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A Hilbert-style presentation of IPC

p → (q → p)
(p → (q → r)) → ((p → q) → (p → r))

p ∧ q → p
p ∧ q → q
(r → p) → ((r → q) → (r → (p ∧ q)))

p → p ∨ q
q → p ∨ q
(p → r) → ((q → r) → ((p ∨ q) → r))

¬p → (p → 0)
(p → 0) → ¬p

0 → p
p → 1

p, p → q |− q.
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Constructive logic with strong negation

! Constructive logic with strong negation, in symbols CLSN, is the
axiomatic expansion of IPC by a unary connective ∼ and axioms:

∼( p ∧ q) ↔ (∼ p ∨ ∼ q) ∼ p → (p → q) ∼¬ p ↔ p
∼( p ∨ q) ↔ (∼ p ∧ ∼ q) ∼( p → q) ↔ (p ∧ ∼ q) ∼∼ p ↔ p

– The unary connective ∼ is known as the strong negation .

! Milestones:
– 1949 CLSN introduced by Nelson. 

– 1958 Algebraic semantics introduced by Rasiowa.
– 1977 Counterexample semantics developed by Vakarelov.
– 1990s Proof- theoretic treatments of logics with strong negation.

CLSN is usually studied relative (in some sense) to IPC.
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A Hilbert-style presentation of CLSN

p → (q → p)
(p → (q → r)) → ((p → q) → (p → r))

p ∧ q → p
p ∧ q → q
(r → p) → ((r → q) → (r → (p ∧ q)))

p → p ∨ q
q → p ∨ q
(p → r) → ((q → r) → ((p ∨ q) → r))

¬p → (p → 0)
(p → 0) → ¬p

0 → p
p → 1

p, p → q |− q

∼ p → (p → q)
∼( p → q) ↔ (p ∧ ∼ q)
∼( p ∧ q) ↔ (∼ p ∨ ∼ q)
∼( p ∨ q) ↔ (∼ p ∧ ∼ q)
∼¬ p ↔ p
∼∼ p ↔ p.
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The algebraic counterpart of CLSN

! CLSN is regularly algebraisable in the sense of Blok and Pigozzi.
– This means ∃ a class of algebras K that is to CLSN as BA is to CPC.

! The equivalent quasivariety of CLSN is the class N of all
Nelson algebras.

– N is the algebraic counterpart of CLSN in the same way
BA is the algebraic counterpart of CPC.

Nelson algebras are De Morgan algebras enriched

with a certain weak implication operation →
generalising relative pseudocomplementation.
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Nelson algebras

! A Nelson algebra is an algebra A := 〈A; ∧ , ∨ , →, ∼ , ¬ , 0, 1〉 of type 
〈2, 2, 2, 1, 1, 0, 0〉 such that

1. 〈A; ∧ , ∨ , ∼ , 0, 1〉 is a De Morgan algebra with lattice order ≤.
2. The relation << given by a << b iff a → b = 1 (a, b ∈ A)

is a preorder on A.

3. The relation Ξ := << ∩ <<−1 is a congruence on
A' := 〈A; ∧ , ∨ , →, ¬ , 0, 1〉, and A'/Ξ is a Heyting algebra.

4. A |= ¬x ≈ x → 0.
5. ∀ a, b ∈ A,

1. ∼( a → b) Ξ a ∧ ∼ b
2. a ∧ ∼ a << 0
3. a ⇒ b = 1 iff a ≤ b.
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Nelson algebras are a variety

! Theorem (Brignole, 1969). A Nelson algebra is an algebra
A := 〈A; ∧ , ∨ , →, ∼ , ¬ , 0, 1〉 of type 〈2, 2, 2, 1, 1, 0, 0〉 where:

1. 〈A; ∧ , ∨ , ∼ , 0, 1〉 is a De Morgan algebra.
2. A satisfies the following identities:

(x ∧ ∼ x) ∧ ( y ∨ ∼ y) ≈ x ∧ ∼ x
x → x ≈ 1

(x → y) ∧ (∼ x ∨ y) ≈ ∼ x ∨ y
x ∧ (∼ x ∨ y) ≈ x ∧ ( x → y)

(x → y) ∧ ( x → z) ≈ x → (y ∧ z)
(x ∧ y) → z ≈ x → (y → z)

¬x ≈ x → 0.
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Substructural logics over FL

! Informally, a substructural logic is a logic that lacks some or all of 
the structural rules when presented as a sequent system.

