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Abstract

In examples like the total recursive functions or the computable real numbers the
canonical indexings are only partial maps. It is even impossible in these cases to find an
equivalent total numbering. We consider effectively given topological Tp-spaces and study
the problem in which cases the canonical numberings of such spaces can be totalized, i. €.,
have an equivalent total indexing. Moreover, we show under very natural assumptions that
such spaces can effectively and effectively homeomorphically be embedded into a totally
indexed algebraic constructively directed-complete partial order.

Introduction

An indexed or numbered set is a countable set with a (partial) map of the natural numbers
onto the set. Numbered sets appear quite natural in constructive mathematics. The index of
an object encodes its construction. Via the indexing notions from computability theory can be
transferred to abstract sets.

A prominent example of a numbered set is the set of all partial recursive functions on the
natural numbers indexed by a Godel numbering. As it is well known, this set has also other
indexings with very different properties.

First studies of numbered sets have been done by Mal’cev [10]. A comprehensive treatment
can be found in Ersov [4, 6, 7]. In this work only total numberings are considered, but there are
important cases in which the indexings are only partial maps. The canonical indexing of the
computable real numbers defined via normed Cauchy sequences [16] is an example. As has been
shown in [15], this numbering cannot be totalized, i. e., there is no equivalent fotal indexing of
the computable reals.

In the present paper we are interested in the question in which cases a partial indexing can
be totalized. We deal with two aspects of this problem:

e When does a numbered set (X, z) have a total indexing which is equivalent to the given
partial numbering x?

e Can (X, z) be embedded into an indexed set (X, ) the indexing & of which is total and
extends the given indexing z?

In order to treat with these questions we restrict ourselves to effectively given topological Tp-
spaces. For computer science this is not a severe limitation. Scott [13] and Smyth [14] pointed
out that data types can be thought of as countably based topological Ty-spaces with basic open
sets for the finitely describable properties of the data objects. Most structures considered in
programming language semantics are equipped with a canonical topology. Prominent examples
are metric spaces, Scott domains, A- and f-spaces [2, 3, 5, 6]. As is shown in Stoltenberg-Hansen
and Tucker [18] many algebraic structures e. g., all term algebras over a finite signature, can be
canonically embedded in complete ultrametric spaces as well as Scott domains.

Topological spaces that satisfy certain natural effectivity requirements have been studied
by various authors. We consider countable Ty-spaces (7, 1) with a countable, totally indexed
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basis of the topology. Between the indices of basic open sets a relation of strong inclusion
is defined such that the property of being a topological basis holds effectively with respect
to this relation instead of to normal set inclusion. The points of the space are numbered in
such a way that the collection of all basic open sets containing a given point can uniformly
be enumerated. Moreover, from a (normed) enumeration of a base of basic open sets of a
neighbourhood filter one can compute the point determined by the filter. Such indexings are
called acceptable. As it 1s shown, for an acceptable numbering an equivalent total indexing of
the space can be constructed if and only if all neighbourhood filters can be enumerated in a
uniform way and among all such enumerations there is a principal one, which means that there
is a uniform enumeration of the neighbourhood filters to which every other such enumeration
can be reduced.

The condition that all neighbourhood filters can uniformly be enumerated means that we
can effectively list procedures for the generation of bases for the neighbourhood filters, at least
one for each such filter. If we can effectively list all such procedures, the space is an algebraic
constructive predomain with respect to the specialization order such that all of its points are
comparable.

This shows that the condition that all generation procedures for bases of neighbourhood
filters are listable is quite strong. Moreover, we see that effectivity requirements may have
structural consequences. For the special case of domain-like spaces we study which further im-
plications the existence of a total acceptable numbering has. It turns out that any acceptable
indexing of the space has an equivalent total indexing, if and only if the space is construc-
tively directed-complete and the topology is the Scott topology. Here, a space is constructively
directed-complete if every enumerable subset has a least upper bound with respect to the spe-
cialization order. If the space has a smallest element, the total indexing can be constructed in
such a way that it 1s complete, which implies that the fixed point theorem holds. This result
underlines the importance of the Scott topology for the study of computability on abstract
structures.

As has been shown by Ersov [4], every indexed set (X, z) with a total indexing « can be
embedded in a numbered set (X, z) such that @ is both total and complete and x is reducible
to &. The set X is obtained from X by adjoining a new element L. The same construction
can be carried out, if # is only a partial map. Again the indexing z is total and complete.
But, in general, if X is an effectively given Ty-space, the numbering & need not be acceptable
and the embedding need not be effectively homeomorphic. The space X does not have enough
partial elements. We show in the case that the strong inclusion relation is effectively enumerable
that the given space T’ can be embedded into an algebraic constructive domain 7' with a total,
complete, and acceptable numbering. The embedding as well as its partial inverse are effective
and effectively continuous. Moreover, under the embedding 7' is dense in T. If all basic open
sets in the topology 7 are closed as well, it is also a total subset of T in the sense of Berger [1].

The paper is organized in the following way. Section 1 contains basic definitions and prop-
erties. The totalizability problem is studied for the general case of effectively given Tg-spaces
in Section 2 and for the special case of domain-like spaces in Section 3. In Section 4, finally,
the embedding result 1s derived.

1 Basic definitions and properties

In what follows, let {, ) : w? — w be a recursive pairing function with corresponding projections
71 and 7y such that m;({a1, a2)) = a;. We extend the pairing function in the usual way to an
n-tuple encoding. Let P (R(™)) denote the set of all n-ary partial (total) recursive functions,
and let W; be the domain of the ¢th partial recursive function ¢; with respect to some Godel
numbering ¢. We let ¢;(a)] mean that the computation of ¢;(a) stops, ¢;(a)l € C that it
stops with value in C, and ¢;(a)l, that it stops within n steps. In the opposite cases we write
wi(a)t and ¢;(a)Ty respectively. If A C w is not empty and recursively enumerable (r.e.), A,
is the finite subset of A which can be enumerated in s steps with respect to some fixed total
enumeration of A, i.e., A, = {f(0), ..., f(s L 1)}, where f € R is the fixed enumeration.

Let S be a nonempty set. A (partial) numbering v of S is a partial map v:w — S(onto)
with domain dom(v). The value of v at n € dom(v) is denoted, interchangeably, by v, and
v(n). Note that instead of numbering we also say indexing.



Definition 1.1 Let v and « be numberings of the set S.

1. v < &, read v is reducible to &, if there is a function ¢ € P such that: dom(r) C dom(yg),
g(dom(v)) C dom(k), and vy, = Ky(m), for all m € dom(v).

2. v = k, read v is equivalent to k, if v < k and k < v.

If A and C are sets of natural numbers, their characteristic functions y 4 and y ¢, respectively,
are numberings of the set {0,1}. In this special case the above reducibility and equivalence
notions reduce to the corresponding notions for sets known from computability theory [12],
which we denote in the same way.

