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1 Introduction

Bayesian inference is a well-established theory of uncertain reasoning that represents

an agent’s epistemic attitudes—their degrees of belief—by the laws of probability

(e.g., Jeffrey 1965; Savage 1972; de Finetti 1972; Earman 1992; Bovens and Hartmann

2003). A probability function p(H) represents a rational agent’s degree of belief that

H is true. Upon learning evidence E, the agent adopts a posterior belief in H

according to the rule of Conditionalization: pE(H) = p(H|E). Such posterior degrees

of belief serve as a basis for assessing hypotheses and making decisions—also in the

context of public policy. For example, the Assessment Reports of the International

Panel for Climatic Change (IPCC) evaluate the probability of future events as experts’

subjective degrees of belief.

Why are these posterior degrees of belief something else than arbitrary subjective

attitudes? Why can they guide rational and efficient decisions? Presumably because

they are in some way informed by objective evidence. Indeed, if we look at Bayes’

Theorem:

p(H|E) = p(H)
p(E|H)

p(E)

=

(
1 +

1− p(H)

p(H)
· p(E|¬H)

p(E|H)

)−1

we see that an agent’s posterior degree of belief in H depends on three factors: her

prior degree of belief in H, p(H), and the conditional degrees of belief p(E|H) and

p(E|¬H)—often called the likelihoods of H and ¬H on E. Bayesians contend that as

long as the prior degrees of belief in H are not too extreme, a “well-designed
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experiment [...] will swamp divergent prior distributions with the clarity and

sharpness of its results, and thereby render insignificant the diversity of prior

opinion” (Suppes 1966, 204). Clearly, any such merging-of-opinion argument makes

the tacit assumption that p(E|H) and p(E|¬H) are objectively constrained.

The reliance of Bayesians on such constraints is even more explicit in the Bayes

factor—a standard measure for summarizing experimental observations and

quantifying the weight of evidence in favor of a hypothesis (Jeffreys 1961; Kass and

Raftery 1995). It is defined as the ratio of prior and posterior odds between two

competing hypotheses H0 and H1:

BF10(E) =
p(H1|E)/p(H0|E)

p(H1)/p(H0)

It follows from Bayes’ Theorem that the Bayes factor is a ratio of two conditional

degrees of belief: BF10(E) = p(E|H1)/p(E|H0). Thus, the Bayes factor is only as

objective and non-arbitrary as p(E|H0) and p(E|H1) are.1

The idea that such conditional degrees of belief are rationally constrained and

temper the influence of subjectively chosen priors stands at the basis of many

attempts to defend the rationality and objectivity of Bayesian inference (e.g., Earman

1992, chapter 6). It is usually taken for granted that they are aligned with objective

probabilities derived from the relevant statistical model. For example, if H denotes

the hypothesis that a die is fair and E the outcome of two sixes in two tosses, then it

1This claim presupposes that H0 and H1 are two precise point hypotheses—an

assumption that we make throughout the paper for reasons of simplicity. Section 5

briefly discusses the general case.
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appears rational to have the conditional degree of belief p(E|H) = 1/36. However,

none of the familiar stories for justifying this alignment (e.g., reliance on

chance-credence coordination principles) is convincing as it stands.

Pointing out this justification gap is the main task of the negative part of the

paper. In particular, I argue that neither the Ratio Analysis of conditional probability

nor chance-credence coordination principles explain why conditional degrees of

belief are rationally constrained by the corresponding objective probabilities (section

2). The constructive part of the paper solves the problem in a Ramsey-de Finetti

spirit: p(E|H) is the degree of belief in the occurrence of E upon supposing that the

target system’s behavior is described by H. I work out the details of this

suppositional analysis in the context of statistical inference: the relevant set of

possible worlds for evaluating conditional degrees of belief, their alignment with

density functions of statistical models, and how chance-credence coordination guides

Bayesian inference and supports claims to objectivity (section 3).

In the final part of the paper, I explore the general implications of my approach,

focusing on a pertinent problem of Bayesian inference: the interpretation of highly

idealized statistical models where important causal factors are omitted, or functional

dependencies are simplified. Such models are used in disciplines as diverse as

psychology, economics and climate science. In such cases, it would be inappropriate

to interpret the probability of a model as the degree of belief in its (approximate)

truth. Nonetheless, as Bayesian reasoners, we rank different idealized models

according to their posterior probability, and we use these rankings in inference and

decision-making. So we need to explain what these probabilities mean, if not degrees

of belief in the truth of the model.
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I argue that the problem vanishes when all probabilities in Bayesian inference,

including prior and posterior degrees of belief, are understood as conditional degrees

of belief relative to an overarching model. Then I explain how this extension of the

suppositional analysis squares with various principles for determining rational prior

degrees of belief, including a recent proposal by Olav Vassend (section 4). Moreover I

show how we can use Bayesian models for prediction, theory evaluation and

decision-making, even when models are highly idealized and not faithful to reality

(section 5). Finally I wrap up the results of the paper (section 6).