! Let FL denote the sequent system obtained from LJ
by deleting the structural rules:

(e)  Exchange,           (c)  Contraction,           (w)  Weakening

and by adding rules for the fusion connective * and the residuals.

! Let FL denote the deductive system determined by FL.
! Let FLe[c]w denote the extension of FL by (e), [(c)], and (w).

The language type of FLe[c]w is {∧ , ∨ , ∗ , ⇒, 0, 1} .
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Substructural logics over FL

! A deductive system S is non-Fregean if ∃ a theory T of S
for which the T-theory interderivability relation −||−T is not a 
congruence on the formula algebra.

! Theorem (S., Galatos, 2005). An extension of FL is Fregean iff it is 
an axiomatic extension of FLecw iff it is definitionally equivalent to an 
axiomatic extension of IPC.

! A substructural logic over FL is a deductive system S that is 
definitionally equivalent to a non-Fregean extension of FL.

– Thus IPC is not a substructural logic over FL.

We are interested in substructural logics over FLew.
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A Hilbert-style presentation of FLew

(p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r))
(p ⇒ (q ⇒ r)) ⇒ (q ⇒ (p ⇒ r))
p ⇒ (q ⇒ p)

p ⇒ (q ⇒ (p ∗ q))
(p ⇒ (q ⇒ r)) ⇒ ((p ∗ q) ⇒ r)

(p ∧ q) ⇒ p
(p ∧ q) ⇒ q
(p ⇒ q) ⇒ ((p ⇒ r) ⇒ (p ⇒ (q ∧ r)))

p ⇒ (p ∨ q)
q ⇒ (p ∨ q)
(p ⇒ r) ⇒ ((q ⇒ r) ⇒ ((p ∨ q) ⇒ r))

p ⇒ 1
0 ⇒ p

p, p ⇒ q |− q.
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The algebraic counterpart of FLew

! FLew is regularly algebraisable in the sense of Blok and Pigozzi.

– This means ∃ a class of algebras K that is to FLew

as BA is to CPC.
! The equivalent quasivariety of FLew is the class FLew of all

FLew-algebras.

– FLew is the algebraic counterpart of FLew in the
same way BA is the algebraic counterpart of CPC.

FLew-algebras are bounded, commutative,
integral residuated lattices.
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FLew-algebras

! A commutative, integral residuated lattice is an algebra
〈A; ∧ , ∨ , ∗ , ⇒, 1〉 of type 〈2, 2, 2, 2, 0〉 where:

1. 〈A; ∧ , ∨ 〉 is a lattice with lattice ordering ≤.
2. 〈A; ∗ , 1〉 is a commutative monoid.
3. ∀ a, b, c ∈ A, a ∗ b ≤ c iff a ≤ b ⇒ c.
4. ∀ a ∈ A, a ≤ 1.

! An FLew-algebra 〈A; ∧ , ∨ , ∗ , ⇒, 0, 1〉 is a commutative, integral 
residuated lattice with distinguished least element
0 ∈ A. 
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The logic NFLew

! Let 

– ∼ p abbreviate p ⇒ 0.
– p ⇒2 q abbreviate p ⇒ (p ⇒ q).
– p ⇒3 q abbreviate p ⇒ (p ⇒ (p ⇒ q)).