Definition 1.2 A numbering v of the set S is said to be

1. precomplete, if for any function ¢ € P there is a function f € R such that f(n) €
dom(v) and vy (ny = vy(n), for n € dom(g) with g(n) € dom(v)

2. complete, if there is some element e € S| called the special element, such that for any
function g € P() there is a function f € R such that f(n) € dom(v), for all n € w
with either n ¢ dom(g) or n € dom(g) and g(n) € dom(v), and v¢(n) = Vg(n), for all
n € dom(g) with g(n) € dom(v), and v,y = e, for all n € w \ dom(g)

A subset X of S i1s completely enumerable, if there is an r.e. set A such that v, € X if and
only if n € A, for all n € dom(v). If A is recursive, X is said to be completely recursive. X
is enumerable, if for some r.e. set A C dom(v) we have that X = {v, |[n€ A}. Thus, X is
enumerable if we can enumerate a subset of the index set of X which contains at least one index
for every element of X, whereas X is completely enumerable if we can enumerate all indices of
elements of X and perhaps some numbers which are not used as indices by the numbering v.
A relation R C S x S is completely enumerable, if there is an r.e. set A such that (v;,v;) € R
if and only if (7, j) € A, for all 4, j € dom(v).

Now, let 7 = (T,7) be a countable topological Ty-space with a countable basis B. Let
B be an indexing of B. In the applications we have in mind the basic open sets can be
described in some finite way. The indexing B is then obtained by an encoding of the finite
descriptions. Moreover, in these cases there is a canonical relation between the (code numbers
of the) descriptions which is stronger than the usual set inclusion between the described sets.
This relation is r.e., which in general is not true for set inclusion. It has been turned out in
effective topology that one has to work with this stronger relation (¢f. e.g. [15, 16, 17]).

Definition 1.3 Let <pg be a transitive binary relation on w. We say that:
1. <p is a strong inclusion, if for all m, n € dom(B), from m <pg n it follows that B,, C B,.

2. Bis a strong basis, if <p is a strong inclusion and for all z € T and m, n € dom(B) with
z € By N By, there is a number a € dom(B) such that z € B,, a <p m and a <p n.

For what follows we assume that <p is a strong inclusion with respect to which B is a strong
basis. Moreover, to simplify matters we will suppose throughout this paper that the empty set
is not included in B.

Definition 1.4 Let 7 = (7, ) be a countable topological Ty-space with a countable basis B,
and let # and B be numberings of 7" and B, respectively. We say that:

1. x is computable if there is some r.e. set L such that for all i € dom(z) and n € dom(B),
(¢,n) € L if and only if z; € B,.

2. T is effective, if B is a total indexing and the property of being a strong basis holds
effectively, which means that there exists a function sb € P®3) such that for i € dom(x)
and m, n € w with x; € By, 0 By, sb(i,m,n)l, i € Bsp(i,m,n), sb(i,m,n) <p m, and
sb(i,m,n) <p n.



Thus, # is computable if and only if all basic open sets B,, are completely enumerable, uniformly
in n.

As it is easily verified, T is effective if = is computable, B is total and the strong inclusion
relation 1s r.e. Note that very often the totality of B can easily be achieved, if the space is
recursively separable, which means that it has a dense enumerable subset, called its dense base.
In the sequel we always assume that 7 is effective.

As 1t is well-known, each point y of a Ty-space is uniquely determined by its neighbourhood
filter A (y) and/or a base of it. A point y is called finite, if A (y) has a finite and hence a
singleton base. Moreover, on Ty-spaces there is a canonical partial order, the specialization
order, which we denote by <.

Definition 1.5 Let 7 = (7, 7) be a Ty-space, and y, z € T'. y <, z if N'(y) C N (z).
Let us now consider some important standard examples of effective Ty-spaces.

Example 1.6 (Constructive domains) Let @ = (@,C) be a partial order. A nonempty
subset S of @ is directed, if for all y;, y» € S there is some u € S with y1, y» C u. The
way-below relation < on @ is defined as follows: y; <& y» if for every directed subset S of Q)
the least upper bound of which exists in Q, the relation y, C | | S always implies the existence
of a u € S with y; C u. Note that <& is transitive. Elements y € @ with y <& y are called
compact. For points y, z € () such that at least one of them is compact, y < z if and only if
yE 2.

A subset Z of @ is a basis of @, if for any y € () the set Z, = {z € Z | z < y } is directed
and y = | | Z,. A partial order that has a basis is called continuous. If all elements of Z are
compact, () is said to be algebraic.

Now, assume that @ is countable and let z be an indexing of (). Then @ is constructively
directed-complete, if each of its enumerable directed subsets has a least upper bound in ). Let
() be constructively directed-complete and continuous with basis Z. Moreover, let 3 be a total
numbering of Z. Then (Q,C, 7, 3, z) is said to be a constructive predomain, if the restriction
of the way-below relation to 7 as well as all sets 7, for y € ), are completely enumerable with
respect to the indexing § and g < x. It 1s called constructive domain if, in addition, the partial
order has a smallest element.

The numbering z of Q) is is said to be admissible, if the set { (¢, ) | f; <€ «; } is r.e. and
there is a function d € R(Y) such that for all indices i € w for which B(W;) is directed, x4 is
the least upper bound of (W;). In the case of constructive domains it is shown in [19] that
such numberings exist. They can even be chosen as total. In what follows we always assume
that the numbering x of a constructive predomain is admissible.

It is well known that on constructively directed-complete partial orders there is a canonical
topology ¢: the Scott topology. A subset X of ) is open, if it is upwards closed with respect
to C and intersects each enumerable directed subset of () of which it contains the least upper
bound. In the case of a constructive predomain this topology is generated by the sets B, =
{ye Q| By} with n € w. Tt follows that @ = (@, ) is a countable Ty-space with a
countable basis. Observe that the specialization order on ) coincides with the partial order C
[9]. Moreover, compactness matches with finiteness. Obviously, every admissible numbering is
computable. Since Z is dense in @ we also obtain that Q is recursively separable.

Define

m < n < fh K G

Then <p is a strong inclusion with respect to which the collection of all B,, is a strong basis.
Because the restriction of <& to Z is completely enumerable, <p is r.e. It follows that Q is
effective.

Example 1.7 (Constructive A- and f-spaces) A- and f-spaces have been introduced by
Ersov [2, 3, 5, 6, 8] as a more topologically oriented approach to domain theory. They are not
required to be complete.

Let Y = (Y,p) be a topological Ty-space. For a subset X of YV, int(X) is its interior.
Moreover, for y, z € Y define y < z if z € int({u €Y |y <, u}). Then y is finite if and only
if y<<y. YV isan A-space, if there is a subset Y; of YV satisfying the following three properties:



1. Any two elements of Yy which are bounded in Y with respect to the specialization order
have a least upper bound in Yj.

2. The collection of sets int({ v € Y | y <, u }), for y € Yy, is a basis of topology p.
3. For any y € Yy and u € Y with y < u there is some z € Yj such that y < z and z < u.

Any subset Yy of Y with these properties is called basic subspace.
Let Y be countable and Yy have a numbering 5. For m, n € dom(3) set B, = int({u €Y |
Bn <, u}) and define
m < n e fh L G

Then <p is a strong inclusion with respect to which { B, | n € dom(g) } is a strong basis. The
A-space Y with basic subspace Yy is constructive, if the numbering 3 is total, the restriction of
< to Yy is completely enumerable; and the neighbourhood filter of each point has an enumerable
strong base of basic open sets. As has been shown in [17], under these assumptions Y has a
canonical numbering # such that Y is effective. Moreover, it is recursively separable with dense
basis Yj.

Let ¥ = (Y, p) be again an arbitrary topological Tp-space. An open set V is an f-set, if
there is a some element zy € V such that V = {y €Y | zv <, y}. The uniquely determined
element zy is called f-element. Y is an f-space, if the following two conditions hold:

1. f U and V are f-sets with nonempty intersection, then /' NV is also an f-set.
2. The collection of all f-sets is a basis of topology p.