The suppositional approach is not novel. Ramsey (1926/90) famously argued that

a conditional degree of belief in a proposition E given another proposition H is

determined by supposing H and reasoning on that basis about E. However, my paper

is, to the best of my knowledge, the first one to explicate the mechanics of the

suppositional approach in the context of statistical inference, to make precise the role

of chance-credence coordination in this process, and to explain why such conditional

degrees of belief are universally shared.2 It is also the first exploration of the

implications of the suppositional approach for contexts where no model is a serious

contender for (approximative) truth, and for practical decisions based on statistical

models. Thus, it provides the conceptual groundwork for numerous applications of

2The closest relative is perhaps Issac Levi’s 1980 book “The Enterprise of Knowl-

dege” (especially chapter 12), but Levi’s conceptual framework is very different, from

the central role of confirmational commitments in Bayesian inference, to his handling

of chance predicates and the absence of possible-world semantics for spelling out con-

ditional degree of belief. Moreover, Levi groups both ontic and statistical probability

under the label of (objective) chance.
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Bayesian inference in statistics and other domains of science.

2 “The Equality” and Probability in Statistical Models

What constrains the conditional degree of belief in an observation E, given a

statistical hypothesis H? A classical illustration is an inference about the bias of a

coin. The hypotheses (Hµ, µ ∈ (0, 1)) describe how likely it is that the coin to come

up heads on any individual toss. When the tosses are independent and identically

distributed (henceforth, i.i.d.), we can describe the outcome of N repeated toin cosses

by the observation Ek (=k heads and N − k tails), whose probability follows the

Binomial probability density function3 ρHµ(Ek) = (N
k ) µk (1− µ)N−k.

Suppose that we consider the hypothesis that a coin is slightly biased toward tails:

it comes up heads only 40% of the time (H0: µ = .4). This implies that the probability

of observing two heads in two i.i.d. tosses (=E) is equal to

ρH0(E) = (2
2) (.4)

2 (.6)0 = .16. Bayesian reasoners align their conditional degrees of

belief p(E|H0) with the relevant value of the probability density function ρH0 , that is,

ρH0(E) (e.g., Bernardo and Smith 1994; Howson and Urbach 2006). And since the

latter is uniquely determined, so is the former. Having “objective” conditional

degrees of belief p(E|H0) leads to (approximate) long-run consensus on posterior

distributions and unanimous assessments of the strength of observed evidence, for

example, via the Bayes factor. For the above evidence E and the two competing

3The Binomial distribution describes the expected number of successes in a se-

quence of i.i.d. Bernoulli (i.e., success-or-failure) trials. Together with the sample space

S = {H, T}N, the probability distributions ρHµ over S constitute a statistical model.
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hypotheses H0: µ = .4 and H1: µ = .8, all of us will presumably adopt the

conditional degrees of belief p(E|H0) = .4× .4 = .16 and p(E|H1) = .9× .9 = .81 and

report a Bayes factor BF10(E) = .81/.16 ≈ 5.06, corresponding to moderate evidence

for H1. This evidential judgment is supposed to be shared by all Bayesian reasoners,

regardless of their priors over H0 and H1. It rests, however, on an alignment between

density functions of a statistical model and conditional degrees of belief which is not

easy to justify.

In other words, we require a satisfactory answer to the following

Main Question What justifies the equality between conditional degrees of belief and

the corresponding probability densities?

p(E|H) = ρH(E) (the equality)

A traditional approach to conditional degrees of belief, proposed by various

textbooks on Bayesian inference (e.g., Jackson 1991; Earman 1992; Skyrms 2000;

Howson and Urbach 2006), evaluates them as the ratio of two unconditional

probabilities: p(E|H) = p(E∧H)/p(H) whenever p(H) > 0. While this Ratio

Analysis (Hájek 2003) is uncontroversial as a mathematical constraint on conditional

probability, it does not explain the equality. First, if ρH(E) determines p(E|H), it

must do so directly and not be mediated by unconditional degrees of belief. The

counterparts of p(H∧ E) and p(H) are undefined within the statistical model (e.g.,

the Binomial distribution). Second, Ratio Analysis neglects a robust empirical fact:

we usually evaluate conditional degrees of belief p(E|H) directly, rather than by

reasoning about p(E∧H) and p(H) and calculating their ratio (see also Hájek 2003
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and the experiments in Zhao, Shah, and Osherson 2009). Third and last, Ratio

Analysis is silent whenever p(H) = 0, but such hypotheses are omnipresent in

statistical inference with real-valued parameters. For example, a uniform prior

distribution—in fact, any continuous distribution—over the parameter µ in the

Binomial model implies that any precise hypothesis such as H : µ = .4 has

probability zero.

