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Abstract: The paper is based on ranking theory, a theory of degrees of disbelief (and
hence belief). On this basis, it explains enumerative induction, the confirmation of a
law by its positive instances, which may indeed take various schemes. It gives a rank-
ing theoretic explication of a possible law or a nomological hypothesis. It proves,
then, that such schemes of enumerative induction uniquely correspond to mixtures of
such nomological hypotheses. Thus, it shows that de Finetti’s probabilistic represen-
tation theorems may be transformed into an account of confirmation of possible laws
and that enumerative induction is equivalent to such an account. The paper concludes
with some remarks about the apriority of lawfulness or the uniformity of nature.

1.  Introduction*

Enumerative induction says that a law is confirmed by its positive instances or
may be inductively inferred from them (in the absence of negative instances). It is,
for sure, the most venerable and primitive of all inductive rules. But it has a bad
press. It is very crude; science does not seem to proceed with such simple rules.
Goodman’s new riddle of induction has shown that enumerative induction is incon-
sistent, if generally applied; and it seems impossible to say what the appropriate
restrictions are. On the face of it, it is a rule of qualitative confirmation theory; but
philosophers have dispaired of constructing such a theory.

The rule has finally found a Bayesian home. It is true, though, that at least with-
in inductive logic as developed by Carnap (1971/80) nothing can confirm a law
because each law has probability 0 (if its domain of quantification is infinite). The
natural idea was then to turn enumerative induction into the Principle of Positive
Instantial Relevance according to which each positive instance confirms that the
next instance is also positive. This seems reasonable, and accepted. So, why bother
any longer?

                                                  
*  I am indebted to two anonymous referees whose rich remarks led to numerous improvements and
clarifications of this paper.

http://journal.philsci.org/index.php?journal=philsci&page=index
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6221/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-62216
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Well, “primitive” is ambiguous. It may indeed mean “not workable”. But it also
means “basic”. If we do not fully understand the basic things, how can we ever
hope to come to terms with the more complicated things? So whoever is concerned
with inductive, plausible, or uncertain reasoning should be concerned to understand
such a primitive rule as enumerative induction. The goal of the paper is to enhance
this understanding. The way to reach the goal is to bring enumerative induction
home from quantitative to qualitative confirmation theory, and the reason why this
is feasible is that in the meantime we have a fully general qualitative confirmation
theory at our disposal, namely ranking theory. This needs a little explanation.

Traditionally, confirmation theory is a field within philosophy of science. Its
quantitative or probabilistic version, i.e. Bayesianism, has been a major option
from the beginning. In the 50’s and 60’s we also saw forceful attempts to construct
a qualitative confirmation theory. However, the project was abandoned in the 70’s,
for reasons nicely summarized in Niiniluoto (1972). Thus, at least within philoso-
phy of science Bayesianism had won the day. However, logicians and computer
scientists were very active since around 1975 in producing alternatives, though
rarely under the labels ‘induction’ or ‘confirmation’ (see, e.g., the many theories
collected in Gabbay, Smets 1998-2000, in particular vol. 1 and 3) and hence
scarcely noticed in epistemology and philosophy of science. The multiplicity of
proposals developed there is quite confusing. Still, I believe that ranking theory as
developed by me in Spohn (1983, sect. 5.3, and 1988), though under a different
name, is the most suitable qualitative account of induction or confirmation.

This introduction is not the place for extensively arguing the case; the old rea-
sons given in Spohn (1988) still apply. Let me state only the most important point.
The central notion in this connection is the notion of conditional belief. In order to
say whether some evidence would qualitatively confirm some hypothesis we have,
to put it vaguely, to look at whether the hypothesis would be believed given the
evidence and not given the evidence. If we want to give an account of induction,
we have to give an account of belief change; so I have argued in Spohn (2000).
And belief change best works by conditionalization rules that essentially refer to
conditional beliefs, just as probabilistic conditionalization rules refer to conditional
probabilities. We do need an adequate notion of conditional belief.

Hence, we should look at the various attempts to explain it. Belief revision the-
ory (cf., e.g., Gärdenfors 1988) makes a plausible proposal: B is believed given A
in a certain belief state iff B is believed in the revision of that state by A. But as I
have argued in Spohn (1988), belief revision theory, as it is presented up to date, is
defective and the proposal therefore inadequate. One might say that B is believed
given A iff P(B | A) = 1, but this proposal is incomplete, because in standard prob-
ability theory this conditional probability is undefined if P(A) = 0. One might insist
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on the proposal by interpreting P as a Popper measure that fills this incompleteness
by taking conditional probability as an undefined primitive. However, as shown in
Spohn (1986), this idea is defective in just the way belief revision theory is. And so
on. In the end, I claim, one must turn to ranking theory that offers the most ade-
quate account of conditional belief.

Here, I simply want to proceed on the basis of this scarcely redeemed claim.
The point of the introductory remarks was only to suggest that the most promising
way to study enumerative induction is in terms of ranking functions. This is what I
want to do here. Hence, the plan of the paper is this. In section 2 I shall introduce
the theory of ranking functions as far as we need it here. Section 3 will then apply
ranking theory to enumerative induction which, as we shall see, may realize in a
variety of schemes. This will turn out to be a brief and rather boring exercise; the
insights come later. In section 4, I shall propose a ranking theoretical explication of
what a possible law or a nomological hypothesis is. In section 5, we shall be able to
show that there is a one-one-correspondence between schemes of enumerative in-
duction as found in section 3 and mixtures of nomological hypotheses as explained
in section 4. Thus, our ranking theoretic analysis will result in transferring de
Finetti’s deep account of the confirmation of statistical hypotheses to the determi-
nistic or qualitative realm. Section 6 will conclude with some remarks on the de-
feasible or unrevisable apriority of lawfulness or the uniformity of nature.