An f-space 1s constructive, if the set of all f-elements has a total numbering « such that the
restriction of the specialization order to this set as well as the boundedness of two f-elements
is completely recursive and there is a function su € R(?) such that in the case that o, and a,,
are bounded, @y (n, m) is their least upper bound, and if the neighbourhood filter of each point
has an enumerable base of f-sets.

Every f-space is an A-space with basic subspace the set of all f-elements, which are exactly
the finite elements of the space. Moreover, for y, z € Y with y or z being an f-element, y < z
if and only if y <, z. It follows that also every constructive f-space is a constructive A-space.

Example 1.8 (Constructive metric spaces) Let R denote the set of all real numbers, and
let v be some canonical total indexing of the rational numbers. Then a real number z is said
to be computable, if there is a function f € R() such that for all m, n € w with m < n, the
inequality [Vf(m) L Vp(n)| < 27™ holds and z = limy, V¢ (). Any Godel number of the function
f 1s called an wndex of z. This defines a partial indexing v of the set R, of all computable real
numbers.

Now, let M = (M, J) be a separable metric space with range(d) C R, and let 8 be a total
numbering of the dense subset My. A sequence (yq)qew Of elements of My is said to be normed,
if 6(Ym,yn) < 277, for all m,n € w with m < n. Moreover, (y,) is recursive, if there is some
function f € R such that y, = Bf(ay, for all a € w. Any Godel number of f is called an index
of (ya).

M is said to be constructive, if the restriction of the distance function § to My has only
rational values and is effective, i. e., if there is some function d € R(®) such that for all 4,
J €w, (B, B;) = vag,j, and each element y of M is the limit of a normed recursive sequence of
elements of My. If m is the index of such a sequence, set z,, = y. Otherwise, let  be undefined.
Then « is a numbering of M with respect to which and the indexing ~ of the computable real
numbers the distance function is effective (ef. [15]).

As is well-known, the collection of sets By = {y € M | 6(Bi,y) <27} (i, m €w) is a
basis of the canonical Hausdorff topology A on M. Because the usual less-than relation on the
computable real numbers is completely enumerable [11], it follows that x is computable. As
has been shown in [15], a point y € M is finite if and only if it is isolated.

Define

<i,m> <B <_], n> C}(S(ﬁl,ﬁ]) 427 <277

Using the triangular inequation it is readily verified that <p is a strong inclusion and the
collection of all B, 1s a strong basis. Moreover, <p 1s r.e. It follows that M is effective.



Beside the computable real numbers, well known examples of constructive metric spaces are
Baire space, that is, the set R(!) of all total recursive functions with the Baire metric [12], and
the set w with the discrete metric.

Since we work with strong inclusion instead of set inclusion, we had to adjust the notion of
a topological basis. In the same way we have to modify that of a filter base.

Definition 1.9 Let H be a filter. A nonempty subset F of H is called strong base of H if the
following two conditions hold:

1. For all m, n € dom(B) with By,,, B, € F there is some index a € dom(B) such that
B, € F,a < m,and a <g n.

2. For all m € dom(B) with By, € H there some index a € dom(B) such that B, € F and
a<pg m.

If z is computable, a strong base of basic open sets can effectively be enumerated for each
neighbourhood filter. The next result proved in [17] shows that for effective spaces this can be
done in a normed way.

Definition 1.10 An enumeration (Bj(4))aew With f : w — w such that range(f) C dom(B)
is said to be normed if f is decreasing with respect to <p. If f is recursive, it is also called
recursive and any Godel number of f is said to be an index of it.

In case (By(4)) enumerates a strong base of the neighbourhood filter of some point, we say
it converges to that point.

Lemma 1.11 Let T be effective and x be computable. Then there are functions ¢ € R
and p € R®) such that for all i € dom(x) and all n € w with x; € By, q(i) and p(i,n) are
indices of normed recursive enumerations of basic open sets which converge to x;. Moreover,
ep(in)(0) <B n.

In what follows, we want not only to be able to generate normed recursive enumerations of
basic open sets that converge to a given point, but conversely, we need also to be able to pass
effectively from such enumerations to the point they converge to.

Definition 1.12 Let 2 be a numbering of T". We say that:

1. z allows effective limit passing if there is a function pt € P(1) such that, if m is an index of
a normed recursive enumeration of basic open sets which converges to some point y € T,
then pt(m)] € dom(x) and rpi(m) = y.

2. x 18 acceptable if it allows effective limit passing and is computable.

If z is computable, each neighbourhood filter A'(y) has a completely enumerable strong
base of basic open sets, namely the set of all B, with y € B,. As it is shown in [17], T has a
precomplete acceptable numbering if, conversely, A'(y) has an enumerable strong base of basic
open sets, for all y € T, and <p is r.e. In case that, in addition, the indexing B is total, T
is effective with respect to this numbering. Moreover, indexings which are computable and/or
allow effective limit passing are related to each other in the subsequent way.

Lemma 1.13 Let T be effective. Then for any two numberings ' and z"" of T' the following
hold:

1. If ' is computable and x" allows effective limit passing, then ' < x".
2. If ' is computable and " < ', then z"" is also computable.

3. If ' allows effective limit passing and ' < z”, then " allows effective limit passing too.

Corollary 1.14 Let T be effective and x be acceptable. Then for any numbering ' of T the
following hold:

1. z' is computable if and only if ' < x.



2. &' allows effective limit passing if and only if x < .
3. &' is acceptable if and only if ¥’ = .

As 1t 1s easily verified, the acceptable indexings of a constructive predomain are just the
admissible ones. In the case of a constructive metric space M acceptable numberings z allow
the computation of limits, which means that there is a function li € P such that, if m is
an index of a converging normed recursive sequence (y;)qecw 0f elements of the dense base of
M, then li(m)] € dom(x) and @;(;n) = limg Yo [17]. This shows that acceptable numberings of
effective Ty-spaces are well behaved.

2 On totalization

As we have seen in the last section, there are indexed sets like the constructive domains, where
the numbering is well behaved and can be chosen as total, whereas in other cases like the
computable reals the indexing is also well behaved, but only a partial map. The question we
are interested 1n in this section is the following:

Given an indexed set (X, x) with a well behaved partial indexing z, is there total
well behaved numbering & of X, which is equivalent to z, i. e., can z be totalized?

The subsequent lemma is a consequence of a result in [15].

Lemma 2.1 Let T be effective without finite points. If the numbering x is acceptable, it cannot
be total.

We have already mentioned that in the case of a Hausdorff space finiteness matches with
isolatedness. Thus, it follows that the canonical indexing v of the computable reals cannot be
totalized, which means that the answer to the above question is negative, in general. It 1s the
aim of this section to present a sufficient and necessary condition for totalizability. But note
that we do not deal with the problem in the full generality of indexed sets. We restrict ourselves
to effective Ty-spaces T = (T, ) with acceptable numberings x.

Let Pt be the collection of all neighbourhood filters of points of 7. As has already been
mentioned, in the case that 7 is effective and T is computably indexed each of these filters
has an enumerable strong base of basic open sets. If H is such a filter and { B, | n € W, } is a
strong base of H set F; = H, otherwise let F; be undefined. Then F is a numbering of Pt.

