Constructive logic with strong negation is a substructural logic over *FL*_{ew}

M. Spinks R. Veroff

U. Cagliari U. New Mexico

Topological and Algebraic Methods in Non-classical Logic '07

A Hilbert-style presentation of *IPC*

$$p \to (q \to p) \qquad \neg p \to (p \to \mathbf{0})$$

$$(p \to (q \to r)) \to ((p \to q) \to (p \to r)) \qquad (p \to \mathbf{0})$$

$$p \land q \to p \qquad \mathbf{0} \to p$$

$$p \land q \to q \qquad p \qquad p \to \mathbf{1}$$

$$(r \to p) \to ((r \to q) \to (r \to (p \land q))) \qquad p, p \to q \mid -q.$$

$$p \to p \lor q$$

$$q \to p \lor q$$

$$(p \to r) \to ((q \to r) \to ((p \lor q) \to r))$$

Constructive logic with strong negation

 Constructive logic with strong negation, in symbols *CLSN*, is the axiomatic expansion of *IPC* by a unary connective ~ and axioms:

$$\sim(p \land q) \leftrightarrow (\sim p \lor \sim q) \qquad \qquad \sim p \to (p \to q) \qquad \qquad \sim \neg p \leftrightarrow p \\
 \sim(p \lor q) \leftrightarrow (\sim p \land \sim q) \qquad \qquad \sim (p \to q) \leftrightarrow (p \land \sim q) \qquad \qquad \sim \sim p \leftrightarrow p \\$$

- The unary connective ~ is known as the strong negation.
- Milestones:
 - 1949 *CLSN* introduced by Nelson.
 - 1958 Algebraic semantics introduced by Rasiowa.
 - 1977 Counterexample semantics developed by Vakarelov.
 - 1990s Proof theoretic treatments of logics with strong negation.

CLSN is usually studied relative (in some sense) to **IPC**.

A Hilbert-style presentation of *CLSN*

$$\begin{array}{lll} p \rightarrow (q \rightarrow p) & \textbf{0} \rightarrow p \\ (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)) & p \rightarrow \textbf{1} \\ p \wedge q \rightarrow p & p \wedge q \rightarrow q \\ (r \rightarrow p) \rightarrow ((r \rightarrow q) \rightarrow (r \rightarrow (p \wedge q))) & \sim (p \rightarrow q) \leftrightarrow (p \wedge \sim q) \\ p \rightarrow p \vee q & \sim (p \wedge q) \leftrightarrow (p \wedge \sim q) \\ q \rightarrow p \vee q & \sim (p \wedge q) \leftrightarrow (\sim p \vee \sim q) \\ (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \vee q) \rightarrow r)) & \sim \neg p \leftrightarrow p \\ \neg p \rightarrow (p \rightarrow \textbf{0}) & \sim \sim p \leftrightarrow p. \end{array}$$

 $(p \rightarrow \mathbf{0}) \rightarrow \neg p$

The algebraic counterpart of *CLSN*

- **CLSN** is **regularly algebraisable** in the sense of Blok and Pigozzi.
 - This means ∃ a class of algebras K that is to CLSN as BA is to CPC.
- The equivalent quasivariety of CLSN is the class N of all Nelson algebras.
 - N is the algebraic counterpart of *CLSN* in the same way
 BA is the algebraic counterpart of *CPC*.

Nelson algebras are De Morgan algebras enriched with a certain weak implication operation → generalising relative pseudocomplementation.

Nelson algebras

- A Nelson algebra is an algebra $\mathbf{A} := \langle A; \wedge, \vee, \rightarrow, \sim, \neg, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 1, 0, 0 \rangle$ such that
 - 1. $\langle A; \wedge, \vee, \sim, 0, 1 \rangle$ is a De Morgan algebra with lattice order \leq .
 - 2. The relation << given by a << b iff $a \rightarrow b = 1$ $(a, b \in A)$ is a preorder on A.
 - 3. The relation $\Xi := \langle \langle \cap \langle \langle \rangle^{-1} |$ is a congruence on $\mathbf{A}' := \langle A; \wedge, \vee, \rightarrow, \neg, 0, 1 \rangle$, and $\mathbf{A}'\Xi$ is a Heyting algebra.
 - 4. $\mathbf{A} \models \neg x \approx x \rightarrow \mathbf{0}$.
 - 5. $\forall a, b \in A$,
 - 1. $\sim (a \rightarrow b) \Xi a \wedge \sim b$
 - 2. $a \wedge \sim a \ll 0$
 - 3. $a \Rightarrow b = 1$ iff $a \le b$.