2.  Ranking Functions

Let us start with a set W of possible worlds, small worlds in the sense of Savage
rather than maximally large worlds in the sense of Lewis. Each subset of W  is a
truth condition or proposition. Hence, the set of propositions forms a complete
Boolean algebra. I shall outright assume propositions to be the objects of doxastic
attitudes, thereby taking these attitudes to be intensional. We know well that this is
problematic, that the so-called propositional attitudes are presumably hyperinten-
sional. But we scarcely know what to do about the problem. Hence, my assumption
is just to signal that I do not want to worry here about these kinds of problems.1

Moreover, I assume that there is a distinguished class of (logically independent)
atomic propositions. The paradigmatic atomic proposition states that a certain ob-
ject has a certain property. Finally, I shall assume that the complete algebra of

                                                  
1  The locus classicus concerning (hyper-)intensionality is Carnap (1947); cf., in particular §§11-15.
He there proposed to solve the problem of hyperintensionality with his notion of intensional structure.
Quine responded by directly taking sentences as objects of belief. And till today the issue has remai-
ned obscure and undecided.
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propositions is generated by the atomic propositions. Thus, each possible world is
tantamount to a maximally consistent and possibly infinite conjunction of atomic
propositions. A proposition is called molecular iff it is a member of the Boolean
algebra generated by the atomic propositions, i.e., iff it is generated from the atom-
ic propositions by finitely many Boolean operations.2

This is all we need to introduce our basic notion:

Definition 1: κ is a ranking function (for W) iff κ is a function from W into the set
of extended non-negative integers N+ = N ∪ {∞}3 such that κ(w) = 0 for some w ∈
W. For each proposition A ⊆ W the rank κ(A) of A is defined by κ(A) = min {κ(w) |
w ∈ A} and κ(∅) = ∞. For A, B ⊆ W the (conditional) rank κ(B | A) οf  B given A is
defined by κ(B | A) = κ(A ∩ B) – κ(A).

Since singletons of worlds are propositions as well, the point and the set function
are interdefinable. The point function is simpler, but auxiliary, the set function is
the one to be interpreted as a doxastic state.

Indeed, ranks are best interpreted as degrees of disbelief. κ(A) = 0 says that A is
not disbelieved at all; κ(A) = 1 says that A is disbelieved (and hence A  believed) to
degree 1; etc. Note that κ(A) = 0 does not say that A is believed; this is rather ex-
pressed by κ( A ) > 0, i.e., that non-A is disbelieved (to some degree). The clause
that κ(w) = 0 for some w ∈ W is thus a consistency requirement. It guarantees that
at least some proposition, and in particular W itself, is not disbelieved (and hence
that some proposition, e.g. ∅, is not believed). This entails the

law of negation: for each A ⊆ W, either κ(A) = 0 or κ( A ) = 0 or both.

The set Cκ = {w | κ(w) = 0} is called the core of κ (or of the doxastic state rep-
resented by κ). Cκ is the strongest proposition believed (to be true) in κ. In fact, a
proposition is believed in κ if and only if it is a superset of Cκ. Hence, the set of
beliefs is deductively closed according to this representation.4

These observations make clear the following essential point: On the one hand,
the degrees of disbelief are the basic notion. On the other hand, these degrees also

                                                  
2  Cf. also Carnap (1971) who proceeds with a similar algebraic framework.
3  This is a deviation from the definition I have given in earlier papers. It will be explained below.
4  Consistency and deductive closure are standard in doxastic logic; they have been often attacked and
equally often defended. The issue of logical omniscience is indeed highly problematic and closely
related to the issue of hyperintensionality of propositional attitudes already mentioned. We have,
however, decided the issue already by assuming propositions as objects of doxastic attitude; under
this assumption consistency and deductive closure are quite trivial rationality requirements.
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contain an all-or-nothing notion of disbelief (and thus belief): disbelief is disbelief
to some positive degree. If we would confine ourselves to a static perspective, this
all-or-nothing notion, which I sometimes called plain (dis-)belief and which is well
studied in doxastic logic, would be good enough. However, in order to define an
adequate notion of conditional belief and thus to account for the dynamics of the
all-or-nothing notion, we have to introduce the degrees. I emphasize this point be-
cause it marks an important advantage of ranking over probability theory. The lat-
ter cannot offer an adequate notion of plain belief, and hence those raised in prob-
abilistic thinking tend to find the notion disreputable. But, intuitively, we have the
notion, and it is basic to large parts of epistemology. Ranking theory satisfies both
needs here, the one for the all-or-nothing notion and the other for the degrees.

There are two laws for the distribution of degrees of disbelief: the

law of conjunction: κ(A ∩ B) = κ(A) + κ(B | A).

That is, the degree of disbelief in A and the degree of disbelief in B given A add up
to the degree of disbelief in A-and-B; this appears highly intuitive. With Definition
1 we may say conversely that this is precisely how conditional degrees of disbelief
are to be understood. And there is the

law of disjunction: κ(A ∪ B) = min{κ(A), κ(B)}.

That is, the degree of disbelief in a disjunction is the minimum of the degrees of
the disjuncts. Given the definition of conditional ranks, this law is nothing but a
conditional consistency requirement; if it would not hold the inconsistency could
arise that both κ(A | A ∪ B), κ(B | A ∪ B) > 0, i.e., that both A and B are disbelieved
given A-or-B.

According to Definition 1, the law of disjunction indeed extends to disjunctions
of arbitrary cardinality. I find this reasonable, since an inconsistency is to be avoid-
ed in any case, be it finitely or infinitely generated. Note that this entails that each
countable set of ranks must have a minimum (not only an infimum) and that the
range of a ranking function must therefore be well-ordered. Hence, the range N+ is
a natural choice. This point will become important later on.5

                                                  
5  It is obvious that one has various options at this point. For instance, in Spohn (1988) I still took the
range to consist of arbitrary ordinal numbers, but the advantages of this generality did not make up for
the complications. By contrast, Hild (t.a., sect. 3.2) does not extend the law of disjunction to the
infinite case and is thus free to adopt non-negative reals as values.

It is also obvious that the issue about infinite disjunctions is closely related to the discussion of
the Limit Assumption in Lewis (1973, sect. 1.4). Without this assumption, it may happen that “if A
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I immediately add

Definition 2: A ranking function is regular iff all consistent molecular propositions
have finite ranks.

In the sequel we shall consider only regular ranking functions. In earlier papers I
have assumed a stronger form of regularity by outright defining a ranking function
to be a function from W into N so that only ∅ receives infinite rank. If all proposi-
tions are molecular, there is no difference. In this paper, however, we want to con-
sider possibly infinite and thus non-molecular generalizations, and then this strong-
er form of regularity is not feasible. Whence the present weaker assumption.