Proposition 2.2 Let T be effective, x be acceptable, and <pg be r.e. Then T has a total
numbering ¥ with x < x, if and only if Pt s enumerable.

Proof: Let z be a total indexing of T" with £ < z. By Corollary 1.14 a numbering of T'
is reducible to x, just if it is computable. It follows that there is a function v € R() with
Wy@y = {n| % € By }, for i €w. Since the collection of all B, with #; € B, is a strong base
of the neighbourhood filter of z;, we have that F,; is this filter, for all i € w. This shows that
Pt is enumerable.

For the converse implication let ¢ € R() such that range(F ot) = Pt. Moreover, for i € w,
define z; to be the uniquely determined point of 7" with neighbourhood filter F;(;y. Then z is

a total numbering of 7. It remains to show that z is computable. We have for ¢, n € w
T € By & Bn € Friy & (Ja € Wyy))a <B n,
which shows that {(¢,n) | Z; € B, } is r.e.

Note that the assumption that Pt is enumerable means that Pt has a total numbering
which factorizes through F. In [17] it is shown that acceptable numberings of 7" are maximal
among the computable numberings of 7" with respect to reducibility. As we will show now, an
acceptable indexing of T' can be totalized, exactly if Pt has a total numbering which is maximal
among the numberings of Pt that factorize through F.

Theorem 2.3 Let T be effective, x be acceptable, and <p be r.e. Then T has a total numbering
& which is equivalent to x, if and only if there exists a function v € R withrange(v) C dom(F)
such that



1. range(F ov) = Pt and

2. for all functions g € P with range(g) C dom(F) and range(F o g) = Pt one has
Fog<Fouw.

Proof: Let & be a total indexing of 7" which is equivalent to . Then & is acceptable. Let
v € R be as in the proof of Proposition 2.2. Moreover, let s € R(1) such that Ps(a) 1s a total

enumeration of W,, if W, is not empty, and define f € R(!) by

©1()(0) = sy (0),
first n enumerated with n € W;,

eriyla+1)=<{ n<p @ry(a), and n <p @s)(a+1) if such an n exists,
undefined otherwise.

Then ;) is defined on an initial segment of w. In addition, ;¢ (a) <B @s@)(a L 1), for all
a € dom(py(;y) with a > 0. If i € dom(F), the collection of all B, with n € W; is a strong
base of some neighbourhood filter H. Thus, ¢ ;) is a total function in this case and as @)
enumerates W;, we obtain that the set of all B,, with n € range(p;(;)) is also a strong base of
. Now, let pt € P(1) witness that # allows effective limit passing and let the function g € R(1)
such that range(g) C dom(F) and range(F og) = Pt. Then we have for i € dom(g) that f(g(¢))
is an index of a normed recursive enumeration of a base of basic open sets of ;). Moreover,
it converges to i‘p}(f(g(i))). Hence Fy;y = N(g}p}(f(g(i)))) = ]-"U(p}(f(g(i)))), for all i € dom(g),
which shows that Fog < Fow.

For the converse implication let & be the total indexing of T" according to Proposition 2.2.
We only have to show that # < z. Let L C w witness that # is computable and let w € R with
W@y =A{n|(i,n) € L}. Then { B, | n € Wy } is a strong base of N (x;), for i € dom(z).
It follows that range(F o w) = Pt. Let k € PN witness that F ow < F owv. Then Tr(i)s
for i € dom(z), is the uniquely determined point of 7" with neighbourhood filter F 4 (;y). As
Fuokeiy) = Fu(iy = N(2;), we have that &) = 2;.

It follows from this proof that under the assumptions of the theorem condition (2) holds just
if there is some function h € P(Y) so that for all i € dom(z), h(i)| and N (z;) = Fu(h(iy), b € if
one can effectively pass from a point to (an enumeration of a strong base of) its neighbourhood
filter, a requirement which reverses the condition of allowing effective limit passing.

The conditions (1) and (2) of the above theorem are obviously satisfied if Pt is completely
enumerable. But as we shall see next this requirement is very strong and forces the space T' to
have a very special structure.

Theorem 2.4 Let T be effective, x© be acceptable, and Pt be completely enumerable. Then T
1s an algebraic constructive predomain, in which all elements are comparable.

Proof: By Theorem 2.3 we can assume that z is a total indexing. Let s, t € R()) such that
©s(a) 1s a total enumeration of W, if this set is not empty, and Wy, is the 1. e. set enumerated
by ¢o. Moreover, let W, be the index set of Pt.

Claim 1 (T, <;) is constructively directed-complete.

Let X be a directed enumerable subset of 7" and f € R(") such that range(z o f) = X. Fur-
thermore, let v € R with Wyay ={nlzi € By}, foricw, and We = J{ Wy upy i €W}
Set g(a) = pm : @c(t(a))dm. By the recursion theorem there is some index b such that for all

necw
s(v n if o (t(b s
on(n) = { swiso))(n) pe(t())1
Ps(ey(n L g(b)) otherwise.

Assume that g(b)f. Then ¢ is an enumeration of all indices n with x;4) € B,. Hence
t(b) € We, which contradicts our assumption. Thus g(b)|, i.e., t(b) € We.

Since Wau(r o) is included in W, it follows that ¢, enumerates W, and hence that { B, |
n € W, } is a strong filter base of the neighbourhood filter of some point z € T. For i € w,
Wy (s(i)) is the index set of a strong filter base of ./\/(a:f(i)). Therefore, z is an upper bound of
X. Let z, be another upper bound of X. Then W, (¢;)) is a subset of Wy (4, for all i € w,
which implies that W, is contained in Woa) and thus that z <, x,. This shows that z is the
least upper bound of X.



Claim 2 There are functions h, k& € R such that Th(m) is finite and Brony = {y € T |
Thim) <r ¥}, for all m € w. Moreover, for every n € w, B, is the union of all By((; )y with
l‘i E Bna

Let w € R™ so that W (n) is the set of all indices ¢ with x; € By, for all n € w. In addition, let
the function pt € P(1) witness that z allows effective limit passing and let the function ¢ € R(!)
be as in Lemma 1.11. Set g(b,n) = pm : oc(t(b))dm Aw(n)(Pt(0))m. By the recursion theorem
there is then a function 7 € R(?) such that

oy = Pam(m) if e (¢(r(d,n)))Tm or uw(n)(Pt(r(i, 1)) Tm,
Pr(im(m) = { ®qi)(g(r(i,n),n) L1) otherwise.

Now, let z; € B, and assume that g(r(é,n),n)t. Then r(i,n) is an index of a normed enu-
meration of basic open sets that converges to x;. Hence, t(r(i,n)) is an index of N (z;), . e.,
t(r(i,n)) € We. Moreover, we have that pt(r(i,n))l and @perin)) = @i It follows that
Tpt(r(i,n)) € Bn, which implies that g(r(,n),n)| in contradiction to our assumption. Therefore
g(r(i,n),n)l, for all i, n € w with z; € B,. Set g(i,n) = g(r(i,n),n) L 1.

Since t(r(i,n)) € We, the collection of all B(p,(; n)(a)) (a € w), i. e., the set {B(pq(0)),
oy Blpg(iy(9(i,n)))}, is a strong base of the neighbourhood filter of some finite point » € 7".
Then z <; x;, as #; € B(pgu)(a)), for all @ € w. Assume next that there is some y €
B(gqiy(g(t,n))) with z £; y. Then there exists a basic open set B,, such that z € B,,, but
Y & Bm. Because N(z) is generated by the basic open set B(wq)(g(i,n))), we have that this
set is included in B,,. It follows that y € B,,. This contradicts our choice of B,,. So, we obtain
that

By, yatiny =1y €T |2 <- y}.