! Nelson FLew logic , in symbols NFLew, is the axiomatic extension of 
FLew by the axioms:

∼∼ p ⇒ p (Double negation)
(p ∧ ( q ∨ r)) ⇒ ((p ∧ q) ∨ ( p ∧ r)) (Distributivity)
(p ⇒3 q) ⇒ (p ⇒2 q) (3-potency)
((p ⇒2 q) ∧ (∼ q ⇒2 ∼ p)) ⇒ (p ⇒ q). (Nelson)
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A Hilbert-style presentation of  NFLew

(p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r))
(p ⇒ (q ⇒ r)) ⇒ (q ⇒ (p ⇒ r))
p ⇒ (q ⇒ p)

p ⇒ (q ⇒ (p ∗ q))
(p ⇒ (q ⇒ r)) ⇒ ((p ∗ q) ⇒ r)

(p ∧ q) ⇒ p
(p ∧ q) ⇒ q
(p ⇒ q) ⇒ ((p ⇒ r) ⇒ (p ⇒ (q ∧ r)))

p ⇒ (p ∨ q)
q ⇒ (p ∨ q)
(p ⇒ r) ⇒ ((q ⇒ r) ⇒ ((p ∨ q) ⇒ r))

p ⇒ 1
0 ⇒ p

p, p ⇒ q |− q

∼∼ p ⇒ p
(p ∧ ( q ∨ r)) ⇒ ((p ∧ q) ∨ ( p ∧ r))
(p ⇒3 q) ⇒ (p ⇒2 q)
((p ⇒2 q) ∧ (∼ q ⇒2 ∼ p)) ⇒ (p ⇒ q).
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Nelson FLew-algebras

! Let 
– ∼ x abbreviate x ⇒ 0.

– x ⇒2 y abbreviate x ⇒ (x ⇒ y).
– x ⇒3 y abbreviate x ⇒ (x ⇒ (x ⇒ y)).

! An FLew-algebra A is

– distributive if 〈A; ∧ , ∨ 〉 is distributive.
– classical if A |= ∼∼ x ≈ x.
– 3-potent if A |= x ⇒3 y ≈ x ⇒2 y.

! A Nelson FLew-algebra is a 3-potent, classical, distributive 
FLew-algebra that satisfies the Nelson identity :

(x ⇒2 y) ∧ (∼ y ⇒2 ∼ x) ≈ x ⇒ y.
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A question of David Nelson

! Question (Nelson, 1969). Is the variety of Nelson 
algebras a class of residuated lattices?

! Answer (S., V., 2006). Yes!
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An answer to Nelson's question

! Theorem (S., V., 2006).
(1) Let A be a Nelson algebra. ∀ a, b ∈ A, let

a ∗ b := ∼( a → ∼ b) ∨ ∼( b → ∼ a)
a ⇒ b := (a → b) ∧ (∼ b → ∼ a).

– Then AF := 〈A; ∧ , ∨ , ∗ , ⇒, 0, 1〉 is a Nelson FLew-algebra.
(2) Let B be a Nelson FLew-algebra. ∀ a, b ∈ B, let

a → b := a ⇒ (a ⇒ b)
¬a := a ⇒ (a ⇒ 0)

∼ a := a ⇒ 0.

– Then BN := 〈B; ∧ , ∨ , →, ∼ , ¬ , 0, 1〉 is a Nelson algebra.
(3) AFN = A and BNF = B.
Hence Nelson and Nelson FLew- algebras are term equivalent. 
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CLSN and NFLew are definitionally equivalent

! Theorem (S., V., 2006). Let S1 and S2 be two regularly algebraisable 

deductive systems over language types Λ1 and Λ2. Let K1 and K2 be the 
equivalent quasivarieties of S1 and S2 respectively. If K1 and K2 are 

term equivalent with interpretations α: Λ1 → FmΛ2 and β: Λ2 → FmΛ1, 
then S1 and S2 are definitionally equivalent with the same mutually 

inverse interpretations.

! Theorem (S., V., 2006). The deductive systems CLSN and NFLew are 
definitionally equivalent.
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An example: L3 ≡ N3

! 3-valued CLSN is determined by the matrix 〈N3; { 1} 〉, where N3 is

! L3 is determined by the matrix 〈Ł3; { 1} 〉, where Ł3 is

! Theorem (Vakarelov, 1977). 〈N3; { 1} 〉 and 〈Ł3; { 1} 〉 are isomorphic.

Vakarelov's theorem is immediate by the term equivalence result.

01011a0111111a01

aa0a111a1aaaaa0a

101011101a000000

∼¬1a0→1a0∨1a0∧

011a011a0111111a01

aa11aa11aa1aaaaa0a

10111011101a000000

∼1a0∗1a0⇒1a0∨1a0∧
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Some insight into the proof (I)

! Let A := 〈A; ∧ , ∨ , →, ∼ , ¬ , 0, 1〉 be a Nelson algebra.
! ∀ a, b ∈ A, define:

a ⇒ b := (a → b) ∧ (∼ b → ∼ a).

! Lemma (Monteiro, 1963). A |= x → y ≈ x ⇒ (x ⇒ y).

! Monteiro's lemma suggests 〈A; ⇒, 1〉 is a 3-potent BCK-algebra,
and this is indeed the case.

! The monoid operation can thus be recovered on setting

a ∗ b := ∼( a ⇒ ∼ b) = ∼( a → ∼ b) ∨ ∼( b → ∼ a).

! Now it is easy to check that 〈A; ∧ , ∨ , ∗ , ⇒, 0, 1〉 is a 
Nelson FLew-algebra.
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Some insight into the proof (II)

! Let 〈A; ∧ , ∨ , ∗ , ⇒, 0, 1〉 be an n-potent FLew-algebra.

! ∀ a, b ∈ A, define:
a → b := a ⇒n b

∼ a := a ⇒ 0
¬a := a → 0.

! Then 〈A; ∧ , ∨ , →, ∼ , ¬ , 0, 1〉 is a "generalised" Nelson algebra.
– This reflects the fact that any variety of n- potent FLew- algebras

is a WBSO variety in the sense of Blok and Pigozzi.

! The Nelson identity (x ⇒2 y) ∧ (∼ y ⇒2 ∼ x) ≈ x ⇒ y
ensures that 〈A; ∧ , ∨ , →, ∼ , ¬ , 0, 1〉 is a Nelson algebra.
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… and some prospects for future work

! Apply the now well developed theories of

– algebraisable logics (in the Blok-Pigozzi sense)
– residuated lattices and FLew-algebras

to answer further questions about CLSN.

! Extend the counterexample semantics of Vakarelov 
to varieties of n-potent FLew-algebras.

! Explore varieties of n-potent FLew-algebras satisfying
the following n-potent analogue of the Nelson identity:

(x ⇒n y) ∧ (∼ y ⇒n ∼ x) ≈ x ⇒ y.
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Ternary deductive terms

! p(x, y, z) is a ternary deductive (TD) term on an algebra A if
– p(a, b, z) ≡ z (mod ΘA(a, b))
– { p(a, b, z): z ∈ A} is a transversal of equivalence classes.

! p(x, y, z) is commutative if p(a, b, z) and p(a', b', z) define
the same transversal whenever ΘA(a, b) = ΘA(a', b').

! p(x, y, z) is regular if ΘA(p(x, y, z), 1A) = ΘA(x, y) for some constant 
term 1.

These definitions extend in the obvious way to varieties.
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A question about TD terms

! Question (Blok, Pigozzi, 1994). Does the variety
of Nelson algebras have a commutative, regular
TD term, or even a TD term?

! Answer (S., 2004). Yes! 
Nelson algebras have a commutative TD term.

! Answer (S., V., 2006). Yes!
Nelson algebras have a commutative, regular
TD term.
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TD terms for Nelson algebras

! Theorem (S., V., 2004-2006).

(1) A commutative TD term for Nelson algebras is

p(x, y, z) := (x ⇒ y) → ((y ⇒ x) → z).

(2) A commutative, regular TD term with respect to 1 for
Nelson algebras is

p(x, y, z) := ((x ⇒ y) ∧ ( y ⇒ x)) ∗ (( x ⇒ y) ∧ ( y ⇒ x)) ∗ z.

(1) and (2)  both follow immediately on observing that
n-potent FLew-algebras have both a commutative TD term

and a commutative, regular TD term.