There is no need here to develop ranking theory more extensively. A general
remark may be more helpful: ranking theory works in almost perfect parallel to
probability theory. Take any probabilistic theorem, replace probabilities by ranks,
the sum of probabilities by the minimum of ranks, the product of probabilities by
the sum of ranks, and the quotient of probabilities by the difference of ranks, and
you are almost guaranteed to arrive at a ranking theorem. Additivity of probabili-
ties thus translates into the law of disjunction for ranks. The probabilistic law of
multiplication translates into the above law of conjunction. It is easy to prove the
ranking analogue to the formula of total probability, the

formula of the total rank: κ(A) = min
i≤ n

 [κ(A | Bi) + κ(Bi)] ,

which says for a partition {B1,...,Bn} of W how to compute the rank of some propo-
sition A from the rank of A given various hypotheses Bi and the ranks of the hy-
potheses Bi themselves. One may continue with a ranking version of Bayes’ theo-
rem.6 One can even develop the whole theory of Bayesian nets in ranking terms.7

And so on.
The general reason is that ranks may roughly be interpreted as orders of mag-

nitude of (infinitesimal) probabilities. Consider a non-standard probability measure
taking non-standard reals as values. The logarithm of a product of such probabili-
ties is the sum of the logarithms of the factors, w.r.t. any base. And the order of
magnitude (= the logarithm in round figures) of a sum of such probabilities is the
minimum of the orders of magnitude of its terms, at least w.r.t. an infinitesimal
                                                                                                                                
were the case, then Bi would be the case” is true for infinitely many B that are jointly unsatisfiable.
Lewis finds reason to accept this situation. I prefer to accept the Limit Assumption instead.
6  This point is strongly developed in Hild (t.a.).
7  This was my original motivation. The basis of this theory, namely the so-called graphoid axioms of
conditional independence, are proved for ranks in Spohn (1983, sect. 5.3) and (1988, sect. 6).
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base. This perspective explains the translatability. However, I should emphasize
that the translation is only an excellent rule of thumb, but not perfectly reliable, as
we shall see later on (cf. also Spohn 1994). The matter is not fully cleared up.

It is still annoying, perhaps, that belief is not characterized in a positive way.
But there is remedy.

Definition 3: β is the belief function associated with κ (and thus a belief function)
iff β is the function assigning integers to propositions such that β(A) = κ( A ) – κ(A)
for each A ⊆ W. Similarly, β(B | A) = κ( B  | A) – κ(B | A).

Recall that at least one of the terms κ( A ) and κ(A) must be 0. Hence, β(A) > 0, < 0,
or = 0 iff, respectively, A is believed, disbelieved, or neither; and A is the more
strongly believed, the larger β(A). Thus, belief functions may appear to be more
natural. But their formal behavior is more awkward. I shall use both notions.

Since this is an essay about confirmation theory, we must ask: what is confir-
mation with respect to ranking functions? The same as elsewhere, namely positive
relevance.

Definition 4: A confirms or is a reason for B relative to κ iff A is positively relevant
to B, i.e., iff β(B | A) > β(B | A ), i.e., iff κ( B  | A) > κ( B  | A ) or κ(B | A) < κ(B |
A ) or both.8

There is an issue here whether the condition should require β(B | A) > β(B) or
only β(B | A) > β(B | A ), as stated. In the corresponding probabilistic case, the two
conditions are equivalent if all three terms are defined, but the first condition is a
bit more general, since it may be defined while the second is not. That is why the
first is often preferred. In the ranking case, however, all three terms are always
defined, and the second condition may be satisfied while the first is not. In that
case the second condition on which my definition is based seems to be more ade-
quate.9

                                                  
8  I believe that if epistemologists talk of justification and warrant, they ought to refer basically to this
relation of A being a reason for B; cf. Spohn (2001). That’s, however, a remark about a different
context.
9  A relevant argument is provided by the so-called problem of old evidence. The problem is that after
having accepted the evidence it can no longer be confirmatory. However, this is so only on the basis
of the first condition. According to the second condition, learning about A can never change what is
confirmed by A, and hence the problem does not arise. This point, or its probabilistic analogue, is
made by Joyce (1999, sect. 6.4) by using Popper measures, relative to which the second condition is
defined even if P( A ) = 0. However, cf. my skeptical remark about Popper measures in section 1.
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Let me close my presentation of ranking theory with formally introducing a
point that will receive great importance later on: Ranking functions can be mixed,
just as probability measures can. For instance, if κ1 and κ2 are two ranking func-
tions for W and if κ* is defined by

κ*(A) = min {κ1(A), κ2(A) + n}  for some n ∈ N+ and all A ⊆ W,

then κ* is again a ranking function for W. Or more generally:

Definition 5: Let K be a set of ranking functions for W and ρ a ranking function for
K. Then κ* defined by

κ*(A) = min {κ(A) + ρ(κ) | κ ∈ K}  for all A ⊆ W

is (obviously) a ranking function for W and is called the mixture of K by ρ.

Note the similarity of this definition with the formula of the total rank; the various
κ take here the role of the various hypotheses Bi in that formula.

3.  Symmetry and Non-negative Instantial Relevance

Now we are well prepared turn to our proper topic, enumerative induction. Let
us start with simplifying the propositional structure as far as our topic allows: by
considering an infinite series of objects and just one property P. So, each object can
either have or lack P, and there are just two universal generalizations: “all objects
are P”, and “all objects are not P”. Concerning the objects this is all the generality
we need; concerning the properties we proceed minimally. This will facilitate our
business. It will be clear, though tedious to prove, that the results below generalize
to any finite number of properties. So, the results are considerably stronger than
they appear. However, I don’t know how things stand with an infinity of properties
that may be generated, e.g., by a real-valued magnitude.

This simplification allows us to represent each possible world by a sequence z =
(z1, z2, ...) of 1’s and 0’s, where zn = 1 or 0 means, respectively, that the n-th object
has or lacks P. {x takes zi1, ..., zin} is short for the proposition {x | xij = zij for j =

1,...,n}.
The most basic assumption ranking functions will be supposed to satisfy is

symmetry. This means that ranking functions should be able to distinguish different
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objects only with respect to the properties considered, in our case P and non-P. Let
us make this precise in

Definition 6: κ is symmetric iff for any sequences y and z and any permutation π of
N  κ(x takes y1, ..., yn) = κ(x takes zπ(1), ..., zπ(n)) if yi = zπ(i) for i = 1,...,n.

Regular symmetric ranking functions take a particularly simple form, as stated in
the obvious

Theorem 1: For each regular symmetric κ there is a representative function f from

N × N into N such that κ(x takes z1,..., zm+n) = f(m,n) if zi
i=1

m+ n

∑  = m, i.e., if exactly m

of the first m+n objects have P and the others lack P. This function satisfies f(0,0)
= 0 and the minimum property f(m,n) = min [f(m+1,n), f(m,n+1)] (for a proof apply
the law of disjunction to the fact that {x takes z1,..., zm+n} = {x takes z1,..., zm+n+1 and
zm+n+1 = 1} ∪ {x takes z1,..., zm+n+1 and zm+n+1 = 0}). Conversely, any function f from
N ×  N into N with these two properties represents a regular symmetric ranking
function.

This entails that f can be visualized as in infinite triangle of non-negative integers

f(0,0)
f(1,0)   f(0,1)

f(2,0)   f(1,1)   f(0,2)
...               ...               ...

If a path in such a triangle is any sequence which starts at any point f(m,n) and in
which each member is succeeded by its left or right neighbor immediately below,
then the minimum property entails that each such path is non-decreasing and that
whenever a path increases by going left any path going right at this point does not
increase, and vice versa.