As B is a strong basis of the topology, there is some index a such that a <p 4@ (9(7, n))
and z € B,. Moreover, since{B(pq(i)(g(7,1)))} is a strong filter base of N'(z), we obtain that
©q(i)(9(i,m)) <B a. Thus @u;)(9(2,1n)) <B wq@i)(9(4,n)), which implies that r(i,n) is an index
of a normed enumeration of basic open sets converging to z. Therefore zpg(r(;,n)) = 2.

Because g(r(i,n),n)}, we know that z € B,. It follows that B(yq@)(g(¢,n))) is a subset
of B,. As we have already seen, #; € B(pg)(g(i,n))). Thus, B, is the union of all sets
B(pq(i)(9(2,n))) with i € w such that x; € B,,.

By the computability of the numbering z there is some function d € R which enumerates
all pairs (i, n) with z; € B,,. Define

h(m) = pt(r(r1(d(m)), m2(d(m)))) and  k(m) = pq)(g(mi(d(m)), m2(d(m)))),
then it follows from above that both functions have the desired properties.
Claim 3 For all m € w, () is compact.

Let m € w and X be a directed subset of 7" with least upper bound z such that zp(,) <; z.
Then z € Bj(m). Since the neighbourhood filter A'(z) of z is the union of all neighbourhood
filters A (y), for y € X, it follows that there is some y € X so that y € Br(my, v €, Tpim) <r Y-

Claim 4 Fori € w, x; = | [{ Zn(in)) INE WAL € By }.

As we have already seen, x; is an upper bound of all z(; »)) with n € w such that x; € B,,. Let
y € T be a further upper bound of these elements and assume that z; € B,, for some a € w.
Then y € By((ia)) and hence y € By, as By((i q)) is contained in B,. Thus z; <; y, which
shows that x; is the least upper bound of all z(; »)), for n € w such that z; € B.

It follows that the set of all z4(,) (m € w) is an algebraic basis of (T, <;). Moreover, the
collection of all sets {y € T'| #p(m) <- y } is a basis of topology 7. Since Th(m) <r Ta(n) if
and only if xy(,) € Bg(m), we have that the restriction of the specialization order to the basis
{Zh(a) | @ € w } is completely enumerable. Similarly, we obtain for each element x; that the set
of all @,y with m € w such that () <; #; is completely enumerable.

Claim 5 Any two elements of T are comparable.



Let z;, z; € T and assume that both are incomparable. Moreover, let K be the halting set and
define g(n) = pa :n € K,. Then there is a function f € R such that

Pty (a) if n ¢ K, or ais even,
prmla) = ' .
®q(5)(a L g(n)) otherwise.

If n ¢ K it follows that the collection of all B,, with m € range(y;(,)) is a strong base of
N(z;). Hence t(f(n)) € W..

If n € K the set of all B(¢f(n)(a)) such that a < g(n) or a is even is a strong base of N (x;)
and the set of all B(¢n)(a)) such that a > g(n) and a is odd is a strong base of A'(z;). Since
z; and x; are incomparable, we obtain that the collection of all B, with m € range(¢;(,)) is
not a filter base. Thus ¢(f(n)) ¢ We.

This shows that K < W., which implies that W, is not r.e., a contradiction. It follows that
z; and x; are comparable.

The question arises whether under the above assumptions 7 must also have a smallest
element. As follows from the next example, this does not hold.

Example 2.5 Let (Q,C, 7, 3, z) be an algebraic constructive predomain which is an infinitely
descending chain. Then the basic open sets B; with B, = {y € T'| 5; C y } are comparable. It
follows that if W, is nonempty then the set of all B; with ¢ € W} is a strong filter base of the
neighbourhood filter of the least upper bound of all 5; with ¢ € W;. This shows that that j is
the index of a strong base of basic open sets of the neighbourhood filter of some point in @ if
and only if W; is not empty. As a consequence we obtain that Pt is completely enumerable in
this case.

We close this section by a necessary and sufficient condition for Pt to be completely enu-
merable which should be compared with Theorem 2.3.

Proposition 2.6 Pt is completely enumerable if and only if there are functions v, g € R
such that

1. range(F ov) = Pt and
2. for all indices i such that range(y;) C dom(F) and range(F o ;) = Pt, p; = v o py).

Proof: Assume that Pt is completely enumerable and let A C w be its index set. Moreover,
let v € R™) be an enumeration of A. Then there is some function g € R(Y) such that ey (J) =
pa :v(a) = ¢i(§). Obviously, the functions v and g have the desired properties.

For the proof of the converse implication let i € range(v) and j € w such that F; = F;. We
want to show that also j € range(v). Let to this end b, ¢ € w with v(c) = ¢ and

%(a):{ i(a) ifa=c,

otherwise.

Then we have that F(py(c)) = F; = F; and F(pp(a)) = Fy(a), for a # c. Hence range(Fogpy) =
Pt. It follows that j = ¢y (c) = v(@gp)(c)), which shows that j € range(v).

3 Domain-like spaces and total numberings

In the last section we derived a necessary and sufficient effectivity requirement for the existence
of a total acceptable numbering of a given effective Ty-space. Now, in this section, we consider
a more restricted class of spaces, which includes constructive predomains, A- and f-spaces, and
present a structural necessary and sufficient condition for the existence of a total acceptable
indexing of the space.

An essential property of constructive predomains, A- and f-spaces, 1s that their canonical
topology has a basis with every basic open set B, being an upper set generated by a point
which is not necessarily included in B, but in hl(B,), where

hi(Bp) = {Bm | n <5 m}.
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Definition 3.1 Let 7 = (T, 1) be a countable Ty-space with a countable strong basis B, and
let  and B be numberings of 7" and B, respectively. We say that T 1s effectively pointed, if
there is a function pd € P() such that for all n € dom(B), pd(n){ € dom(z), Tpd(n) € hl(By)
and xpq(n) <7 2, for all z € By

Obviously,
Bn C{z €T | ®pyny <7 2} Chl(B,).
The next result, which is derived in [15], shows that effectively pointed spaces have typical

properties of domains.

Lemma 3.2 Let T be effective and effectively pointed and let x© be computable. Moreover, let
y €T and n € w. Then the following hold:

1. T is recursively separable with dense base { x4 | a € range(pd) }.
2. The set { pa(a) | y € Ba } is directed and y is its least upper bound.

3. If m 1s an index of a converging normed recursive enumeration of basic open sets, then

the enumeration converges to the least upper bound of <xpd(¢m(a)))aew‘

4. Ify is finite, then y € { x4 | a € range(pd) }.
5. If xpaeny 15 finite, then hl(B,) = {2z € T'| xpan) <7 2 }.
As we will see first, for effectively pointed spaces the existence of a total acceptable num-

bering has very strong consequences: the space is constructively directed-complete and the
topology 1s the Scott topology.

Proposition 3.3 Let T be effective and effectively pointed. Moreover, let x be total and ac-
ceptable. Then (T, <;) is constructively directed-complete and 7 is the Scott topology.