A frequently used alternative strategy for justifying the equality consists in

invoking a chance-credence coordination principle: subjective credences should

follow known objective chances. The most famous of these principles is the Principal

Principle (PP) (Lewis 1980): the initial credence function of a rational agent,

conditional on the proposition that the physical chance of E takes value x, should be

equal to x. A similar intuition with an eye on applications to statistical inference is

expressed by the Principle of Direct Inference (PDI) (e.g., Reichenbach 1949; Kyburg

1974; Levi 1977, 1980): for instance, if I know that a die is unbiased, I should assign

degree of belief 1/6 that any particular number will come up.

Transferring these principles to the equality is, however, not as straightforward

as it looks. True, the value ρH(E) does not depend on subjective credences, but on the

objective properties of a given statistical model. This seems to be a sufficient reason

for classifying ρH(E) as an objective chance, and then pp or pdi determines the value

of the conditional degree of belief p(E|H) (see also Earman 1992, 54–56).

This strategy neglects that chance-credence coordination principles understand

objective chances as making empirical statements: their values depend on “facts

entailed by the overall pattern of events and processes in the actual world” (Hoefer

2007, 549, original emphasis). Dependent on the preferred conception of objective
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chance, such facts could be the setup of a statistical experiment, or the composition

and precise shape of a die that we roll. However, the truth conditions of sentences

such as ρH(E) = 1/36 are entirely internal to the statistical model. Suppose that H

denotes the hypothesis that a die in front of us is unbiased and E denotes the

observation of two sixes in two i.i.d. rolls. Then the sentence

“When we roll an unbiased die twice, the chance of observing two sixes

is 1/36.”
(Dice Roll)

has no empirical content—it may even strike us as analytically true. Note that

(Dice Roll) does not refer to real-world properties or events: even if no perfectly

unbiased dice existed in the actual world (and perhaps, this is actually the case!), the

sentence would still be true. The probability ρH(E) is objective in the sense of

subject-independent, but not a physical chance in the sense of being realized in the

actual world (Rosenthal 2004; Sprenger 2010). This diagnosis is typical of probability

in statistical models.

For this reason, neither the Principal Principle nor the Principle of Direct

Inference solves our problem. The principles coordinate our degrees of belief with

known chancy properties of the actual world. But the objective probabilities in

question, ρH(E), do not express physically realized chances. Therefore, standard

chance-credence coordination principles cannot directly justify the equality. A more

sophisticated story has to be told.
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3 The Suppositional Analysis

This section develops and defends a suppositional analysis of conditional degree of

belief: conditional degrees of belief constitute a primitive epistemic concept and we

determine our degree of belief in E given H by supposing that H is true.

Two famous Bayesians—the British philosopher Frank P. Ramsey and the Italian

statistician Bruno de Finetti (1972, 2008)—have proposed this view in the literature. I

focus on Ramsey since de Finetti also requires that H be a verifiable event if

p(E |H) is to be meaningful (de Finetti 1972, 193). This verificationism is

unnecessarily restrictive for our purposes.

Here is Ramsey’s famous analysis of conditional degrees of belief:

If two people are arguing ‘if H will E?’ and both are in doubt as to H, they are

adding H hypothetically to their stock of knowledge and arguing on that basis

about E. We can say that they are fixing their degrees of belief in E given H. (Ramsey

1926/90, my emphasis)

Put differently, we evaluate the conditional degree of belief p(E |H) by supposing the

truth of the conditioning proposition H, and by assessing the plausibility of E given

this supposition. Ramsey’s analysis has also inspired various accounts of evaluating

(the probability of) indicative conditionals (e.g., Stalnaker 1968; Adams 1975; Levi

1996), but these questions go beyond the scope of this paper.

While we have an intuitive grasp of how Ramsey’s proposal is supposed to work,

we need a more detailed account of its mechanics to explain why statistical reasoners

typically agree on the relevant conditional degrees of belief. Consider a target

system S (e.g., repeated dice rolls) described by a statistical hypothesis H (e.g., “the
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die is fair”). Supposing H defines a possible world ωH, or more precisely a set of

possible worlds, where the behavior of S is governed by ρH. Given that these possible

worlds may differ from each other in features that are unrelated to S, which one is

relevant for fixing our degrees of belief? Do we need to choose the closest possible

world—a notoriously vague and difficult concept (Lewis 1973a)—to settle the matter?

Fortunately, choosing is not necessary. Let [ωH,S]⊂W denote the set of worlds

where the behavior of S is governed by the probability law H. Supposing H is best

explicated as restricting the space of relevant possible worlds to [ωH,S]. In particular,

in any such world, the objective chance of an observation E is given by ρH(E).4

The differences between the elements of [ωH,S] are not relevant for our purposes.

Typically, the scope of a statistical model does not go beyond the target system it

aims to model. For example, in an experiment where we roll a die, the hypotheses

correspond to (multinomial) distributions describing the die’s specific properties.

Similarly, the possible outcomes E, E’, E”, etc. (e.g., three sixes in a row) are contained

in our statistical model of S. In any possible world that belongs to [ωH,S], the

outcome E will therefore have the same probability. This invariance is a notable

difference between applying the suppositional analysis in the context of statistical

inference, and to conditional degrees of belief more generally.

Supposing H may be in conflict with available background knowledge about the

target system. For this reason, my interpretation of conditional degrees of belief

4I would like to thank an anonymous reviewer of this journal for suggesting this

simple definition. Originally, the relevant class of possible worlds was defined via an

equivalence relation on possible worlds (=assigning the same probability law to S),

but that approach would be unnecessarily technical.
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ρH(E) pωH(E) p(E |H)

chance-credence
coordination (pp,
pdi) in ωH

suppositional
analysis

Figure 1: Visual representation of the two steps in justifying the equality: Chance-
credence coordination transfers the probability density ρH(E) to the rational ωH-
degree of belief in E pωH(E), and the suppositional analysis connects that value to
p(E |H).

differs from Ramsey’s in a crucial nuance: where Ramsey suggested that H is added

to existing background knowledge, on my account H may also overrule conflicting

information. In such cases, we obtain a genuinely counterfactual interpretation of

conditional degrees of belief. This is often necessary: we may know that a given die

is biased, that the rolls are not i.i.d., and so on. But for my analysis, it does not

matter whether assuming H is consistent or in conflict with our background

knowledge: the above recipe for constructing the set [ωH,S] applies in either case.

The dice-rolling example shows how the suppositional analysis ensures alignment

of conditional degrees of belief with probability densities. Let H denote the

hypothesis that the die on the table is fair. Consider a world ωH ∈ [ωH,S]. As

explained above, supposing H implies that within ωH, the objective, physical chance

of rolling (at least) one six in one toss is 1/6, in two (i.i.d.) tosses it is 11/36, and so on.

Since ωH is by definition a chancy world, these chances should inform our degrees of

belief via the Principle of Direct Inference (pdi) or the Principal Principle (pp). After

all, ρH describes the physical chances that hold for S in ωH, and we have no reason to
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challenge the rationality of pdi or pp in this case.5 Thus, for any event E in target

system S, our (unconditional!) degrees of belief within ωH should satisfy

pωH(E)= ρH(E). By definition of the suppositional analysis of conditional degrees of

belief, we also have p(E |H)= pωH(E). Combining both equations yields

p(E |H)= ρH(E): conditional degrees of belief track probability density functions (see

also figure 1).6 Taken together with uncontroversial principles for chance-credence

coordination, the suppositional analysis of conditional degrees of belief establishes

the equality and explains the seemingly analytic character of sentences such

as (Dice Roll). In particular, there is no room for rational disagreement on such

conditional degrees of belief.

This agreement transfers to statistical measures of evidence that are derived from

these conditional degrees of belief and play a pivotal role in statistical inference, such

as Bayes factors. Hence, we can explain where the objective elements in Bayesian

inference come from: probability density functions determine conditional degrees of

belief (i.e., the likelihoods) and constrain measures of evidence such as Bayes factors.

Via Bayes’ Theorem, they also constrain posterior probabilities (see section 5 for more

5Some of our actual background information could make an application of pp in-

admissible in the sense of Lewis 1980. I have not found a convincing example myself,

but if somebody did, this worry could be addressed by restricting [ωH,S] to a subset

where no background assumptions interfere with an application of pp. Spelling this

strategy out in detail is an exciting topic for future research.
6Implicitly, this argument may require the assumption of conglomerability (e.g., Du-

bins 1975): if H = ∪Hi for disjoint Hi and p(E|Hi) = x for all indices i, then also

p(E|H) = x.
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details).

It is important to understand the role of the Principle of Direct Inference and the

Principal Principle in the suppositional analysis. Standardly, both principles apply to

real-world, ontic chances, e.g., “the chance of this atom decaying in the next hour

is 1/3” or “the chance of a zero in the spin of this roulette wheel is 1/37”. The

principles claim that degrees of belief should mirror physical chances whenever we

know them. Compare this to the picture that we sketch for conditional degrees of

belief: We do not deal with real-world chances; rather we observe that in the worlds

in the set [ωH,S], the physical chance of E is given by ρH(E). In other words, we do

not apply pdi or pp in the actual world ω@ but in a counterfactual world ωH

described by H. By supposing that the occurrence of E is genuinely chancy and

follows the probability law ρH(E), the suppositional analysis gives a role to

chance-credence coordination principles in statistical inference, explaining why our

conditional degree of belief in E given H is uniquely determined and obeys the

equality. Note that our application of pdi or pp pertains to unconditional degrees of

belief (i.e., pωH(E)) and is therefore fully analogous to those physical-chance

examples that motivate the principles in the first place.

Transferring chance-credence coordination from actual to counterfactual worlds is

a distinct strength of the proposed account, and a crucial difference to competing

accounts that introduce a distinct chance predicate, and chance propositions in our

corpus of background knowledge (Levi 1980, 254–256). So much the more as the

existence of physical chances in the real world is a contested issue, especially outside

some foundational areas of science such as quantum physics. If chance-credence

coordination in the actual world was supposed to justify the equality, the Bayesian
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would need an argument that physical chances actually exist for the system she is

studying, and that they are expressed by the values of ρH. Such a claim would be

hard to prove and make strong ontological commitments. Instead, the probabilities

given by the model’s density functions ρH should be understood as physical chances

in hypothetical scenarios. Chance-credence coordination should apply upon the

supposition of such a hypothetical scenario, and not in the actual world.

This agnostic attitude to physical chance matches the practice of non-Bayesian

statistical inference, too. Here are the thoughts of the great frequentist statistician

Ronald A. Fisher on conditional probability in hypothesis testing:

In general tests of significance are based on hypothetical probabilities

calculated from their null hypotheses. They do not lead to any probability

statements about the real world. (Fisher 1956, 44, original emphasis)

That is, Fisher is emphatic that the conditional probability of data given some

hypothesis has hypothetical character and is not a physically realized objective

chance. Probabilities are useful instruments of inference, not components of the

actual world. According to Fisher, probabilistic reasoning and hypothesis testing is

essentially counterfactual: it is based on the probability of observations under an

idealized and most likely false hypothesis that we suppose for the sake of the

argument.

Before proceeding, I recap the essential elements of the proposed suppositional

analysis. The starting point is Ramsey: the conditional degree of belief in

observation E given statistical hypothesis H is equal to the belief in E that we have

upon supposing that H is the true model of target system S. This hypothetical
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scenario corresponds to a set of possible worlds [ωH,S] where S follows the

probabilistic law defined by H. In this stochastic world [ωH,S], we apply standard

chance-credence coordination principles and calibrate our degree of belief in E with

the known objective chance of E, given by the density function ρH(E). Thus, we

obtain the equality. The suppositional approach to conditional degree of belief also

relieves us of the worry to make sense of p(E|H) in the frequently occurring cases

where p(H) = 0. In these cases, probabilities of the type p(E|H) fall outside the scope

of (standard) Ratio Analysis, but for us, they have determinate values since the

suppositional analysis is feasible regardless of the probability of H. I will now explore

the implications of the suppositional analysis for Bayesian inference in general.

4 Implications: Model-Relative Prior Probabilities

The suppositional analysis has focused on the relationship between statistical

hypothesis H and observation E and said little about the background assumptions in

the statistical modelM. Consider again the case of tossing a coin, assuming that the

tosses are independent and identically distributed. This assumption is not expressed

in a hypothesis such as “the coin is fair” or “the coin is slightly biased towards tails”.

Differences between the competing hypotheses are typically expressed by means of

different parameter values, such as H: µ = 1/2 versus H’: µ = .4, H”: µ = .9, etc. The

statement of the hypothesis does not comprise essential assumptions about the

experimental setup such as independence and identical distribution of the coin tosses.

Introducing the notion of a statistical modelM = (S ;P) (Cox and Hinkley 1974;

McCullagh 2002) helps to clarify matters. It consists of two parts: the sample space S
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and the set of probability distributions P over S , such as the Binomial distributions

B(N, µ) that describe the repeated toss of a coin. All these distributions presuppose

the sample size N, and that the individual tosses are i.i.d. Therefore the hypotheses

inM only differ regarding the value of µ, and for purposes of comparisons we can

write them as H: µ = 1/2, H’: µ = .4, and so on.

Note that real coin tosses are often far from being independent and identically

distributed. Nevertheless, restriction to the family of Binomial distributions can be a

useful and efficient way to study the bias of the coin. We do, in practice, almost never

consider the “catch-all” hypothesis that our model is wrong. Instead, we just ask

what we can learn about target system S given a certain degree of idealization and

abstraction.

This observation connects to a classical problem of Bayesian inference mentioned

in the introduction (see also Walker 2013; Wenmackers and Romeijn 2016; Vassend

forthcoming). Bayesians interpret p(H) standardly as the prior degree of belief that

the hypothesis H is true. However, H may be part of a highly idealized statistical

model of the target system that simplifies functional dependencies or neglects

causally relevant factors (e.g., because the effect size is too small to be relevant). Such

idealized models occur in all fields of science and are particularly common in

discplines where causal relationships are messy and hard to isolate, such as

psychology, economics and climate science.

In such cases, it is highly unlikely that our hypothesis H is literally true, that it

sketches a faithful picture of reality. Regardless of how probable H is with respect to

other hypotheses in the overarching modelM (e.g., H’, H”, . . . ), we would not be

prepared to enter any bet on the truth of H. But if this is the case, how can we
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entertain a strictly positive degree of belief in H? In other words, why do we assign a

positive degree of belief p(H) in our Bayesian model and not probability zero?7

In other words, we face the trilemma of having to reject one of the following three,

jointly inconsistent propositions (Sprenger and Hartmann 2019, ch. 12):

(1) The expression p(H) > 0 denotes a Bayesian agent’s degree of belief that H is

true.

(2) The hypothesis H is part of a general statistical modelM with a partition of

hypotheses H = {H, H′, H′′, . . . ,}.

(3) The modelM is a strong idealization of reality, and likely or known to be false.

The second and third proposition are commonly acknowledged facts about statistical

modeling and cannot be rejected as long as we aim at a rational reconstruction of

Bayesian inference in science. So we have to give up the first proposition and to

rethink the interpretation of prior probabilities in Bayesian inference. When the

underlying models are sufficiently idealized, they cannot denote an agent’s honest

degrees of belief that a hypothesis is true.
7Even when the overall model is credible, it is not clear how to conduct meaningful

(Bayesian) hypothesis tests. The null hypothesis H0 usually denotes the absence of

an effect, the additivity of two factors, the causal independence of two variables in a

model, etc. In most cases, it is strictly speaking false: there will be some minuscule

effect in the treatment, some slight deviation from additivity, some negligible causal

interaction between the variables (e.g., Gallistel 2009). Yet, we would like to use it in

inference and decision-making, and this is difficult if its prior and posterior probability

is always zero.
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Note that the introduction of a “catch-all hypothesis” H̃ = ¬ (H∨H′ ∨H′′ ∨ . . .)

intoM (e.g., Earman 1992) does not solve the problem. Since the modelM is highly

idealized, we would have to concentrate all probability mass on H̃. This means that

we could not differentiate between H, H’, H”, and the other hypotheses inM: their

prior and posterior probability would always be zero, or arbitarily close to that value.

Extending the suppositional analysis solves the problem: IfM describes the

overarching statistical model and H is one of the hypotheses inM, then all

probability assignments are relative toM. pM(H) expresses the degree of belief in

the truth of H that we would have if we had supposed that the target system is fully

and correctly described by one of the hypotheses inM. In fact, Bayesian modelers

distribute prior degrees of belief only over elements of P . This perspective on prior

probabilities, which flows logically from our take on conditional degrees of belief,

resolves the above trilemma: we deny premise (1) that p(H) denotes an actual degree

of belief. Any such probability is, like the probabilities of evidence given a

hypothesis, essentially hypothetical and should be read as pM(H). Similarly, p(E |H)

should always be read and understood as the model-relative conditional degree of

belief pM(E |H).

Suppositional or hypothetical prior probabilities are, however, not rationally

constrained in the same way as pM(E|H). In particular, supposingM need not

define any objective chances in ωM,S. Thus, unlike in the case of pM(E |H), the

suppositional analysis does not yield a uniquely rational degree of belief for pM(H),

nor any guidance “how we are supposed to understand and evaluate counterfactual

probabilities”, as Vassend (forthcoming) writes in a congenial contribution.

Vassend makes his observation in a critical spirit, but I would like to embrace it.
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Subjective Bayesian inference allows for different rational choices of the prior

distribution upon supposing a modelM, and remains silent on which factors

determine this choice. If pM(H) were determined in the same way as pM(E |H), this

feature of subjective Bayesian inference would get lost and we would be stuck with a

specific version of Objective Bayesianism. A general conceptual scheme for

interpreting probabilities in Bayesian inference should not have such strong

implications.