Symmetry has a long and venerable history. Indeed, van Fraassen (1989) even
went so far to argue that lawlikeness is a confused idea we should dispense with
and that symmetry takes the key role in scientific reasoning in its place. This paper
will in fact confirm van Fraassen’s view, with the minor divergence that lawlike-
ness need not be dispensed with, but will receive an appropriate account through
the notion of symmetry. In any case, we shall pursue our investigation of enumera-
tive induction only in terms of symmetric (and regular) ranking functions.
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The first noteworthy observation in this pursuit is that given symmetry there is
no difference between belief in the next instance and belief in the universal gener-
alization about all further instances. Suppose that after some evidence concerning
the first n objects you believe that the n+1st object will have P; that is, your κ is
such that κ(x takes zn+1 = 0) = s for some s > 0. Because of symmetry you then
believe that any further object will have P, that is, κ(x takes zn+k = 0) = s > 0 for
any k ≥ 1. And because of the infinite variant of the law of disjunction this entails
that you believe in all further objects having P with the same strength; that is, your
disbelief that some future object lacks P is as strong as your disbelief that a specific
future object lacks P; i.e., κ(

  

k ≥1

x takes zn+k = 0) = s > 0. If this sounds counter-

intuitive10, we have to return arguing about the law of disjunction and the conditio-
nal consistency it reflects. However, don’t be confused; your disbelief that all fur-
ther objects lack P may still be much stronger or even infinite.

This means that as far as positive confirmation is concerned, i.e., confirmation
that generates or strengthens belief instead of merely diminishing disbelief, there is
no difference between the next or any other positive instance and the universal
generalization about all further instances. Hence, Carnap’s problem of the null con-
firmation of universal generalizations disappears in the ranking theoretic context,
and the recourse to instantial relevance which was only a substitute in the Bayesian
framework is fully legitimate here.11

Instantial relevance can take a stronger and a weaker form. The principle of po-
sitive instantial relevance (PIR) says that, given any evidence concerning the first n
objects, the n+1st object having or lacking P confirms, respectively, the n+2nd
object having or lacking P. The weaker principle of non-negative instantial rele-
vance (NNIR) requires only that the contrary is not confirmed. Hence, let us state

Definition 7: A regular symmetric ranking function κ satisfies PIR iff β(x takes zn+1

| x takes z1, ..., zn) < β(x takes zn+2 | x takes z1, ..., zn+1) whenever zn+1 = zn+2, i.e., iff
for the relevant representative function f and all m, n ∈ N  f(m+2,n) – f(m+1,n+1) <
f(m+1,n) – f(m,n+1) < f(m+1,n+1) – f(m,n+2). κ satisfies NNIR iff the weak ine-
qualities hold instead.

                                                  
10  It is not unlikely, though, that your intuitions are probabilistically trained, and then it is
difficult to tell apart the intuitions and the training.
11  Within the probabilistic context, the strongest proposal to overcome Carnap’s problem of
the null confirmation of universal gneralizations is the K-dimensional system of Hintikka
and Niiniluoto (1976). It would be interesting to compare it with the ranking theoretic ap-
proach.
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PIR may look like the correct formalization of enumerative induction; alas, we
have

Theorem 2: There is no regular symmetric ranking function satisfying PIR.

Proof: Let us try to satisfy PIR by an appropriate representative function f. So
we start with f(0,0) = 0 and, without loss of generality, f(1,0) = 0 and f(0,1) = r ≥ 0.
This entails f(2,0) = 0. Hence, if we set f(1,1) = r, we already violate PIR. So, we
must choose f(1,1) = s > r and f(0,2) = r. This in turn entails f(3,0) = 0 and f(0,3) =
r. But we cannot complete, then, the fourth line of our triangle: we must set f(2,1)
or f(1,2) = s, and both choices violate PIR. 

This failure should not come as a surprise. If we try to satisfy PIR with respect
to the positive instances and increase the disbelief in a negative instance with in-
creasing positive evidence, we cannot at the same time satisfy PIR with respect to
the negative instances. For, many negative instances are then just as disbelieved as
a single one, and hence the negative instances cannot be positively relevant to fur-
ther negative instances. We cannot have it both ways.

Hence, we are forced to settle for the weaker NNIR. It is easily seen to be con-
sistent. Within a probabilistic setting non-negative instantial relevance is in fact
entailed by symmetry. (Cf. Humburg 1971.) Thus it is worth noting that this is not
the case here; it is obvious that there are symmetric ranking functions violating
NNIR (because there are representative functions violating the additional condition
of definition 7).

Where do we stand? If we want to account for enumerative induction within the
ranking theoretic setting, we have to accept the second best explication, i.e., NNIR.
We should also keep in mind that, within this setting, positively confirming the
next instance is tantamount to confirming the corresponding generalization. Thus,
we may preliminarily conclude that each symmetric ranking function satisfying
NNIR is a way to realize enumerative induction, there being indeed an infinity of
such ways.

Still, the preliminary conclusion does not look right. There is a definite loss in
the retreat from PIR to NNIR. Even partial instantial irrelevance does not really
seem compatible with enumerative induction; it is strange that the confirming ef-
fect of a positive instance must fail at least sometimes. This is a negative illusion,
though. In section 5 all doubts dissolve. We shall find that NNIR is exactly right
and that, contrary to appearance, positive relevance can be fully reestablished.

Our investigation has remained superficial so far. The topic gains depth only
when we remind ourselves of the fact that enumerative induction was never taken
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to apply to all universal generalizations whatsoever, but rather only to laws or po-
tential laws; at most with respect to laws it may claim to be a reasonable rule of
inductive inference. Where is this crucial point reflected in our ranking theoretic
explication? Well, it is reflected, but not at all in an obvious way. In order to un-
cover it, we have to think about what lawlikeness may mean in ranking theoretic
terms.

4.  Laws

In our simple setting we considered just two universal generalizations: G1 =
(1,1,...) and G0 = (0,0,...). What could it mean to treat G1, say, as a law and not as
an accidental generalization? I think, quite unoriginally, that this shows in our in-
ductive behavior. To believe in G1 as a law is, first, to believe in G1, as expressed
by κ(G 1 ) > 0. But, as we already know, the belief in G1 can be realized in many
different ways; this belief alone does not fix the inductive relations between the
various instances. Which forms may they take? Well, if you learn about positive
instances of G1, you do not change your beliefs about the further instances accord-
ing to κ, since you expected them to be positive, anyway. Crucial differences
emerge only when we look at how you respond to negative instances according to
the various attitudes. Let me focus for a while on two particular responses, which I
call the ‘persistent’ and the ‘shaky’ attitude:

If you have the persistent attitude, your belief in further positive instances is
unaffected by negative ones, i.e., κ(x takes zn+1 = 0) = κ(x takes zn+1 = 0 | x takes z1

= ... = zn = 0). If, by contrast, you have the shaky attitude, your belief in further
positive instances is destroyed by a negative instance, i.e., κ(x takes z2 = 0 | x takes
z1 = 0) = 0, and, due to symmetry, also by several negative instances.

