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THEOREM. If f and g are integral forms of unit determinant, then f and
g are integrally equivalent if and only if (1) they have the same number of
variables, (2) they represent the same numbers modulo ir2e + 1, (3) S(f) =
S(g), and (4) d(f)/d(g) is a square.
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The object of this note is to disprove the axiom of choice in Quine's
"New Foundations."' As the axiom of choice is provable for finite sets,
we obtain the axiom of infinity as a corollary.2
There will be references to Rosser's Logic for Mathematicians,I although

the axiom of infinity is assumed there; but it is readily eliminated for our
purposes if one replaces Quine's ordered pair by Kuratowski's.
The proof will be by reductio ad absurdum.
1.1 V is the universal set, A the null set (R 256).
1.2 SC(a) is the set of subsets of a (R 255).
1.3 SC(V) = V (R 256).
1.4 USC(a) is the set of unit subsets of a, USC2(a) = USC(USC(a))

(R 255).
1.5 Fin is the set of finite sets (R 417).
2.1 Cardinal numbers are construed as saturated sets of equivalent

sets (R 371). Nc(a) is the cardinal number of a; so a e Nc(a).
2.2 NC is the set of cardinal numbers; A f NC.
2.3 Nc(SC(a)) = Nc(SC(b)) if Nc(a) = Nc(b) (R 369).
2.4 Nc(USC(a)) = Nc(USC(b)) if and only if Nc(a) = Nc(b) (R 368).
2.5 Nc(SC(V)) = Nc(V) (1.3).
2.6 Nc(SC(USC(a))) = Nc(USC(SC(a))) (R 368).
2.7 Nc(SC(LTSC(V))) = Nc(USC(V)) (2.6 and 1.3).
2.8 A cardinal number is finite if it is a subset of Fin. FNC is the set

of finite cardinal numbers.
2.9 1, 2, 3 are defined as cardinal numbers of sets with one, two, three

elements; 1, 2, 3 e FNC.
3.1 Definition of the sum of two cardinal numbers m, n: m + n =

Nc(a u b) if m = Nc(a), n = Nc(b) and a n b = A; if there are no such
a, b, then m + n = A (R 373).

3.2 1 + 1 = 2,1 + 2 = 3.
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3.3 If n is a finite cardinal number and n + 1 $ A, then n + 1 is a finite
cardinal number.

3.4 If m is a finite cardinal number, then there are finite cardinal
numbers n, p, q such that either m = n + n + n or m = p + p + p + 1
or m = q + q + q + 2; either of these three cases excludes the two others.

3.5 The cardinal numbers are well-ordered by the relation "there are
sets a, b such that a e m, b en and a S b" (axiom of choice).

3.6 If n + 1 is a finite cardinal number, then n < n + 1.
4.1 Definition of 2"t for cardinal numbers m: If m = Nc(USC(a)),

then 2m = Nc(SC(a)) (cf. 2.3, 2.4; R 389); if there is no set a such that
USC(a) e m, then 2m = A.
4.2 2Nc(USC)(a)) = Nc(SC(a)).
43 2Nc(USC(V)) = Nc(V) (4.2 and 2.5).
4*4 22c(USC2(V))= Nc(USC(V)) (4.2 and 2.7).
4.5 2m = A if and only if Nc(USC(V)) < m.
4.6 If 2" P A, then m < 2m (R 390).
4.7 Nc(USC(V)) < Nc(V) (4.3 and 4.6).
4.8 If m < n and 2n # A, then 2" $ A and 2" < 2n.
4.9 "2" = n" is stratified if "m" and "n" have the same type.
5.1 Definition of T(m) for cardinal numbers m: T(Nc(a)) =

Nc(USC(a)) (cf. 2.4).
5.2 T(1) = 1, T(2) = 2, T(Nc(V)) = Nc(USC(V)), T(Nc(USC(V))) =

Nc( USC2(V)).
5.3 If m, n, m + n are cardinal numbers, then T(m + n) = T(m) +

T(n).
5.4 If m is a finite cardinal number, then m $ T(m) + 1 and m F

T(m) + 2 (3.4, 5.2, 5.3).
5.5 If m, n are cardinal numbers, then m < n if and only if T(m) <

T(n) (2.4).
5.6 If m < T(n), then there is a p such that m = T(p)
5.7 If m < Nc(USC(V)), then there is a p such that m = T(p).
5.8 2T(m) $ A (45)
5.9 If 2m $ A, then T(2m) = 2T(m) (2.6 and 4.2).
6.1 If m is a cardinal number, then cI(m) is the set of cardinal numbers

m, 2"', 2"`, .... To formalize this, define Q(m, n) for mi, n e NC and
2m = n; +(m) = Clos ({im, Q) (R 245; stratification 4.9).

6.2 If 2"' = A, then cIb(m) = {imn.
6.3 O(Nc(1)) = {Nc(V)J, Nc(4(.Nc(V))) = 1.
6.4 If n e+(m), thenm< n.
6.5 If 2" $ A, then m 4(2") (4.6).
6.6 If 2"' $ A, then +(m) = {in} u 'i(2m).
Proof: (1) +(m) C {m} U 44(2"): mi e {mi} u 4(2"m); assumen e {m} u

4(2"t) and 2" $ A; if n = m, then 2n e 45(2m); if n e 4(2"'), then 2n e 44(2").
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(2) 0(2m) 5 4(m)- {m}: by 4.6, 2 e +(m) - {; assume n e +(m) -
{mJ and 2n $ A. So21 e +(m); by 6.4, m < n; by4.6 and 4.8, m < 2<
2",SO 2n e- q(m) - Im}.

6.7 If 2^ # A, then Nc(4(m)) = Nc(4(2m)) + 1 (6.5 and 6.6)
6.8 If 2m = A, then Nc(k(T(m))) = 2 or 3.
Proof: By the hypothesis and 4.5, Nc(USC(V)) < m; so by 5.2, 5.5,

T(m) > T(Nc(USC(V))) = Nc(USC2(V)). So by 4.8 and 4.4, 2T(m) >
2Nc(USC2(V)) - Nc(USC(V)). If 2T(m) > Nc(USC(V)), then 4o(T(m)) =
{T(m), 2T(m) If 2T(m) = Nc(USC(V)), then by 4.3 2Nc(USC(V)) = Nc(V)
and O(T(m)) = {T(m), Nc(USC(V)), Nc(V)I.

7.1 If k(T(m)) is finite, so is +(m).
Proof by induction on Nc(4T(m)): If 2m = A, then +(m) = {m}. If

2"' $ A, then by 5.8, 5.9, 6.7, Nc(4(T(m))) = Nc(4b(2T(m))) + 1 = Nc
(4(T(2m))) + 1; so by 3.6, Nc(44(T(2"'))) < Nc(4(T(m))). If 4(2m) is
finite, so is +(m) by 6.7 and 3.3.

7.2 If +(m) is finite, so is O(T(m)) and Nc(4(T(m))) = T(Nc(O(m))) +
k, wvhere k = 1 or k = 2.

Proof by induction on Nc(4O(m)): (We have achieved stratification by
introducing a "T" on the right-hand side.) Assume Nc(m(i)) = 1; so
+i(m) = tm}, 2m = A; so by 6.8, Nc(Q(T(m))) = 2 or 3, by 5.2, 2 =
T(1) + 1, 3 = T(1) + 2. Assume Nc(4(m)) > 1; so 2"m $ A and Nc
(v+(m)) = Nc(0(2"`)) + 1. By 3.6, Nc(4b(2m)) < Nc(4(m)); by 5.2, 5.3,
and 6.6, Nc(Q(T(m))) = Nc(sb(2T(m))) + 1 = Nc(I(T(2"`))) + 1 =
T(Nc(4(2"))) + k + 1 = T(Nc(0(2")) + 1) + k = T(Nc(c(m))) + k,
where k = 1 or 2.

7.3 There is a cardinal numberm such that +(m) is finite and T(m) = m.
Proof: Let c be the set of cardinal numbers n such that +(n) is finite.

By 6.3, c is not the null set. Let m be the smallest cardinal number in c;
so +(m) is finite. By 7.2, q5(T(m)) is finite, so m < T(m). By 5.6, there
is a cardinal number p such that m = T(p); T(p) < T(T(p)) and by 5.5,
p< T(p). By7.1,4(p)isfinite,sop = T(p),m = T(m).

7.4 There is a finite cardinal number n such that n = T(n) + 1 or
n = T(n) + 2.

Proof: Choose m such that +(m) is finite and T(m) = m and let n =
Nc(4(m)). By 7.2, n = Nc(4(T(m))) = T(Nc(O(m))) + k = T(n) + k,
where k = 1 or 2.

7.5 Contradiction: 5.4 and 7.4.4
8.1 Generalized continuum hypothesis in "New Foundations": If m,

2m, n are cardinal numbers, m not finite and m < n < 2n, then either
m = n or n = 2m. The generalized continuum hypothesis does not hold
in "NF."5 The proof is by proving the theorem of Lindenbaum and Tarski
in "NF" according to which the axiom of choice is a consequence of the
generalized continuum hypothesis.
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I Quine, W. V., "New Foundations for Mathematical Logic," Am. Math. Monthly,
44, 70-80 (1937).

2 The axiom of infinity hasbeen proved in a paper submitted to the Journal of Symbolic
Logic; the constant use of cardinal number in the present note goes back to the referee
of that paper.

3 Rosser, J. B., Logic for Mathematicians, McGraw-Hill Book Company, Inc., New
York, 1953. References to this book will be of the form "(R 256)," where the number
indicates the page.

4 By a slight modification, we can prove the following theorem (without the axiom of
choice): If m = Nc(a) = Nc(SC(a)), then there is a cardinal number n such that
neither n < T(m) nor T(m) < n. A finite set is therefore not equivalent to its power
set; this has been proved in the paper mentioned in reference 2.

6 This has been proved in the paper mentioned in reference 2 with the axiom of choice.
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1. Introduction.-The possibility of obtaining information concerning
the nucleus with accelerated heavy ions was discussed recently by Breit,
Hull, and Gluckstern.' Several sources of energetic heavy nuclei have
been reported. Sextuply-charged carbon ions have been accelerated in
the 60-inch cyclotron2 at Berkeley and in the 170-inch synchrocyclotron3
at the University of Chicago to energies of 120 Mev and 1000 Mev, re-
spectively. The Berkeley group has reported several reactions produced
by carbon ions, including some reactions resulting in the production of
californium.4 Recently, Miller5 investigated nuclear reactions occurring
in emulsions exposed to the external carbon beam of the 60-inch cyclotron.
Heavy nuclei have been observed in nuclear emulsions exposed to cosmic
rays at high altitudes, but, due to the high energies and low fluxes of these
cosmic-ray particles,6 they do not lend themselves conveniently to a study
of nuclear properties at low energies.
The experiments reported here utilized triply-charged nitrogen ions

accelerated in the ORNL 63-inch cyclotron to an Hp corresponding to an
energy of approximately 25 Mev. They represent an extension of the
activation experiments of Wyly and Zucker7 in which radioactive products
from nitrogen bombarded targets are detected and identified mainly from
their half-lives. The choice of nitrogen as the accelerated particle was
based on the following considerations: (1) the magnetic field available to
the resources of the program was limited to an Hp of 3.75 X 105 oersted-
inches; in order that the accelerated particles penetrate the coulomb
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