What is more, apart from resolving the above trilemma, the suppositional analysis

is compatible with various strategies for interpreting and determining prior

probabilities. For example, we may adopt a broadly Lewisian perspective and

determine the prior probability of H as a function of the estimated similarity of ωH to

the actual world ω@ (Lewis 1973b). As an alternative, Vassend (forthcoming) suggests

that the subjective probability of H expresses the degree of belief that H is most

similar to the truth among all (false) hypotheses inM. This approach connects

Bayesian inference to the verisimilitude paradigm, where the goal of scientific

inference consists in gradually approaching the truth (Niiniluoto 2011; Cevolani and

Tambolo 2013). Other agents will adopt an Objective Bayesian approach and

maximize the entropy of the probability distribution over the parameter of interest

(e.g., Jaynes 1968; Williamson 2010). Finally, social conventions may dictate the choice

of an “impartial” prior because any other assignment of prior probabilities would fail

to convince stakeholders interested in the outcome of the statistical analysis.

These proposals are very different in their conceptual repertoire, but they all share

one element: supposing a general statistical modelM and relativizing inference to

that model. For example, Vassend interprets p(H) as the degree of belief that H is the
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most truthlike among all hypotheses inM. Objective Bayesians maximize entropy

relative to a partition of hypotheses inM. And so on. The suppositional analysis is

not meant to be an alternative to these proposals, but rather a general conceptual

framework that accommodates various strategies for determining and interpreting

prior degrees of belief.8

5 Implications: Model-Relative Bayesian Inference

Finally we address the question of how the suppositional analysis connects to

prediction and decision-making. First, we note that the above proposal naturally

transfers from prior to posterior probabilities. They should be understood relative to

a modelM and be written as pM(H |E). Then, Bayes’ Theorem relates the posterior

probability pM(H |E) to the prior probabilities pM(H) and pM(Hi), and the

likelihoods pM(E |H) and pM(E |Hi):

pM(H |E) =

(
∑

Hi∈H

pM(E |Hi)

pM(E |H)
· pM(Hi)

pM(H)

)−1

. (1)

Posterior probabilities can thus only be as arbitrary as the priors are and

Bayesians of all sorts can—for non-extreme priors and sufficiently powerful

experiments—use them confidently in assessing scientific hypotheses. A similar

8In particular, while Vassend and I investigate different research questions—the

alignment of conditional degrees of belief with objective probability vs. the interpre-

tation of prior probabilities—, our approaches and conclusions are compatible with

each other.
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diagnosis applies to predictions of events derived from Bayesian models. According

to the Law of Total Probability,

pM(E) = ∑
Hi∈H

pM(E |Hi) · pM(Hi),

can be understood as a weighted average of the conditional probabilities of E under

the competing hypothesis. For example, the hypotheses inM could correspond to

various economic models that make different statistical predictions for specific events

such as E: “On economic policy X, the Italian gross domestic product will grow for

three years in a row.” Similarly, some conditional degrees of belief p(E|H′) are in

reality a weighted averages of conditional degrees of belief because H’ is a disjunction

of various precise hypotheses inM (e.g., H′ : µ > 0 for a parameter of interest µ).

If most hypotheses inM assign a high conditional probability to E (i.e.,

pM(E |Hi) ≈ 1), then also their weighted average pM(E) will be close to 1. But how

do these predictions affect our expectations that E will actually occur? More precisely,

how should predictions of statistical models about the occurrence of future events

inform real-world decisions? This question is especially important whenever there

are reasons to assume that our models are highly idealized, and yet we would like to

use them for making probabilistic predictions and substantiating policy-making (e.g.,

Stainforth, Allen, Tredger, and Smith 2007, for a case from climate science).

Indeed, for a complex and highly non-linear target system such as the economy of

a country or the Earth’s atmosphere, the predictions of a statistical modelM should

be taken with a grain of salt. Our confidence in its predictions depends on its grip on

the causally relevant features of the target system. In other words, aligning our
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subjective expectation of E with pM(E) depends on the adequacy of the models in

M. Correcting that value may be necessary to account for limitations of the model

and neglect of particular features of the target system. This is fully analogous to

non-Bayesian modeling. An engineer who calculates the trajectory of a cannonball

will not blindly trust a model based on the law of gravitation, and the ideal

superposition of horizontal and vertical motion. In practice, factors such as air

resistance and the size and form of the cannonball make a difference. The model

informs our predictions, but we need to calibrate it with reality—a task that often

exceeds the reach of the (physical) model and needs to be integrated with a scientist’s

experience and judgment. Similarly, instead of naïvely calibrating our actual degrees

of belief with the output of a Bayesian statistical model, we should see the model as a

device showing us our hypothetical degrees of belief under reasonable idealizing

assumptions.

This view of Bayesian inference squares well with the famous saying from

statistics that all models are wrong, but some are illuminating and useful (Box 1976).

Having a prior (or posterior) over µ does not commit us to any degree of belief about

the “true” value of µ, or to betting on some propositions about µ with specific odds.

It just makes a statement about our hypothetical degrees of belief and betting odds if

the coin toss were fully described byM. This move likens inference with Bayesian

statistical models to other model-based scientific inferences: one uses a (deterministic

or statistical) model to derive predictions whose validity depends on the adequacy of

the model itself. Moreover, both Bayesian and non-Bayesian modelers face the open

question of how to transfer knowledge about the model to the target system.

Whatever strategy works in the general case might also work for Bayesian models,

23



and vice versa. But answering this question in general goes beyond the scope of the

suppositional analysis.

6 Conclusion

Why do probability densities of a statistical model determine the corresponding

conditional degrees of belief of a Bayesian reasoner? In other words, why do we

accept the equality for observation E and statistical hypothesis H: p(E |H)= ρH(E)?

I have argued that this question cannot be answered by recourse to Ratio Analysis

or chance-credence coordination. In particular, the density functions ρH do not define

chances in the sense of pdi or pp. To make chance-credence coordination work, we

need a different analysis of conditional degrees of belief in Bayesian inference. The

suppositional analysis provided in this paper answers this challenge, yields the

equality and squares well with our intuitive handling of conditional probability. On

top of this, it explains the interpretation of prior probabilities in the context of

idealized models. Bayesian inference should be construed as a model-relative activity

where we reason with hypothetical, not with actual, degrees of belief. As I have

argued, this impairs neither the functionality of Bayesian reasoning nor its normative

pull.

The suppositional analysis has repercussions for philosophy of probability, too. If

conditional degrees of belief are a central and irreducible concept in Bayesian

reasoning, then we might be inclined to say the same of conditional probability. This

proposal agrees with prominent axiomatizations and analyses of conditional

probability as a primitive concept (e.g., Popper 1959/2002; Rényi 1970; Hájek 2003). It
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is up to future work to determine the most fruitful account of the relationship

between conditional and unconditional probability (see also Gyenis, Hofer-Szabó,

and Rédei 2017; Fitelson and Hájek 2017). Similarly, one could further explore the

role of conditional probability in the various objective-chance interpretations (e.g.,

Frigg and Hoefer 2015; Suárez forthcoming).

Moreover, the suppositional analysis provides the epistemic foundations for

solving central problems in confirmation theory and formal epistemology, such as the

Problem of Old Evidence (Howson 1984, 1985; Sprenger 2015), or learning

information that is expressed by conditional probabilities (Eva, Hartmann, and Rafiee

Rad forthcoming; Sprenger and Hartmann 2019, ch. 4).

Finally, I recapitulate the main features of the suppositional analysis, in order to

leave the reader with a coherent and unified picture of the paper’s results. First,

conditional degrees of belief of the type p(E |H) should be interpreted in the

suppositional, hypothetical way anticipated by Ramsey: we suppose that H correctly

describes the target system S. The supposition is made explicit by evaluating the

probability of E in a set of possible worlds [ωH,S], that is, the possible worlds where

the behavior of S follows the probabilistic law H.

Second, chance-credence coordination principles, such as the Principal Principle

or the Principle of Direct Inference, apply even if we are agnostic about the existence

of physical chance in the actual world. Instead of informing our (unconditional)

degrees of belief in the actual world ω@, they align conditional degrees of belief with

the corresponding (objective) probability densities in the [ωH,S]-worlds. This analysis

establishes the equality and explains why statements about the probability of

events in a statistical model often appear analytic. It also shows why Bayesian
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reasoners typically agree on Bayes factors or other measures of evidential support,

thereby defending Bayesian inference against the charge of arbitrariness and lack of

objectivity.

Third, all probabilities in Bayesian inference should ultimately be understood as

hypothetical degrees of belief, conditional on supposing a general statistical model.

This perspective explains why we are almost never willing to engage in a bet in the

truth of a hypothesis in a statistical modelM. At the same time, this view does not

commit us to a specific principle for determining rational prior probabilities; in fact,

it sums up the common denominator of different approaches.

Fourth and last, the suppositional analysis regards Bayesian inference as a specific

form of model-based reasoning in science, with features and challenges that are

similar to deterministic modeling. The question of how to understand conditional

and unconditional degrees of belief is not separable from the use of Bayesian models

in scientific practice.
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