The difference is, I find, characteristic of the distinction between lawlike and
accidental generalizations. Let us look at two famous examples. First the coins:

(1) All Euro coins are round.
(2) All of the coins in my pocket today are made of silver.

It seems intuitively clear to me that we have the persistent attitude towards (1) and
the shaky one towards (2). If we come across a cornered Euro coin, we wonder
what might have happened to it, but our confidence that the next coin will be round
again is not shattered. If, however, I find a copper coin in my pocket, my expecta-
tions concerning the further coins simply collapse; if (2) has proved wrong in one
case, it may prove wrong in any case.
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Or look at the metal cubes, which are often thought to be the toughest example,
because they display no perspicuous syntactic or semantic difference:

(3) All solid uranium cubes are smaller than one cubic mile.
(4) All solid gold cubes are smaller than one cubic mile.

What I said about (1) and (2) applies here as well, I find. If we bump into a gold
cube this large, we are surprised – and start thinking there might well be further
ones. If we stumble upon a uranium cube of this size, we are surprised again. But
we find our reasons for thinking that such a cube cannot exist unafflicted and will
instead start investigating this extraordinary case (if it obtains for long enough). As
far as I see, the difference between the shaky and the persistent attitude applies as
well to the other examples prominent in the literature.12

I am well aware that this sounds at best partially convincing. I am deliberately
painting black and white here in order to elaborate the opposition between the per-
sistent and the shaky attitude. Obviously, one would be prepared to say how one
would respond in such cases only if they would be described in much more detail,
especially concerning the evidence which led one to believe in the relevant gener-
alizations in the first place. So, there is also a lot of grey.

There are at least two different kinds of grey. First, there is a broad range of at-
titudes between the two extremes I have described. Being shaky means to be very
shaky; the belief in further positive instances may instead fade more slowly. And
being persistent means to be strictly persistent; the belief in further positive in-
stances may instead fade so lately that we never come to the point of testing it.
Second, if confronted with such cases, we would in a sense widen our perspective.
Take the uranium cube again. If we would really bump into such a large uranium
cube, we would not simply mumble “impossible!” and stick to the belief that there
will be no further exceptions. Rather, we would say that our original law was quali-
fied by a ceteris paribus clause, anyway, and that a thorough investigation of the
case will allow us to get clearer about normal and exceptional conditions. How-
ever, as fascinating as it is, the issue of ceteris paribus laws is certainly beyond the
sope of this paper.13

                                                  
12  Cf., e.g., the overview in Lange 2000, pp. 11f. As Köhler (t.a.) pointed out to me, Bode’s law of
the logarithmic distribution of the planets in the solar system aptly illustrates my dichotomy. This law
appeared to be accidental, and one counter-instance would have destroyed the confidence in it. Only
recently it has acquired lawlike status via very sophisticated considerations, and the discovery of an
anomaly would not impair this status.
13  But I am convinced that ranking theory helps understanding this bewildering issue. At least I have
argued so in Spohn (2002).



14

There are now two ways to respond. One may either say there is too much grey
not decomposable into black and white. Or one may say that there is an important
insight in my black and white distinction which opens a fruitful way to analyse the
shades of grey. I hope I have given at least some plausibility to proceeding on the
second response.

If this is the right way to see the matter, treating a generalization strictly as a
law is really to take the strictly persistent attitude towards it. This conclusion leads
us to a further consequence, namely that the characteristic of lawlikeness is not
something to be found in the propositional content of the generalization; it rather
lies in our inductive attitude towards it or its instantiations. This consequence will
be of crucial importance in the sequel.

The account given so far is obviously very close to the old idea that laws are not
general statements, but rather inference rules or inference licenses. The idea goes
back at least to Ramsey (1929) who stated it very clearly: “Many sentences express
cognitive attitudes without being propositions; and the difference between saying
yes or no to them is not the difference beween saying yes or no to a proposition”
(pp. 135f.). And “... laws are not either” [namely propositions] (p. 150). Rather:
“The general belief consists in (a) A general enunciation, (b) A habit of singular
belief” (p. 136). The idea has become quite popular among philosophers.

From a purely logical point of view, however, it is hard to see the difference
between accepting the generalization as an axiom and accepting the corresponding
inference rule for each instantiation. The only difference is that the rule is logically
weaker; the rule is made admissible by the axiom, but the axiom cannot be inferred
with the help of the rule. What else beside this unproductive logical point could be
meant by the slogan “laws are inference rules” has been little explained.

Still, one might say that the inference-license perspective emphasizes the single
case. This emphasis has now been stripped of its merely rhetorical character; it is
reflected, I think, in my central notion of persistence and thus finds a precise in-
duction-theoretic basis. In this perspective, the mark of laws is not their universa-
lity which breaks down with a single counter-instance, but rather their operation in
each single case, which is not impaired by exceptions. Here, my account meets
with Cartwright (1989) and her continuous efforts to explain that physical laws are
deceptive and that we should rather attend to the single case and to the capacities
(co-)operating in it. In Spohn (2002) the point is argued a bit more extensively.

So much for some striking agreements. The most obvious disagreement is with
Popper, of course. There is no doubt about how much philosophy of science owes
to Popper. In view of this, my account is really ironic, since its conclusion is, in a
way, that the mark of laws is their not being falsifiable by negative instances; only
accidental generalizations are subject to such falsification. To be a bit more pre-
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cise: Of course, any generalization is falsified by a single counter-instance. But
falsified generalizations are to be rejected according to Popper. By contrast I have
argued that the belief in the further instances is shattered by the falsifying instances
only in the case of accidental generalizations, but not in the case of laws. No doubt,
the idea that the belief in laws is not given up so easily is familiar at least since
Kuhn (1962), and already Popper (1934, ch. IV, §22) has insisted that the falsifica-
tion of laws proceeds by more specialized counter-laws rather than by mere coun-
ter-instances. Here, however, the point is boiled down to its induction-theoretic es-
sence.

5.  Laws and Enumerative Induction

There is a striking and severe tension between sections 3 and 4. We saw that,
given symmetry, PIR is not feasible. Hence, we retreated to NNIR as a preliminary
explication of enumerative induction. Then we noticed that enumerative induction
applies only to laws. Finally, I have proposed an explication of laws according to
which instances are independent of each other; this is what persistence amounts to.
Thus we arrived at complete instantial irrelevance which is rather a caricature of
NNIR and not in agreement with enumerative induction at all. Something must
have gone badly wrong.