Proof: Let X be an enumerable directed subset of 7. Then
C={new|XNB,#0}

is r.e. Since X is not empty, the same is true for C. Let f € R(Y) be an enumeration of C.
Moreover, let v € R such that Wymy = {1 €w @ € By} and let A C w be r.e. so that
X ={=z;|i€ A}. Finally, let sb € P(®) witness that 7 is effective. Define

9(0) = £(0),
g(a+ 1) = sb(first 7 enumerated with i € AN Wy (g(a)) N Wy(s(as1y), 9(a), fa+ 1)).

Claim 1 For all a € w, g(a)] € C.

By definition ¢(0) € C. Assume that g(a) € C. Then X intersects both By and Bfaq1)-
Let this be witnessed by y, ¥ € X. Since X is directed, there is some y”’ € X such that
Y, ¥ <; y". The point y" witnesses that X N By, N Bf(aq1) is not empty. It follows that
g(a+1)]. Let 2 be the first ¢ enumerated with i € ANWy(g(a)) "Wy (s(at1))- Then x; € Byiayn)
and z; € X N Bya) N Bf(ag1). Hence X intersects By(ayq1y, i €., gla+1) € C.

It follows that ¢ € R(M). Now, let p € R be as in Lemma 1.11 and let pt, pd € P(),
respectively, witness that @ allows effective limit passing and T 1s effectively pointed. Moreover,

let h € P and r, s € R(?) be defined by
h(a, j) = pe : pu(gay) (i)de,

r(0,7) =0,

r(a, ) if h(r(a, j), j)Ta or there is some n < a such that ¢, (,)(j)da,
rla+1,5) = and for all m < r(a,j)+1, gov(n)(pd(g(m)))Ta,

r(a,j)+1 otherwise,
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and

(a,]) = max{c<al|r(e,j)#r(c+1,5)} ifforsomec<a,r(c+1,5) #r(e,j),
SGI= 0 otherwise.

By the recursion theorem there is some index ¢ such that

©c(0) = @p(pd(g(1)),9(0)) (0)

Po(pd(g(r(a,pt(e)+1)),pc(s(apt(e))) (@ L s(a,pt(c))) if r(a+1,pt(c)) =
pela+1) = r(a, pt(c)),
Pp(pd(g(r(a,pt(c))+2)),e(a)) (0) otherwise.

Then ¢ is an index of a normed recursive enumeration of basic open sets which starts to converge
to pq(g(1)), until zpe() has been found in By, say in a steps, and for all n < a such that
Tpi(ey 1s found in B, there is some e < 1 such that also zpq(4(e)) is found in By, then goes on
converging to pq(g(2)), until #p¢(.) has been found in By, say in o steps, and for all n < o’
such that zpy () is found in B, there is some e’ < 2 such that also Tpd(g(ery) 1s found in By, and
SO on.

Claim 2 The function k with k(a) = r(a, pt(c)) is of unrestricted growth.

Obviously, the function k is monotone. Assume that there is some a € w such that k(a) =
k(a), for all @ > a. Then ¢ is an index of a normed recursive enumeration of basic open
sets converging to vpda(g(k(a)+1))- Thus pt(c)l and Zpie) = Tpa(g(r(a)41))- Since g(k(a) +
1) <B g(k(a)), we have that rpa(gk(ay+1)) € Bgk(a)). It follows that h(k(a),pt(c))l. Let
a = max{a, uj : h(k(a),pt(c))d;}. Then h(k(a),pt(c))a. By our assumption on & and a there
is therefore some n < @ with ¢, (,,)(pt(c))la such that ¢, ) (pd(g(m)))1, for all m < k(a)+1. It
follows that z .y € By and hence @,4(g(k(a)+1)) € Bn, which means that o, () (pd(g(k(a)+1)){,
in contradiction to what we have seen before.

It follows that for all @ € w, h(a,pt(c))|, which implies that pt(c){. Let z = zpi(c)-
Claim 3 The point z is an upper bound of X.

By the construction of the function . we have that » € By, for all all @ € w. Thus, 2 is an
upper bound of all z,q(4(a)). Now, let y € X. By Lemma 3.2, y is the least upper bound of
all points x,q(n) such that y € B,. If y € By, it follows that n € ¢'. As a consequence of the
construction of the function g, there exists a number a,, for each n € C| such that g(a,) <5 n.
Hence z,q(n) <r Zpd(g(an)) <r %, which implies that y <; z.

Claim 4 Let z’ be another upper bound of X. Then z <; 2’.

As a further consequence of the unrestricted growth of the function £ we have that for every
n € w with z € B, there is some m € w such that z,q(4(m)) € Bn. By Claim 1 we know that X
intersects By(q), for all a € w. It follows that X intersects B, for all n € w with » € B,. Now,
let n € w so that z € B,,. Then there is some y € X N B,,. Hence y <, z’. It follows that also
2 € B,,, which shows that z <, 2'.

We obtain that z is the least upper bound of X. Moreover, we have seen that X intersects
each basic open set B, with z € B,,, which means that 7 is the Scott topology.

The next result shows that the above condition i1s not only necessary but also sufficient for
the existence of a total acceptable numbering of space T'.

Proposition 3.4 Let T be effective, effectively pointed, and constructively directed-complete.
Moreover, let x be computable. Then T has a total numbering & which allows effective limit
passing. If, in addition, T is the Scott topology the indexing & 1s acceptable.

Proof: Let I C w witness that # is computable and let v € R such that Wymy =11 |(i,n) €

L}. Moreover, let s € R be an enumeration of all indices i such that W; is not empty and
let » € R™ such that for those i € w for which Wj is not empty, ¢r(i) enumerates all indices n
for which W, () intersects pd(W;). Here, the function pd € PW) witnesses that 7 is effectively

12



pointed. Set f = ro s and let the function sb € P®) witness that 7T is effective. Furthermore,
define

9(1,0) = @5y (0),
g(i, a4 1) = sb(first n enumerated with n € pd(Wy;y) N Wy gai,a)) N Wv(wf(l)(a+1))),

Claim 1 If { 2pa(n) | 7 € Wiy }is directed, then g(i,a 4 1)] € range(p; ().

By definition g(i,0) € range(y;(;)). Assume that g(i,a)] € range(w;(;)). Then we have for
X = {Zpam) | 7 € W) } that X intersects both By 4y and B(psiy(a + 1)). Since X is
directed, it follows as in the above proof that the common intersection of these three sets
is also not empty and hence that g(¢,a + 1)}. Let 7 be the first n enumerated with n €
PAd(Ws(iy) " Waig(i,ayy N Wit (at1))- Then 2z € X 0 By(iay), t €., g(i,a+1) € range(p;()).

Let h € RM with en@y(a) = g(i,a). As follows from the construction, for every i €
W, (pn@i(a)) is a nonempty finite or infinite sequence that is decreasing with respect to the
strong inclusion relation <p. Thus, the set { z, | a € range(pd opy(s)) } is directed. Since 7T is
constructively directed-complete, it has a least upper in 7. Set

2 =|_|{za | a € range(pd ogn(i)) }.

Then z is total.
Claim 2 If the set { xpq(a) | @ € Wiy } is directed, the point ; is its least upper bound.

Let X = {Zpa(n) | n € W,q) } and let 2 be its least upper bound. As we have seen in the proof
of Claim 1, there is some y € X N By(; 4), for every a € w. It follows that x(pn)(a)) <; y <5 2,
for each a. Hence z; <; z. For the verification of the converse inequality let n € W) and
Tpd(n) € Bm. By the construction of the function g there is then some number a,, such that
g(i,am) <p m. We obtain that xp4im) <+ Tpa(g(i,an)) <r @i and thus, by Lemma 3.2, that
Tpd(n) <r i, which implies that also z <; z;.

Since every point y € T'is the least upper bound of the enumerable directed set of all x,q(n)
with y € B,,, it follows that the map @ 1s onto. Thus, it is a numbering of 7.

Claim 3 The indexing & allows effective limit passing.

Let m be an index of a normed recursive enumeration of basic open sets which converges
to a point y € T. Then y is the least upper bound of the set of all z(pd(ym(a))) with
a € w, by Lemma 3.2. As this set is directed, it follows with Claim 2 that y = i‘f(m). Here

t(n) = pi : t(n) = s(i), where t € R(Y such that Wi(n) = range(pn ), for n € w.
Now, in addition, assume that 7 is the Scott topology.
Claim 4 The indexing & is computable.

Since z; is the least upper bound of a directed set and 7 is the Scott topology, we have

nEeB, & I_I {za | a € range(pdoppiy) } € By
& (Ja)a € range(pd 0wy i) A Ty € By

Thus, the set L = {(i,n) | (3a)a € range(pd opp(;)) A{a,n) € L} witnesses that & is com-
putable.

Summing up what we have proved so far, we obtain the subsequent result.

Theorem 3.5 Let T be effective and effectively pointed. Moreover, let © be computable. Then
T has a total acceptable numbering, if and only if T is constructively directed-complete and T
15 the Scott topology.

The next result extends the necessary and sufficient condition which ensures the existence
of a total acceptable numbering of the space so that the indexing can be constructed in such a
way that it is even complete.
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Theorem 3.6 Let T be effective and effectively pointed. Moreover, let x be computable. Then
T has a total acceptable complete numbering with special element L € T, if and only if T 1s
constructwely directed-complete, T s the Scott topology, and T' has a smallest element L.

Proof: Assume that 7 is constructively directed-complete, 7 is the Scott topology, and 7" has
a smallest element 1. Then T i1s obviously basic open. Let n be an index of T with respect to
the indexing B. Moreover, let s € R(Y) such that Wiy = Wi U{n}. Let the function r € R
be as in the proof of Proposition 3.4 and set f = r o s. Define the function ¢ € P with this
function f as in the proof of Proposition 3.4. All other functions and sets which are not defined
here will be as in that proof. As there it follows that the set {z, | a € range(pd opy(;) } is
directed.
Set

&= | |{za | a € range(pdopy) ).

Then we obtain that # is a total acceptable numbering of T'. Note that in the proof that z
allows effective limit passing one has now to use ¢ as witnessing function.
It remains to show that # is complete with special element L. Let & € P and define
v € R such that Wy = 4n | k()4 Ak(7),n) € L}. By Lemma 3.2 we obtain for i € dom(k)
that the set of all points zpq(a) with a € W,y is directed with least upper bound .
Therefore, it follows with Proposition 3.4, Claim 2 that 2,y = @, for ¢ € dom(k). If
i ¢ dom(k), the set W, (;)) contains only the index n. Hence 2,(;) = Zpan) = L
Now, conversely, let 7" have a total acceptable complete numbering with special element L.
It remains to show that L is the smallest element of 7. Let n € w with 1L € B,, and z, € T'.
Moreover, assume that 2, € B,. Since & is computable, B,, is completely enumerable. Thus,
the function d which is defined by d(i) = «a, if #; € By, and is undefined, otherwise, is partial
recursive. By the completeness of & there is a total recursive function d so that
. Zq if 2y € By,
Tag) = {

1 otherwise.

Moreover, the fixed point theorem holds with respect to & [4]. Hence, there is some index e such
that z, = i‘g(e). If we assume that z. € B,,, we obtain that . = &, and thus that . ¢ B,,. On
the other hand, if we assume that . ¢ B,,, we have that . = L, which implies that &, € B,,.
It follows that #, € B,,. This shows that L <, z,.

4 Embedding into totally indexed spaces

In the Section 2 we have seen that there are examples of effective Ty-spaces with an acceptable
partial numbering such that the numbering cannot be totalized. As followed from a result in
[15], this is always the case if the space contains no finite points. The question which we want
to investigate in this section is the following:

Given an effective Tp-space 7 with a partial acceptable numbering z. Can 7T be
embedded into another effective space 7 with a fotal acceptable indexing z such
that & extends «7

Since we are dealing with effective topological spaces, the embedding should of course be
effective and preserve the topological structure.

Definition 4.1 Let 7 = (7, 7) and 7' = (7", 1), respectively, be countable topological spaces
with countable topological bases B and B, and let z, ', B, and B’, respectively, be numberings
of T, T', B, and B’. Then a map F:T — T’ is is said to be

1. effective if there is a function f € P(M) such that f(i)| € dom(z’) and F(x;) = x}(i), for
all ¢ € dom(z).

2. effectively continuous if there is a function h € R™M) such that for all n € dom(B’),
Wh(n) € dom(B) and F=YB))Y=U{Bn|me Whny }-
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In case F' is an embedding, ¢. e., one-to-one, it is called effectively homeomorphic, if both F
and its partial inverse F~1: F(T) — T are effectively continuous.

In the last section it was shown that effectively pointed effective spaces do have a total
acceptable indexing, if the space is constructively directed-complete and the topology is the
Scott topology. In the applications such spaces contain many finite points. An obvious idea is
therefore to construct 7' by adding sufficiently many finite elements to 7T'.

Ersov [4] showed for total numberings that every indexed set (X, z) can be effectively em-
bedded into an indexed set (X, z) with a complete indexing #. The set X is obtained from X
by adding a new element, say L, to X which is the special element of the numbering z. This
construction can also be applied to the case of partial indexings. The result 1s again a superset
with a total complete numbering. But note that the embedding is only effective. In general 1t
is not effectively homeomorphic. Moreover, the indexing & need not be computable.

To see this assume that 7 is an effective space with 7'=7'U {L} and the embedding of T
into 7 is effectively homeomorphic. Moreover, assume that & is computable and T is not basic
open. Let B, be a basic open set in topology 7. Then it is completely enumerable. As we have
seen in the proof of Theorem 3.6, B, is already the whole space T if it contains the special
element L. Thus, if B, is not 7, it is contained in 7', which means that is also open in the
induced topology on T'. Now, let F' be the embedding of 7" into T and let G: F(T) = T be its
partial inverse. Moreover, let ¢ € R() witness the effective continuity of G. Then we have that

F(T) = GMT) = |J{G7'(Bu) In€w} = | J{BanNF(T) | (3n € w)ym € Wy }
UJ{Bn | On ew)m e Wy }.

Note here that G~1(B,) and hence B, are strictly included in F(T), form € Wy,y and n € w.
As the numbering # 1s both total and computable and the embedding F' is effective, it follows
that dom(#) is r.e., which is not the case, in general. Consider for example the metric space
of all total recursive functions with the Baire metric and let it be indexed by the restriction of
some Godel numbering. Then 1t is an effective space with an acceptable numbering. But, as is
well known, the domain of the indexing is a I1-complete set.

In what follows, by starting from a given effective space with an r.e. strong inclusion rela-
tion and a partial acceptable indexing we construct a new space which has a total acceptable
numbering and in which the given space can be embedded in an effective and effectively home-
omorphic way. The points of the new space will be r.e. filters of the reflexive hull of the given
strong inclusion relation extended by a greatest element.

Theorem 4.2 Let T be effective, x be acceptable, and <pg be r.e. Then there is an algebraic
constructive domain T with a total acceptable complete numbering & and an effectively home-
omorphic embedding F:T — T such that both F and its partial inverse are effective and F(T)
1s an enumerable dense subset of T.

Proof: For m, n € w define
m<n < n=0Vm=nV[m#Z0An#0AmLl<gnll].

Then the relation < is obviously r. e., reflexive, and transitive with 0 as greatest element. Define
T to be the set of all 1. e. filters of =< i.e., the collection of all nonempty r.e. subsets of w which
are upwards closed with respect to % and which with any two elements m and n contain an
element a such that @ X m, n, and order it by set inclusion. Then (T, C) is a partial order with
the filter {0} as smallest element.

Our first aim is to construct a total numbering & of T. Let to this end s € R be an
enumeration of all indices 7 such that W; is not empty and let » € R() such that for those
i € w for which W; is not empty, ¢, ;) enumerates W;. Set f = ros. Moreover, let A be the
set of all coded pairs (m,n) with m X n and E be the set of all (m,n,n’) such that (m,n),
(m,n’y € A. Then there are functions h, k € R® such that ri)(0) = 05)(0), Yr)(0) =1,
and the following conditions hold:

LI (eny(a), 950 (priy(a))) € Aagr, then opey(a+1) = ppp)(a) and prpy(a + 1) =
erey(a) + 1.
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2. It (1 does mot hold and {p;u)(priy(a)), pap)(a)) € Aag1, then wupy(a + 1) =
(i) (pr(iy(a)) and pri)(a+ 1) = @rgy(a) + 1.

3. If (1) and (2 ) do not hold and there is some m < a + 1 such that m € Wy 441 and
(m, eniy (@), o1y (Pr(iy(a))) € Eayr, then pppy(a+1) = pm <a+1:m € Wyapr A
(m, engiy(a), 016y (Pr@) (@) € Eagr and gyiy(a+ 1) = @piiy(a) + 1.

4. If (1)-(3) do not hold then piy(a + 1) = n)(a) and pr)(a+1) = pr(a).
Obviously @) (a) € Wy, for all @ € w.
Claim 1 If Wy(;y is a filter, then the function ¢y ;) is of unrestricted growth.

Assume that there is some a € w such that (@) = ¢r)(a), for all @ > a. Then @ (;)(a) and
@1y (¥r(i)(a)) are not comparable with respect to X because of conditions (1) and (2). Since
Wi () is afilter, there is some m € W,(;) such that m = @py(a), ¢ra)(wr@)(a)). It follows that
condition (3) holds with respect to some argument @ > a. This implies that @) (a) > ¢r)(a),
which contradicts our assumption.

Now, define z by
¥ = {mew]|@a)pns(a) X m}.

Then z; € T, for every 7 € w.
Claim 2 The map & is onto.
Let y € 7. Since y is nonempty and r.e., there is some index 7 such that y = Wj(;. Hence
z; C y, as range(pn(;)) € Wi(). For the converse inclusion let ¢ € y. Then there exists some
a € w with ¢ = ps;y(a). As we have just seen, the function ;) ranges over all nonzero

natural numbers. Moreover, ¢p,(;1(0) = ¢;(;y(0). Thus, it follows from the above construction
that there is some @ > a such that o) (a) X ¢, which means that ¢ € z;.

This shows that @ 1s a total numbering of T. Asitis readily verified, (T, C) is constructively
directed-complete with respect to this numbering. Note that the least upper bound of a directed
enumerable subset of 7' is the union of all filters in this set.

As next step we construct a basis for 7. For n € w set

Zn = {mew|nxm}.

Then z, 1s an r.e. filter.

Claim 3 For all n € w, z, 18 compact.

Let X be an directed subset of T such that 2, C UX Then n € UX, which means that there
is some y in X with n € y. Since y is a filter, it follows that z, C y.

Claim 4 For all § € T the set { 2, | 2, C ¢} is directed and g is its least upper bound.

Let 2,,, 2, C 4. Then m, n € §. Hence there is some a € 4 such that a < m, n. It follows that
Zm, Zn € Zg. Thus, the set of all z, with z, C gy is directed. In order to see that y is its least
upper bound, note for @ € | J{ 2, | 2, C ¢ } that a € z,,, for some m € w such that z,, C g, and
hence that a € g. If, conversely, a € ¢ then z, C g, which shows that a € |J{ 2, | 2, C ¢ }.

As gisr.e., forg)ET and z, C y exactly if n € gy, the set of all n € w with 2z, C y is
r.e. Moreover, since Z, C z, if and only if n X m, we also have that {(m, n> | Zm C 2, } is
r.e. Finally, Wlth t € R such that Wiwmy) = {n} it is Zy(n) = Zn. Thus, T"is an algebraic
constructive domain.

The Scott topology on T has as canonical basis the collection of all sets

Bn = {yeTl|zm Cy}
As R
zE€EB, &, CHeoncer & (Ela)goh(i)(a) = n,
we obtain that the indexing & is computable.

Claim 5 The numbering # allows effective limit passing.
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Let pt € P() such that Ws(p}(a)) ={ne€w|(c)ps(c) X n}. Moreover, let m be an index of a

converging normed recursive enumeration of basic open sets. We have to show that ﬁt(m)i n
this case and that the enumeration converges to i‘p}(m). As
B,CB, &: Ci,eae,

it follows that the set {n € w | (3¢)pm(c) X n} is an r.e. filter. Hence, it is not empty, which
means that pt(m)J). Moreover, i‘p}(m) = Ws(p}(m)). Since i‘p}(m) € B, if and only if n € i‘p}(m),

i. €., if and only if ¢, (a) X n, for some a € w, we have that i‘p}(m) € B(gpm(c)), for all ¢ € w.

Furthermore | for all n € w, if & - € B, then there is some a € w such that B(gpm(a)) C B,.

pt(m)
Thus, the collection of all B(gpm(c ), for ¢ € w, is a strong base of the neighbourhood filter of
Tpi(m)’

It follows that the numbering # i1s acceptable, which by Theorem 3.6 implies that it is also
complete.

Since for any y € T the set of all B, such that y € B, 1s a strong base of the neighbourhood

filter of y, it follows that {n + 1 | y € B, }U{0} is a filter with respect to . We define F: T — T'
by

Fly) = {n+1|yeB,}U{0}

As every point in 7' is uniquely determined by its neighbourhood filter and/or a base of it,
the map F' 1s one-to-one. Moreover, since x is computable, we have that it is also effective. Note
that z; € B, if and only if F(z;) € Bn+1~ Hence, both F and F~! are effectively continuous.
In addition, we obtain that F(7') is dense in T.

Claim 6 F~1 ig effective.

Let w € RM such that Pw(a) 18 a total enumeration of all numbers n with n+ 1 € Wy, if there
are such numbers, and define ¢ € R() by

2g(i)(0) = Puw (i) (0),
first n enumerated with n 4+ 1 € W;,

pgiy(a+1) =< n=<p Pgy(a), and n <p pyuiy(a+ 1) if such an n exists,
undefined otherwise.

If #; € F(T) there is some point y € T such that ; = {n+ 1|y € B, } U{0}. