actions are able to represent 

the approximate cardinal value of the set of entities, without verbal counting (e.g. Cordes, 

Gelman, Gallistel, & Whalen, 2001; van Oeffelen & Vos, 1982).  These non-symbolic 

representations are imprecise, they are subject to a ratio limit on discriminability, and 

they have been found in educated adults (Barth, Kanwisher & Spelke, 2003; Whalen, 

Gallistel & Gelman, 1999), preschool children (Lipton & Spelke, 2005), adults in an 

indigenous Amazonian community lacking any formal education (Pica, Lemer, Izard & 

Dehaene, 2004), pre-verbal infants (Brannon, 2002; Xu & Spelke, 2000) and non-human 

animals (Meck & Church, 1983).  

Moreover, adults with and without formal education, preschool children, and 

infants can perform approximate additions and subtractions on non-symbolic stimuli 

(Pica et al., 2004; McCrink &Wynn, 2004; Barth, La Mont, Lipton & Spelke, 2005; 

Barth, La Mont, Lipton, Dehaene, Kanwisher & Spelke, 2006).  In an experiment that is a 

direct precursor to the present studies, 5-year-old children were presented with computer-
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animated events in which an array of blue dots appeared and moved into a box, and then 

a second set of blue dots moved into the box.  Then children saw an array of red dots next 

to the box, and they judged whether there were more blue dots (hidden in the box) or red 

dots.  Children performed this task reliably though imperfectly, and their performance 

showed the ratio signature of large approximate number representations (Barth et al., 

2005).  These studies provide evidence that children have an abstract understanding of 

addition and subtraction prior to formal mathematics instruction.  Recent experiments 

revealed, moreover, that children with no instruction in symbolic arithmetic can use this 

understanding to solve approximate addition and subtraction problems presented in 

symbolic form (Gilmore, McCarthy & Spelke, 2007).  No study, however, reveals 

whether children’s abstract knowledge of addition and subtraction of nonsymbolic 

quantities supports an understanding of the inverse relationship between these operations, 

when the operations are applied either to nonsymbolic or symbolic numerical problems. 

Here we report three experiments that examine understanding of inversion by 

children who have not yet begun formal schooling. In the first experiment, we presented 

children with nonsymbolic, large approximate arithmetic problems similar to those used 

by Barth et al. (2005). In the second experiment, the same set of approximate arithmetic 

problems were presented with symbolic representations of number.  If children have a 

general understanding of inversion, they should be able to solve these problems, just as 

they solve problems involving the successive addition and subtraction of one. In the third 

experiment we tested whether children used approximate number representations to solve 

these problems, by presenting problems requiring exact representations of number. 
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In the critical trials of these experiments, children were given problems in which a 

quantity y was first added to and then subtracted from a hidden quantity x, and the 

resultant quantity was compared to a contrasting quantity w  (i.e., children answered 

questions of the form, is x + y – y more or less than w?).  It is possible, however, that 

children would succeed at problems of this form without understanding inversion, in one 

of two ways.  First, children might fail to attend to the addition and subtraction operations 

and simply compare x to w directly.  Second, children may perform two operations of 

approximate addition and subtraction in succession and succeed in the x + y - y task by 

this circuitous route.  To distinguish among these possibilities, children were presented 

with problems that involved inversion (x + y - y compared to w) interspersed with control 

problems that did not (x + y - z compared to w) (after Bisanz & LeFevre, 1990; Bryant et 

al., 1999; Rasmussen et al., 2003).  Some control problems preserved the numerical 

ordering of x and w, whereas others did not.  If children failed to attend to the operations, 

they should perform correctly on the subset of control problems whose two operations 

preserve the numerical ordering of x and w, and fail on the other control problems.  If 

children performed two operations in succession, then they should perform above chance 

on all the control problems.  If children understand the inverse relationship of addition 

and subtraction, in contrast, they should perform reliably better on the inversion problems 

than on either type of control problem.   

Experiment 1 

 The first experiment tested preschool children’s understanding of inversion with 

nonsymbolic, approximate numerosities presented as visible arrays of dots. 

Method 
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 Participants. Twenty children (9 male), aged 5 years 4 months to 6 years 1 month 

(mean 5 years 7.4 months) were recruited from a participant database drawn from the 

greater Boston area. 

 Task. The children were shown a series of large approximate arithmetical 

problems (see Table 1). They compared two sets of different numerosities after one set 

had undergone an addition and subtraction transformation. On inverse trials the quantity 

added and the quantity subtracted was the same (e.g. 42 + 10 – 10), whereas on control 

trials the quantity added and the quantity subtracted differed (e.g. 38 + 16 – 12).  The 

comparison set differed from the resultant set by a ratio of 2:3 or 3:2 (e.g. 42 v 63).  The 

same comparisons were used for the inversion and the control trials. The order of 

operations for both inversion and control trials was always plus-minus, to reduce both the 

number of trials that each child had to complete and the variety of sequences that they 

had to remember. 

Inverse Simple uneven Complex uneven 

Comparison  Problem 

Exp 1 & 2 Exp 3 

Problem Comparison Problem Comparison 

36 + 40 – 40 

20 + 38 – 38 

42 + 10 – 10 

54 + 8 – 8 

24 

30 

63 

36 

35 

21 

44 

52 

41 + 12 – 17 

38 + 13 – 9 

52 + 8 – 12 

24 

63 

32 

45 + 9 – 34 

24 + 38 – 8 

63 + 8 – 43 

30 

36 

42 

Table 1: Inverse and non-inverse problems given to children. In Experiments 1 and 2 

approximate comparison sets were used for all problems. In Experiment 3 exact 
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comparison sets were used for inverse trials and approximate comparison sets for control 

trials. 

The arithmetic problems were presented using non-symbolic stimuli consisting of 

arrays of dots. For inverse trials, the addend and subtrahend arrays had different 

arrangements of dots to suggest that different sets of dots were added and removed. The 

arrays were constructed to ensure that children were using numerosity rather than the 

correlated continuous variables of dot size, envelope area, or density to make quantity 

judgments. On half of the trials, the less numerous array had larger dot size, a larger 

envelope area and a higher density than the more numerous array. The initial set, addend 

and subtrahend had the same dot size.  Thus, children could not accurately predict 

whether the result set or the comparison set was larger on the basis of correlated 

continuous variables without considering the numerosity of the sets.  

 The inversion trials could be solved simply by comparing the initial set and the 

comparison set. To test whether children were using this strategy, the control trials were 

structured so that this strategy yielded the correct answer on half of the control problems 

(simple uneven) and the incorrect answer on the remaining control problems (complex 

uneven). For example, in the simple uneven problem 41 + 13 – 18  vs. 24, both the result 

set (36) and the initial set (41) are larger than the comparison set (24) and so children 

could answer correctly if they simply compared the initial set with the comparison set. In 

contrast, for the complex uneven problem 45 + 9 – 34  vs. 30, the result set (20) is smaller 

than the comparison set (30) but the initial set (45) is larger than the comparison set and 

therefore children would answer incorrectly if they simply compared the initial set with 

the comparison set. 
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 Children could also base their answers on the relative size of the sets across trials. 

For example, children might guess that the result set is larger than the comparison set if 

the initial array or the addend was particularly large, or if the subtrahend or the 

comparison set was particularly small. The problems were designed so that these 

strategies would lead to the correct answer on half of the trials and the incorrect answer 

on the other trials. If children were using this strategy, therefore, we would expect them 

to perform significantly above chance on the trials where set size was a predictor, and 

significantly below chance on the trials where set size was not a predictor.  

 Procedure. The task was presented on a laptop computer (see Figure 1). In the 

experimental trials an array of red dots (the initial set) appeared and was covered up by 

an occluder. A further red dot array (the addend) appeared and moved behind the 

occluder, then a third red dot array (the subtrahend) moved out from behind the occluder 

and off the screen. Finally a blue dot array (the comparison set) appeared and moved 

beside the occluder.  The animations were described to children by the experimenter 

saying “Look! Here come some red dots… They are being covered up… Here come 

some more red dots, now they are all behind there… Look some of the red dots are 

coming out and going away… Here come some blue dots. Are there more red dots behind 

the box or more blue dots?” 
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Figure 1: Schematic of animations shown to children with a) non-symbolic stimuli 

(Experiment 1), and b) symbolic stimuli (Experiment 2 & 3). 

 The children completed 10 experimental trials consisting of 4 inversion and 6 

control trials. Prior to the experimental trials the children completed 6 practice trials. The 

first two practice trials involved a simple numerical comparison of a red-dot and blue-dot 

array. The second two practice trials involved a comparison of a red-dot and a blue-dot 

array after the red set had undergone an addition transformation. The final two practice 

trials involved a comparison of a red-dot and blue-dot array after the red set had 

undergone a subtraction transformation.  

Results and Discussion 

 Children performed significantly above chance (50%), both for the inverse trials 

(75%, t(19) = 7.96, p < .001, d = 1.78) and for the control trials (59.2%, t(19) = 2.77, p = 

.012, d = 0.62; see Figure 2).  Thus, children showed some ability to perform successive 

operations of addition and subtraction on nonsymbolic, large approximate numerosities.  
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Most important, children performed more accurately on the inverse than on the control 

trials, (t(19) = 3.30, p = .004, d = 0.78), despite the fact that both these types of problems 

could be solved correctly by performing successive operations of addition and 

subtraction.  Performance on the inverse trials exceeded performance on the simple 

control trials (58.3%; t(19) = 2.92, p = .009, d = 0.65), whereas performance on the 

simple and complex uneven trials (60.0%) did not differ (t(19) =.203, p = .841).  Thus, 

children did not base their answers on a simple comparison between the initial set and the 

comparison set.  

 Children’s scores were analyzed further to determine whether they relied on 

strategies based on the relative sizes of sets. The children did not make use of the relative 

size of the initial array/addend (set size predictor 65.8%, set size not predictor 64.0%; 

t(18) = .298, p = .769). However, they were more accurate on problems where the size of 

the comparison set predicted the correct response (mean 71.9%) than on problems where 

the size of the comparison set predicted the incorrect response (54.0%; t(18) = 5.73, p < 

.001).  Although children were not statistically above chance on the problems for which 

the comparison set predicted the incorrect response (t(18) = 1.37, p = .187), this bias 

cannot account either for children’s overall above-chance performance or for their 

superior performance on the inverse problems, since the children scored above 50% on 

these trials, whereas they would have performed significantly below chance on these 

trials if they relied on this comparison strategy alone. Finally, the children were biased by 

the subtrahend in the opposite way to that expected (set size not predictor 76.3%, set size 

predictor 57.0%; t(18) = -3.76, p = .001): They tended to overestimate the number of red 

dots remaining after a large number of red dots were taken away.  This tendency also 
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cannot account either for children’s overall success or for their superior performance on 

inverse problems. 

 

Figure 2: Mean accuracy (and s.e.m.) on different trial types with non-symbolic stimuli 

(Experiment 1), symbolic stimuli with approximate comparisons (Experiment 2) and 

symbolic stimuli with exact comparisons for inverse and approximate comparisons for 

control problems (Experiment 3). 

 

 There was some evidence that children made more use of the envelope area in 

their judgments of numerosity than dot size or density. The children were more accurate 

when the initial, addend and subtrahend arrays had equal density and thus envelope area 

was correlated with numerosity (71.9%) than when they had equal envelope area and thus 

density was correlated with numerosity (54.0%; t(18) = 2.73, p = .014). This finding 

accords with recent research that suggests that envelope area plays a role in adults’ 
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estimates of numerosity (Shuman & Spelke, 2006).  Because envelope area was 

controlled within each type of problem, this effect cannot account for children’s 

successful performance. 

 In summary, preschool children can recognize and take advantage of an inverse 

transformation of large sets when given non-symbolic approximate arithmetic problems.  

Although children are capable of performing successive operations of addition and 

subtraction on nonsymbolic numerosities, their performance is reliably enhanced when 

the two operations are related by inversion.  Neither this inversion effect, nor children’s 

successful performance on problems without inversion, can be explained by numerical 

comparison strategies or by responses to continuous quantitative variables.  Because all 

the problems involved numbers considerably larger than 4, moreover, children’s success 

cannot be explained by local knowledge of the inverse relation between addition and 

subtraction of specific small numbers.  Experiment 1 therefore provides evidence for an 

early-developing, general understanding of the inverse relationship between addition and 

subtraction that can be applied to abstract nonsymbolic representations of number. 

Children’s successful performance in Experiment 1 contrasts with the lack of 

evidence from previous studies that preschool children have a general understanding of 

inversion, applicable to problems involving symbolic exact additions and subtractions 

that they have not yet learned to perform..  In the next experiment we begin to explore 

whether children’s success in Experiment 1 stems from the use of nonsymbolic stimuli or 

from the use of approximate arithmetic problems.  Experiment 2 investigates whether 

children can identify and use this inverse relationship when they are given large, 
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approximate arithmetic problems involving successive addition and subtraction of 

symbolic numerical representations. 

Experiment 2 

 Experiment 2 used the method of Experiment 1 with one critical change.  Instead 

of viewing cartoon events involving arrays of visible objects, children viewed cartoon 

events involving bags of hidden objects whose number was designated symbolically:  by 

a number word and Arabic numeral notation.  If children can perform successive addition 

and subtraction on large, approximate symbolically presented numbers, then children 

should perform above chance both on inversion problems (x + y - y) and on uneven 

problems (x + y - z).  If children can recognize and exploit the inverse relation of 

symbolic, approximate addition and subtraction, they should perform reliably better on 

the inversion problems. 

Method 

 Participants. Thirty-two children (9 male) aged 5 years 2 months to 6 years 3 

months (mean 5 years 8.9 months) were recruited from the same database used in 

Experiment 1. 

 Task and procedure. The children completed the task used in Experiment 1 with 

symbolic instead of non-symbolic representations of number. The problems presented 

were the same as in Experiment 1 and consisted of 6 practice trials (2 comparison, 2 

addition, 2 subtraction) and 10 experimental trials (4 inverse, 6 control).  The task again 

was presented on a computer, but the sets were represented by a picture of a bag with an 

Arabic numeral on the front (see Figure 1).  In the experimental trials a red bag (the 

initial set) appeared and was covered up by an occluder.  A further red bag (the addend) 
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appeared and moved behind the occluder, then a red bag (the subtrahend) moved out from 

behind the occluder and offscreen.  Finally a blue bag (the comparison set) appeared and 

moved beside the occluder.  The animations were described to the children by the 

experimenter saying (e.g.) “Can you help Justin guess if he has more red marbles or more 

blue marbles… Look he has 42 red marbles… Now they are being covered up… He gets 

10 more red marbles… Now they are all behind there… But look, 10 of the red marbles 

are coming out and going away… Look he has 63 blue marbles… At the end, does he 

have more red marbles behind the box or more blue marbles?”  

Results and Discussion 

Children performed significantly above chance on inverse trials (70.0%, t(29) = 

4.94, p < .001, d = 0.90) but they were no more accurate than chance on control trials 

(55.2%, t(28) = 1.47, p = .153; see Figure 2).  Children were significantly more accurate 

on the inverse than on the control trials (t(28) = 3.66, p = .001, d = 0.48).  Moreover, 

children were significantly more accurate on the inverse trials than on the simple uneven 

trials (52.9%, t(28) = 3.63, p = .001, d = 0.51), and they showed no difference in 

performance on the simple vs. complex uneven problems (57.8%; t(28) = .724, p = .475).  

These findings indicate that children’s success on the inverse trials did not depend on an 

overall strategy to compare only the initial and final arrays.   

 The children’s responses were examined to determine whether they employed 

superficial strategies based on the relative size of sets. There was no evidence that 

children based their answers on the relative size of the initial set/addend or comparison 

set (initial/addend set size predictor 61.5%, not predictor 59.5%: t(28) = .419, p = .678; 

comparison set size predictor 63.0%, not predictor 56.0%: t(28) = 1.57, p = .128). There 
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** 
* 

 * 

 * 

 * 

* 

* number of children is significantly higher than expected by chance (binomial test p < .01; 4 correct chance = 

6.25%; 3 or more correct chance = 31.25%; 2 or more correct chance = 68.75%) 

** significant difference between outcomes with symbolic and non-symbolic stimuli (chi-squared test p < .05) 

was some evidence that children considered the relative size of the subtrahend in making 

their judgments.  As in Experiment 1, however, this effect was in the opposite direction to 

that expected: the children were more accurate on trials in which the size of the 

subtrahend predicted the incorrect answer (69.0%) than on trials on which the size of the 

subtrahend predicted the correct answer (55.2%; t(28) = -2.69, p = .012).  

 To determine whether understanding of inversion was more widespread and 

consistent with non-symbolic or symbolic stimuli the data from Experiment 2 were 

compared with those from Experiment 1. The number of children who answered 1-or-

more, 2-or-more, 3-or-more and all 4 inverse trials correctly was examined (see Figure 

3). Performance profiles were highly similar across the two studies, and in neither study 

did the overall results appear to reflect the performance of a small subset of children. 
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Figure 3: Percentage of children giving different numbers of correct responses on inverse 

trials with non-symbolic (Experiment 1) and symbolic (Experiment 2) stimuli. 

Experiment 2 provides evidence that preschool children can identify an inverse 

relationship when they are given large, approximate arithmetic problems involving 

successive addition and subtraction of symbolic numerical representations. This finding 

contrasts with the lack of evidence from previous research that preschool children 

understand the effects of inversion on exact, symbolic representations of large number 

(Klein and Bisanz, 2000; Rasmussen et al., 2003, Vilette, 2002).  Children’s performance 

in our experiments suggests that they can identify inverse relationships involving 

approximate representations of large number earlier than they can do so with exact 

representations of large number. 

It is possible, however, that the successful performance of children in Experiment 

2 stemmed from the method that we used rather than from the focus on approximate 

numerical representations.  The method used in Experiment 2 differs from those of 

previous research, because we did not require children to produce an answer, either 

verbally or by constructing a set. It is possible, therefore, that children would have 

succeeded in our task even if given problems that required exact number representations. 

Experiment 3 investigated this possibility by testing children’s understanding of inversion 

using the method of Experiment 2 with numbers that required exact comparisons.  

Experiment 3 

Method 
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 Participants. Seventeen children (5 male) aged 5 years 3 months to 6 years 2 

months (mean 5 years 10 months) were recruited from the same database used in 

Experiment 1. 

Task and procedure. The task and the procedure were the same as Experiment 2 

with only one change: the values of w presented on inverse trials were altered so that 

inverse trials required exact rather then approximate comparisons. The comparison sets 

for the inverse trials were ±1 or 2 from the sum (e.g. for the problem 36 + 40 – 40 the 

comparison set was 35; see Table 1). The comparison sets for the control trials were the 

same as in Experiment 2. 

Results and Discussion 

Children performed at chance levels both on inverse trials (54.4%, t(16) = 0.614, 

p = .548) and control trials (53.9%, t(16) = 0.746, p = .466; see Figure 2).  There was no 

difference between children’s accuracy for the inverse and the control trials (t(16) = 

0.047, p = .963) or between accuracy on simple or complex control trials (51.0% vs. 

56.9%; t(16) = 0.511, p = .616). These results indicate that children did not recognize and 

take advantage of an inverse relationship involving large numbers when an exact 

comparison was required.  

Further analyses compared children’s performance in Experiment 3 to their 

performance in Experiment 2.  Children were more accurate on inverse problems in 

Experiment 2 than Experiment 3 (F(1,46) = 4.194, p = .046), but there was no difference 

in performance on control problems across the two experiments (F(1,45) = 0.044, p 

=.834). Children’s contrasting performance in the two experiments provides evidence that 
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children show a general understanding of the inverse relation only when they are 

presented with problems of approximate nonsymbolic or symbolic arithmetic.    

The findings of Experiment 3 provide evidence that children fail to exhibit 

knowledge of inversion when presented with exact problems involving large numbers.  

Nevertheless, the experiment does not clarify the reasons for this failure.  It is possible 

that children’s successful performance in Experiment 2 depended on a mapping of each 

symbolic number in the problem to a nonsymbolic numerosity.  Because nonsymbolic 

number representations are imprecise, the children in Experiment 3 may have failed to 

discriminate the difference between the initial and final numerosities.  Alternatively, 

children’s contrasting performance in Experiments 2 and 3 may stem from imprecision in 

children’s memory for the first numerical value.  When preschool children are presented 

with a long inversion problem beginning with one exact large number and ending with 

another, children may have attempt to compare the initial and final numbers but fail to do 

so accurately they only remember the initial number’s approximate value.  Regardless of 

whether the limits to preschool symbolic calculation stem from limits to discrimination or 

memory for numerical magnitudes, Experiments 2 and 3 provide evidence that preschool 

children master inversion only for approximate large-number problems. 

General Discussion 

 These experiments provide evidence that preschool children with no history of 

formal instruction in mathematics understand a central logical principle of arithmetic.  

Moreover, children apply this understanding successfully both to non-symbolic and to 

symbolic representations of large, approximate number, but not to symbolic 

representations of large, exact number. Although young children’s ability to calculate and 
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manipulate exact numbers may be restricted to very small number problems (Levine, 

Jordan & Huttenlocher, 1992), their understanding of logical principles in relation to 

approximate numbers extends well beyond the small-number range.  

 Our first experiment replicates previous findings of nonsymbolic numerical 

abilities in preschool children (e.g., Barth et al., 2003, 2005, 2006; Brannon, 2002; 

McCrink & Wynn, 2004), and it extends those findings in two ways.  First, performance 

in our studies on problems of the form x + y - z provides evidence that preschool children 

can perform two successive operations of addition and subtraction on large approximate 

numerosities presented in nonsymbolic form (as arrays of dots).  Second, children’s 

superior performance on problems of the form x + y - y, relative to the problems 

involving three discriminably different quantities, provides evidence that children 

appreciate the inverse relation between these two operations:  a fundamental logical 

principle of arithmetic. These findings add to the considerable evidence that 

nonsymbolic, approximate number representations are central to human knowledge of 

mathematics (Dehaene, 1997; Gallistel, 1990). 

Recent research provides evidence that preschool children can also operate on 

symbolic representations of large, approximate numerosity to compare quantities (Lipton 

& Spelke, 2005) and perform approximate addition and subtraction (Gilmore et al., 

2007).  The findings of our second experiment suggest that these abilities may be more 

fragile than abilities to compare, add and subtract non-symbolic numerosities, because the 

children in the present studies did not reliably solve control problems involving 

successive addition and subtraction of distinct symbolic numerosities. Nevertheless, 

children showed robust understanding of the inverse relation between these operations on 
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symbolic, approximate numbers.  Thus, a central aspect of the logical structure of 

arithmetic is used by children spontaneously, not only when they are presented with 

nonsymbolic numerosities but when they are presented with numbers in symbolic form.  

Children’s performance on the symbolic inverse problems in Experiment 2 is 

striking, because they have had no instruction whatever in symbolic arithmetic.  It is 

possible that children develop understanding of logical principles of symbolic arithmetic 

through experience with verbal counting and small-number arithmetic (Baroody, 1999; 

Canobi, 2005).  Alternatively, children may develop this understanding out of an earlier 

understanding of nonsymbolic numerical relationships and operations.  Further studies 

are needed to determine both the developmental relationships among these abilities in 

preschool children, and the detailed characteristics of children’s understanding of 

symbolic number in relation to nonsymbolic number (see Gilmore et al., 2007).  

 Children’s successful recognition and use of inversion for large approximate 

quantities contrasts with their failure to use inversion for large exact problems.  

Children’s mastery of the logical structure of arithmetic may therefore be first expressed 

in contexts involving approximate number representations (whether symbolic or 

nonsymbolic) and only later extend to the exact arithmetic tasks that children encounter 

in school. Further work is necessary to establish the developmental order and causal 

relations between these abilities. 

 These findings may have implications for arithmetic instruction. At present most 

instruction in arithmetic focuses almost exclusively on exact symbolic representations of 

number. Contrary to these approaches, children may benefit from instruction with 

approximate symbolic and approximate non-symbolic arithmetic problems. These types 
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of problems may allow children to focus easily and spontaneously on the abstract logical 

principles that underlie arithmetic. Since many children have difficulties acquiring 

mechanical computation skills, the use of problems similar to those of the present 

experiments may allow young children to make sense of new and challenging numerical 

tasks by harnessing their preexisting understanding of the conceptual relations at the core 

of arithmetic.  
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