No, there is only a subtle confusion. Belief in a law is more than belief in a
proposition. It is a certain doxastic attitude, and that attitude as such is character-
ized by the independence in question: if I would have just this attitude, just the
belief in a strict law and no further belief, my κ would exhibit this persistence or
independence. Enumerative induction, by contrast, is not about what the belief in a
law is, but about how we may acquire or confirm this belief. The two inductive
attitudes involved may be easily confused, but the confusion cannot be identified as
long as one thinks that belief in a law is just belief in a proposition.

However, what could it mean to confirm a law if it does not mean to confirm a
proposition? My definition of confirmation in section 2 applies only to the latter.
Hence, the talk of the confirmation of laws, i.e., of a second-order inductive atti-
tude towards a first-order inductive attitude, is so far mere metaphorics. Can we do
better?

Yes, we can. There is fortunately clear precedent in the literature. Given the
close similarity between probability and ranking theory, one might notice that a
law as I conceived it is nothing but a sequence of independent, identically distrib-
uted random variables translated into ranking terms. It thus becomes obvious that
de Finetti (1937) addresses exactly our problem in the probabilistic context. In his
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celebrated theorems de Finetti showed that there is a one-one correspondence be-
tween symmetric probability measures for an infinite sequence of random variables
and mixtures of Bernoulli measures according to which the variables are independ-
ent and identically distributed; and he showed that the mixture focusses more and
more on a single Bernoulli measure as evidence accumulates. He thus showed to
the objectivist that subjective symmetric measures provide everything he wants:
beliefs about statistical hypotheses that converge toward the true one with increas-
ing evidence.

De Finetti’s issue between objectivism and subjectivism is not my concern.
Ranking functions are thoroughly epistemological and have as such no objective
interpretation.14 Still, we can immediately translate de Finetti’s theory into an ac-
count of the confirmation of laws as conceived here. The basic construction is, I
find, illuminating, despite its formalistic appearance.

Let us return to our simple one-property frame. We had two universal gene-
ralizations G1 and G0. But there are infinitely many persistent, lawlike attitudes. If
we define for all r,s ∈ N+

λ-r(x takes z1, ..., zn) = r ⋅ zi
i=1

n

∑ , and λs(x takes z1, ..., zn) = s ⋅ (n – zi
i=1

n

∑ ) ,

then Λ = {λt | t ∈ Z+) includes all and only the persistent attitudes (where Z+ = Z ∪
{∞, -∞}). Λ contains precisely the ‘Bernoullian’ ranking functions which are sym-
metric and according to which each instance is independent from all others. For t >
0  λ t believes in G1 and disbelieves in each negative instance with rank t. For t < 0
it is just the other way around; such a λt believes in G0 and disbelieves in each
positive instance with rank t. In short, each λ t counts the number of counter-
instances within {x takes z1, ..., zn} to the generalization it believes in and multi-
plies it by t (or -t).

What then is the difference between, e.g., λ1 and λ2? There is none in content
and none in persistence. The only difference lies in the disbelief in negative in-
stances; λ2 is firmer a law, one might say, than λ1. Rather for technical reasons we
have to include λ∞ and λ-∞. λ0, finally, does not represent a law at all. It rather rep-
resents lawlessness, indeed complete agnosticism; nothing (except the tautology) is
believed in λ0. Its special role will be discussed in the final section.

Now, believing in laws, confirming and falsifying laws, etc. are doxastic atti-
tudes towards laws, which will here be modelled, of course, by a ranking function
                                                  
14  But see Spohn (1993), where I tried to reduce the tension between my ranking theoretic and hence
subjective explication of causation and the hardly deniable view that causation is an objective relation
in the world.
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ρ over the set Λ of possible laws. If the possible laws are possible first-order atti-
tudes, then ρ is a second-order attitude, which, however, induces a first-order atti-
tude. What, according to ρ, is the rank of a proposition A  ⊆  W, i.e. the degree of
disbelief in A? It is the minimum of all the disbeliefs in A according to the possible
laws in Λ weighed by the disbelief in the laws according to ρ; that is, the first-order
attitude induced by ρ is just the mixture of Λ by ρ as defined in definition 5.

Are we talking about a specific second-order attitude ρ? No, you may have any
ρ you like. The following considerations are perfectly general in this respect. Let
us call ρ proper, though, iff at most one of ρ(λ∞) and ρ(λ-∞) is finite. Now we can
start translating de Finetti’s theorems.

First, we have:

Theorem 3: For each proper ρ over Λ, the mixture of Λ by ρ is a regular symmetric
ranking function satisfying NNIR.

Proof: Regularity and symmetry are obvious since all λs are regular and sym-
metric. The proof of NNIR is essentially a tedious exercise. And since ρ is to be
proper, the mixture is regular.  

Second, we have: For each regular symmetric ranking function κ satisfying
NNIR there is a proper ranking function ρ over Λ such that κ is the mixture of Λ by
ρ. We may indeed strengthen the claim. Suppose we mix, e.g., λ1 and λ2 by some ρ
with ρ(λ1) = ρ(λ2) = 0. Then λ2 is obviously a redundant component of the mixture;
it never determines the result of the mixture, i.e., the relevant minimum. Because of
such redundant components mixtures are never unique.15 Uniqueness can be
achieved only with minimal mixtures, as we might call them. However, we must be
careful in catching the right kind of minimality. The point of the following defini-
tion will become fully clear only with theorem 5 below.

Definition 8: λs is a redundant component of the mixture of Λ by ρ w.r.t. a propo-
sition A iff there is no proposition B such that min {λt(A ∩ B) + ρ(λt) | t ∈ Z+} <
min {λt(A ∩ B) + ρ(λt) | t ∈  Z+ – {s}}, i.e., iff λs does not determine the value of
the mixture for any A ∩ B. λs is a strongly redundant component of the mixture of
Λ by ρ iff λs is a redundant component of the mixture w.r.t. to all Am,n (m,n ≥ 0),
where Am,n is the proposition that (in some order) m of the first m+n objects have P

                                                  
15  This is a noticeable difference to probabilistic mixtures where every ingredient with positive
weight contributes to the mixture, however slightly.
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and the other n objects lack P. Finally, the mixture of Λ by ρ is called minimal iff
for all its strongly redundant components λs  ρ(λs) = ∞.

Hence, in a minimal mixture all strongly redundant components get weight ∞
and cannot enter the mixture at all. The strengthened claim then is:

Theorem 4: For each regular symmetric ranking function κ satisfying NNIR there
is a unique ρ over Λ such that κ is the minimal mixture of Λ by ρ.