Nelson algebras are a variety

- Theorem (Brignole, 1969). A Nelson algebra is an algebra $A := \langle A; \land, \lor, \rightarrow, \sim, \neg, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 1, 0, 0 \rangle$ where:
 - 1. $\langle A; \wedge, \vee, \sim, 0, 1 \rangle$ is a De Morgan algebra.
 - 2. A satisfies the following identities:

$$(X \land \neg X) \land (y \lor \neg y) \approx X \land \neg X$$

$$X \to X \approx \mathbf{1}$$

$$(X \to y) \land (\neg X \lor y) \approx \neg X \lor y$$

$$X \land (\neg X \lor y) \approx X \land (X \to y)$$

$$(X \to y) \land (X \to Z) \approx X \to (y \land Z)$$

$$(X \land y) \to Z \approx X \to (y \to Z)$$

$$\neg X \approx X \to \mathbf{0}.$$

Substructural logics over FL

- Informally, a substructural logic is a logic that lacks some or all of the structural rules when presented as a sequent system.
- Let FL denote the sequent system obtained from LJ by deleting the structural rules:
 - (e) Exchange, (c) Contraction, (w) Weakening and by adding rules for the fusion connective * and the residuals.
- Let **FL** denote the deductive system determined by FL.
- Let **FL**_{e|c|w} denote the extension of **FL** by (e), [(c)], and (w).

The language type of **FL**_{efclw} is $\{\land, \lor, *, \Rightarrow, 0, 1\}$.

Substructural logics over *FL*

- A deductive system S is non-Fregean if ∃ a theory T of S for which the T-theory interderivability relation −||−^T is not a congruence on the formula algebra.
- Theorem (S., Galatos, 2005). An extension of **FL** is Fregean iff it is an axiomatic extension of **FL**_{ecw} iff it is definitionally equivalent to an axiomatic extension of **IPC**.
- A substructural logic over FL is a deductive system S that is definitionally equivalent to a non-Fregean extension of FL.
 - Thus IPC is not a substructural logic over FL.

We are interested in substructural logics over **FL**_{ew}.

A Hilbert-style presentation of *FL*_{ew}

$$(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r)) \qquad p \Rightarrow (p \lor q) (p \Rightarrow (q \Rightarrow r)) \Rightarrow (q \Rightarrow (p \Rightarrow r)) \qquad q \Rightarrow (p \lor q) p \Rightarrow (q \Rightarrow p) \qquad (p \Rightarrow r) \Rightarrow ((p \lor q) \Rightarrow r)) p \Rightarrow (q \Rightarrow (p * q)) \qquad p \Rightarrow 1 (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p * q) \Rightarrow r) \qquad \mathbf{0} \Rightarrow p (p \land q) \Rightarrow p \qquad p, p \Rightarrow q \mid -q. (p \land q) \Rightarrow q (p \Rightarrow q) \Rightarrow ((p \Rightarrow r) \Rightarrow (p \Rightarrow (q \land r)))$$

The algebraic counterpart of FL_{ew}

- **FL**_{ew} is regularly algebraisable in the sense of Blok and Pigozzi.
 - This means ∃ a class of algebras K that is to FL_{ew} as BA is to CPC.
- The equivalent quasivariety of FL_{ew} is the class FL_{ew} of all FL_{ew}-algebras.
 - FL_{ew} is the algebraic counterpart of FL_{ew} in the same way BA is the algebraic counterpart of CPC.

FL_{ew}-algebras are bounded, commutative, integral residuated lattices.

FL_{ew}-algebras

- A commutative, integral residuated lattice is an algebra $\langle A; \wedge, \vee, *, \Rightarrow, 1 \rangle$ of type $\langle 2, 2, 2, 2, 0 \rangle$ where:
 - 1. $\langle A; \wedge, \vee \rangle$ is a lattice with lattice ordering \leq .
 - 2. $\langle A; *, 1 \rangle$ is a commutative monoid.
 - 3. $\forall a, b, c \in A, a * b \le c \text{ iff } a \le b \Rightarrow c.$
 - 4. $\forall a \in A, a \leq 1$.
- An FL_{ew}-algebra ⟨A; ∧, ∨, *, ⇒, 0, 1⟩ is a commutative, integral residuated lattice with distinguished least element 0 ∈ A.

The logic NFL_{ew}

- Let
 - ~p abbreviate p ⇒ **0**.
 - $p \Rightarrow^2 q$ abbreviate $p \Rightarrow (p \Rightarrow q)$.
 - $p \Rightarrow^3 q$ abbreviate $p \Rightarrow (p \Rightarrow (p \Rightarrow q))$.
- Nelson FL_{ew} logic, in symbols NFL_{ew}, is the axiomatic extension of FL_{ew} by the axioms:

A Hilbert-style presentation of *NFL*_{ew}

$$(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r)) \qquad p \Rightarrow (p \lor q) (p \Rightarrow (q \Rightarrow r)) \Rightarrow (q \Rightarrow (p \Rightarrow r)) \qquad q \Rightarrow (p \lor q) (p \Rightarrow r) \Rightarrow ((q \Rightarrow r) \Rightarrow ((p \lor q) \Rightarrow r)) p \Rightarrow (q \Rightarrow (p * q)) \qquad (p \Rightarrow r) \Rightarrow (p \Rightarrow q) \Rightarrow r) (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p * q) \Rightarrow r) (p \Rightarrow q) \Rightarrow p (p \land q) \Rightarrow p (p \land q) \Rightarrow q (p \Rightarrow q) \Rightarrow ((p \Rightarrow r) \Rightarrow (p \Rightarrow (q \land r))) (p \Rightarrow^3 q) \Rightarrow (p \Rightarrow^2 q) ((p \Rightarrow^2 q) \land (\sim q \Rightarrow^2 \sim p)) \Rightarrow (p \Rightarrow q).$$

Nelson *FL*_{ew}-algebras

- Let
 - $\sim x$ abbreviate $x \Rightarrow 0$.
 - $x \Rightarrow^2 y$ abbreviate $x \Rightarrow (x \Rightarrow y)$.
 - $x \Rightarrow^3 y$ abbreviate $x \Rightarrow (x \Rightarrow (x \Rightarrow y))$.
- An **FL**_{ew}-algebra **A** is
 - **distributive** if $\langle A; \wedge, \vee \rangle$ is distributive.
 - classical if $A = \sim x \approx x$.
 - 3-potent if $A \models x \Rightarrow^3 y \approx x \Rightarrow^2 y$.
- A Nelson FL_{ew}-algebra is a 3-potent, classical, distributive FL_{ew}-algebra that satisfies the Nelson identity:

$$(x \Rightarrow^2 y) \land (\sim y \Rightarrow^2 \sim x) \approx x \Rightarrow y.$$

A question of David Nelson

- Question (Nelson, 1969). Is the variety of Nelson algebras a class of residuated lattices?
- **Answer** (S., V., 2006). Yes!

An answer to Nelson's question

- Theorem (S., V., 2006).
 - (1) Let **A** be a Nelson algebra. $\forall a, b \in A$, let

$$a * b := \sim (a \rightarrow \sim b) \lor \sim (b \rightarrow \sim a)$$

$$a \Rightarrow b := (a \rightarrow b) \land (\sim b \rightarrow \sim a).$$

- Then \mathbf{A}^F := $\langle A; \land, \lor, *, \Rightarrow, 0, 1 \rangle$ is a Nelson FL_{ew} -algebra.
- (2) Let **B** be a Nelson FL_{ew} -algebra. $\forall a, b \in B$, let

$$a \rightarrow b := a \Rightarrow (a \Rightarrow b)$$

$$\neg a := a \Rightarrow (a \Rightarrow 0)$$

$$\sim a := a \Rightarrow 0$$
.

- Then $\mathbf{B}^N := \langle B; \wedge, \vee, \rightarrow, \sim, \neg, 0, 1 \rangle$ is a Nelson algebra.
- (3) $\mathbf{A}^{FN} = \mathbf{A}$ and $\mathbf{B}^{NF} = \mathbf{B}$.

Hence Nelson and Nelson **FL**_{ew}- algebras are term equivalent.

CLSN and NFL_{ew} are definitionally equivalent

- Theorem (S., V., 2006). Let \mathbf{S}_1 and \mathbf{S}_2 be two regularly algebraisable deductive systems over language types Λ_1 and Λ_2 . Let \mathbf{K}_1 and \mathbf{K}_2 be the equivalent quasivarieties of \mathbf{S}_1 and \mathbf{S}_2 respectively. If \mathbf{K}_1 and \mathbf{K}_2 are term equivalent with interpretations α : $\Lambda_1 \to \operatorname{Fm}_{\Lambda 2}$ and β : $\Lambda_2 \to \operatorname{Fm}_{\Lambda 1}$, then \mathbf{S}_1 and \mathbf{S}_2 are definitionally equivalent with the same mutually inverse interpretations.
- Theorem (S., V., 2006). The deductive systems CLSN and NFL_{ew} are definitionally equivalent.

An example: $L_3 \equiv N_3$

• 3-valued *CLSN* is determined by the matrix $\langle N_3; \{1\} \rangle$, where N_3 is

^	0	а	1	_	V	0	а	1	_	\rightarrow	0	а	1	 		~	
0	0	0	0		0	0	а	1	-	0	1	1	1	 0	1	0	1
а	0	а	а		а	а	а	1		а	1	1	1	а	0	а	а
1	0	а	1		1	1	1	1		1	0	а	1	1	0	1	0

• L_3 is determined by the matrix $\langle L_3; \{1\} \rangle$, where L_3 is

• Theorem (Vakarelov, 1977). (N₃; {1}) and (Ł₃; {1}) are isomorphic.

Vakarelov's theorem is immediate by the term equivalence result.

Some insight into the proof (I)

- Let $A := \langle A; \wedge, \vee, \rightarrow, \sim, \neg, 0, 1 \rangle$ be a Nelson algebra.
- $\forall a, b \in A$, define:

$$a \Rightarrow b := (a \rightarrow b) \land (\sim b \rightarrow \sim a).$$

- Lemma (Monteiro, 1963). A $|= x \rightarrow y \approx x \Rightarrow (x \Rightarrow y)$.
- Monteiro's lemma suggests ⟨A; ⇒, 1⟩ is a 3-potent BCK-algebra, and this is indeed the case.
- The monoid operation can thus be recovered on setting

$$a * b := \sim (a \Rightarrow \sim b) = \sim (a \rightarrow \sim b) \vee \sim (b \rightarrow \sim a).$$

 Now it is easy to check that ⟨A; ∧, ∨, *, ⇒, 0, 1⟩ is a Nelson *FL*_{ew}-algebra.

Some insight into the proof (II)

- Let $\langle A; \wedge, \vee, *, \Rightarrow, 0, 1 \rangle$ be an *n*-potent **FL**_{ew}-algebra.
- $\forall a, b \in A$, define:

$$a \rightarrow b := a \Rightarrow^n b$$

 $\sim a := a \Rightarrow \mathbf{0}$
 $\neg a := a \rightarrow \mathbf{0}$.

- Then $\langle A; \wedge, \vee, \rightarrow, \sim, \neg, 0, 1 \rangle$ is a "generalised" Nelson algebra.
 - This reflects the fact that any variety of n potent $FL_{e\bar{w}}$ agebras is a WBSO variety in the sense of Blok and Pigozzi.
- The Nelson identity $(x \Rightarrow^2 y) \land (\sim y \Rightarrow^2 \sim x) \approx x \Rightarrow y$ ensures that $\langle A; \land, \lor, \rightarrow, \sim, \neg, 0, 1 \rangle$ is a Nelson algebra.

... and some prospects for future work

- Apply the now well developed theories of
 - algebraisable logics (in the Blok-Pigozzi sense)
 - residuated lattices and FL_{ew}-algebras

to answer further questions about **CLSN**.

- Extend the counterexample semantics of Vakarelov to varieties of n-potent FL_{ew}-algebras.
- Explore varieties of n-potent FL_{ew}-algebras satisfying the following n-potent analogue of the Nelson identity:

$$(\mathbf{X} \Rightarrow^n \mathbf{y}) \wedge (\sim \mathbf{y} \Rightarrow^n \sim \mathbf{X}) \approx \mathbf{X} \Rightarrow \mathbf{y}.$$

Ternary deductive terms

- p(x, y, z) is a **ternary deductive** (TD) **term** on an algebra **A** if
 - $p(a, b, z) \equiv z \pmod{\Theta^{A}(a, b)}$
 - $\{p(a, b, z): z \in A\}$ is a transversal of equivalence classes.
- p(x, y, z) is **commutative** if p(a, b, z) and p(a', b', z) define the same transversal whenever $\Theta^{\mathbf{A}}(a, b) = \Theta^{\mathbf{A}}(a', b')$.
- p(x, y, z) is regular if $\Theta^{\mathbf{A}}(p(x, y, z), \mathbf{1}^{\mathbf{A}}) = \Theta^{\mathbf{A}}(x, y)$ for some constant term **1**.

These definitions extend in the obvious way to varieties.

A question about TD terms

- Question (Blok, Pigozzi, 1994). Does the variety of Nelson algebras have a commutative, regular TD term, or even a TD term?
- Answer (S., 2004). Yes!
 Nelson algebras have a commutative TD term.
- Answer (S., V., 2006). Yes!
 Nelson algebras have a commutative, regular TD term.

TD terms for Nelson algebras

- Theorem (S., V., 2004-2006).
 - (1) A commutative TD term for Nelson algebras is

$$p(x, y, z) := (x \Rightarrow y) \rightarrow ((y \Rightarrow x) \rightarrow z).$$

(2) A commutative, regular TD term with respect to **1** for Nelson algebras is

$$p(x, y, z) := ((x \Rightarrow y) \land (y \Rightarrow x)) * ((x \Rightarrow y) \land (y \Rightarrow x)) * z.$$

(1) and (2) both follow immediately on observing that *n*-potent **FL**_{ew}-algebras have both a commutative TD term and a commutative, regular TD term.