Proof: Let κ be a regular symmetric function satisfying NNIR, let f be its repre-
sentative function forming an infinite triangle of non-negative integers, and let c =
sup f be the supremum of f, which may be finite or infinite. Let us focus on simple
paths starting at the boundary of the triangle and making no turns. These paths take
two forms. For each m ≥ 0 there is the right path f(m,0), f(m,1), f(m,2), ... starting at
the left and going always right, and for each n ≥ 0 there is the left path f(0,n), f(1,n),
f(2,n), ... starting at the right and going always left. We know that the simple paths
are non-decreasing (like all others). NNIR entails, moreover, that the simple paths
do not accelerate; whenever i, j, k are three consecutive members of such a path,
then k – j ≤ j – i.

Each simple path either goes to infinity or reaches a maximum and then remains
constant. Let us define am to be the supremum of the m-th right path f(m,0), f(m,1),
... and bn to be the maximum of the n-th left path f(0,n), f(1,n), ... (m,n ≥ 0). Again,
both sequences a = (a0, a1, ...) and b = (b0, b1, ...) must be non-decreasing and, due
to NNIR, also non-accelerating. Either a0 = 0 or b0 = 0 or both, and c = sup a = sup
b.

With the help of the two sequences a and b we can construct now the relevant
minimal mixture ρ. If a1 – a0 := r, we set ρ(λ-r) = a0; and if am is any point at which
a decelerates, i.e., such that am – am-1 > am+1 – am := r , we set ρ(λ-r) = am – mr.
Similarly, if b1 – b0 := s, we set ρ(λs) = b0; and if bn is any point at which b deceler-
ates, i.e., such that bn – bn-1 > bn+1 – bn := s, we set ρ(λs) = bn – ns. If for any t ∈ Z+

ρ(λt) is not thereby defined, we set ρ(λt) = ∞. This completes the construction of ρ.
Note, in particular, that this entails ρ(λ0) = c. Hence, the lawless λ0 is a relevant
component of the mixture only if c is finite.

Since either a0 = 0 or b0 = 0, there is some t ∈ Z+ with ρ(λt) = 0. Since at least
one of a1 and b1 is finite, either ρ(λ∞) = ∞  or ρ(λ-∞) = ∞  or both. Hence, ρ is a
proper ranking function over Λ.

The mixture of Λ by ρ indeed generates the representative function f: For all
m,n ≥ 0 we have either f(m,n) = am or f(m,n) = bn, since either f(m,n+1) = f(m,n) or
f(m+1,n) = f(m,n), and thus either the right or the left simple path through f(m,n)
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does not increase after f(m,n). Now suppose f(m,n) = b n ≤  am, and let us check
whether our mixture yields the same result:

As above, let Am,n be the proposition that (in some order) m of the first m+n ob-
jects have P and the other n objects lack P. Hence,

f(m,n) = κ(Am,n) = min {λt(Am,n) + ρ(λt) | t ∈ Z+}
= min

r,s≥ 0
 [mr + ρ(λ-r), ns + ρ(λs)]

How to calculate this minimum? Let bn* be the largest point before bn where b de-
celerates and let s* = bn*+1 – bn*. Hence, bn* = bn – s*(n – n*). What about ns* +
ρ(λs*)? We have:

ns* + ρ(λs*) = ns* + bn* – n*s* (according to the definition of ρ)
= ns* + bn – s*(n – n*) – n*s* = bn.

Moreover, it is clear from the construction that ns + ρ(λs) ≥ ns* + ρ(λs*) for all
other s ∈ N+. The same reasoning shows that mr + ρ(λ-r) ≥ am ≥ bn for all r ∈ N+.
Thus, indeed, f(m,n) = bn according to the mixture.

Of course, if f(m,n) = am ≤ bn, the corresponding argument holds.
Some λt (t  ∈ Z+) receiving finite rank by ρ may be a redundant component of

the mixture of Λ by ρ w.r.t. A0,0 (= the tautology); this always happens when two
successive members am and am+1 of a or bn and bn+1 of b are points of deceleration.
But none of them is strongly redundant, and the mixture is indeed minimal in the
sense of definition 8. This, however, will become clear only with the next theorem.
It will also be obvious, then, that the ρ we have constructed is unique, i.e., provides
the only minimal mixture generating the representative function f.  

The final step in our translation of de Finetti is to inquire how the mixture is
changed by evidence. This can be directly read off from the results above. Suppose
that we collect the evidence Am,n that m of the first m+n objects have and the other
n objects lack P. If we start with the regular symmetric κ with representative func-
tion f, what is then the a posteriori ranking function κm,n on the space of possibili-
ties for the infinitely many remaining objects? Well, we learn by conditionaliza-
tion; hence, for any proposition B within this space κm,n(B) = κ(B | Am,n). The repre-
sentative function fm,n of κm,n is thus given by fm,n(p,q) = f(m+p, n+q) – f(m,n).

Now, suppose that κ is the minimal mixture of Λ by ρ. What is then the unique
ρm,n so that κm,n is the minimal mixture of Λ by ρm,n? We know that f is the result of
the mixture by ρ, i.e.,
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f(m,n) = min
r,s≥ 0

 [λ-r(Am,n) + ρ(λ-r), λs(Am,n) + ρ(λs)]

= 

� 

min
r,s≥0

 [ρ(λ-r) + mr, ρ(λs) + ns].

Thus, we have for all p,q ∈ N:

fm,n(p,q)= f(m+p, n+q) – f(m,n)
= 

� 

min
r,s≥0

 [ρ(λs) + (n+q)s , ρ(λ-r) + (m+p)r] – f(m,n)

= min
r,s≥ 0

 [ρ(λs) + ns – f(m,n) + qs , ρ(λ-r) + mr – f(m,n) + pr].

This already suggests how to define ρm,n. However, ρm,n has to be a minimal mix-
ture, and therefore we still need to eliminate some of the components originally
having finite rank. For this purpose, let am* be the largest member of a up to am

where a decelerates and bn* the largest member of b  up bn where b  decelerates
(thus, possibly am* = am and bn* = bn), and let r* = am*+1 – am* and s* = bn*+1 – bn*.
Now we can state

Theorem 5: Define for r,s ∈ N+:

ρm,n(λ-r) = ρ(λ-r) + mr – f(m,n) for r ≤ r* and
ρm,n(λs) = ρ(λs) + ns – f(m,n) for s ≤ s*;

and if r > r* and s > s*, then ρm,n(λ-r) = ρm,n(λs) = ∞. Then κm,n is the minimal
mixture of Λ by ρm,n.

Proof: It is obvious from the construction for theorem 4 that λ-r and λ s are
strongly redundant components of ρm,n for r > r* and s > s*. Thus the minimality
of the mixture of Λ  by ρm,n carries over to ρm,n. Therefore, the above calculations
already prove that fm,n is generated by ρm,n.  

The point of defining minimality as we did in definition 8 now becomes clear.
As mentioned, some components of the mixture of Λ by ρ may be initially redun-
dant, i.e., w.r.t. to A0,0. Still, they may become non-redundant after conditionaliza-
tion by Am,n. Hence, they have to be included already in the original mixture. Oth-
erwise, we could not have obtained ρm,n from ρ so easily as in theorem 5.

The theorem has three important consequences. First, it helps to reestablish
positive instantial relevance. Suppose, we find the m+n+1st object to have P; thus,
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our evidence increases from Am,n to Am+1,n. How does the mixture change from ρm,n

to ρm+1,n? Insofar ρm+1,n is finite we have for r,s ≥ 1:

ρm+1,n(λ-r) = ρ(λ-r) + (m+1)r – f(m+1,n) and ρm+1,n(λs) = ρ(λs) + ns – f(m+1,n).

Hence, in any case ρm+1,n(λ-r) – ρm+1,n(λs) = r + ρm,n(λ-r) – ρm,n(λs). That is, each λ-r

as opposed to any of the λs is more disbelieved in ρm+1,n than in ρm,n (by r ranks). In
other words, the additional positive instance is positively relevant to the positive
lawlike attitudes. So, on the level of the second-order attitudes we indeed have ex-
ceptionless positive instantial relevance, which is blurred, though, by the mixture
and thus weakens to NNIR on the level of first-order attitudes. Theorem 2 has
shown that this weakening is unavoidable, but now we see that it is only an artifact
of the mixture.

This observation teaches us, secondly, that as more and more positive instances
accumulate and m – n diverges to infinity, ρm,n(λ-r) – ρm,n(λs) (r,s ≥ 1) diverges to
infinity as well, i.e., the disbelief in the negative lawlike attitudes heads for infinite
firmness. This parallels de Finetti’s observation in the probabilistic case.

So, all in all, we have seen that de Finetti’s account of the confirmation of sta-
tistical hypotheses may be perfectly translated into ranking theoretic terms, thus
deepening our understanding of enumerative induction and lawlikeness.

There is still a third lesson, which has in fact no probabilistic analogue. It thus
goes a little step beyond de Finetti and deserves a brief concluding section of its
own.

6.  The Apriority of Lawfulness

This lesson concerns the special role of λ0. We noticed already that λ0 is total
agnosticism expressing lawlessness instead of lawfulness. Now, we either have
ρ(λ0) = ∞, which entails ρm+n(λ0) = ∞ for all m,n ∈ N. Then ρ embodies the maxi-
mally firm belief that some law or other will obtain. This belief would indeed be
invariable, not refutable even by very long sequences of apparent random behavior
of the instances with respect to P. This does not appear reasonable.

The alternative is that we give ρ(λ0) some finite value; hence, ρm,n(λ0) = ρ(λ0) –
f(m,n). This entails that with each unexpected realization of an instance λ0 gets less
disbelieved. After too many disappointments we shall eventually have lost our be-
lief in lawfulness and any belief about the behavior of new objects concerning P,
the belief in lawlessness being the only remaining option. This may also sound
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implausible. However, ρ(λ0) may be very large so that the agnostic state is in fact
never reached.

The more relevant observation, though, is that the whole story I have told about
the single property P can be generalized to any finite number of properties P1, ...,
Pm in a straightforward way. We can define Carnap’s Q-predicates, i.e., the atoms
of the Boolean algebra of properties generated by P1, ..., Pm; for each Q-predicate
Qk we can consider the generalization “there is no Qk” and the corresponding laws,
i.e., persistent attitudes; and then all the theorems of section 4 continue to hold. So,
what we would really do if lawlessness with respect to P threatens is to try to cor-
relate P with some other properties and to pursue the investigation within a larger
space of properties.

Within such a larger space also more complex forms of laws become available
going beyond persistent attitudes towards “there is no Qk”. As already mentioned,
the ranking theoretic framework in particular allows of an analysis of ceteris pari-
bus laws (cf. Spohn 2002, sect. 4). So, there are rich prospects of generalization. I
don’t know, though, whether and how the de Finettian story I have told concerning
simple laws (about P  or the Qk) carries over to such more complex laws. And I
don’t know of any working account of conceptual change answering the threat of
lawlessness within any given set of properties or conceptual framework. So, there
is still a lot to do as well.

However, let me finally emphasize what my brief discussion of λ0 means in
more traditional terms. Kant tried to overcome Hume’s objectivity skepticism gen-
erally with his transcendental logic and its synthetic principles a priori and Hume’s
inductive skepticism particularly with his a priori principle of causality. This prin-
ciple ascertained rather only the rule- or law-guidedness of everything happening
and was thus as well called the principle of uniformity of nature (cf., e.g., Salmon
1966, pp.40ff.). As was often observed, this principle did not offer any constructive
solution of the problem of induction, since it does not give any direction as to spe-
cific causal laws or specific inductive inferences. Still, it provided, if a priori true,
an abstract guarantee that our inductive efforts are not futile in principle. Is it a
priori true?

Nowadays, two notions of apriority are usually distinguished. A proposition is
unrevisably a priori if it must be believed and cannot be given up under any evi-
dential circumstances. This is certainly the notion which Kant used, though did not
express it in this way, and which Quine attacked when attacking analyticity. By
contrast, a proposition is defeasibly a priori if it is to be believed initially, prior to
any experience (and may be given up later on). The prior probabilities discussed by
Bayesians are a paradigm of defeasible apriority because they are, of course, ex-
pected to change.
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Now, our initial ranking function is some regular symmetric κ satisfying NNIR.
Via theorem 4, κ uniquely corresponds to some ranking function ρ over Λ. The
belief in lawfulness, then, is the same as the disbelief in lawlessness, i.e. ρ(λ0) > 0.
We saw that this is an extremely reasonable assumption. And we now see that it is
tantamount to the defeasible apriority of lawfulness: we must start believing in the
uniformity of nature.

The unrevisable apriority of lawfulness, however, is expressed by the stronger
condition ρ(λ0) = ∞. We also saw that this condition does not appear reasonable, at
least if one relates it to the property P or, more generally, to any fixed set of prop-
erties. Still, it may be unrevisably a priori that there is some set of properties with
respect to which nature is uniform. I am not prepared to decide whether or not the
unrevisable apriority of lawfulness is defensible in this sense. But I think the issue
is more clearly arguable on the basis provided here.
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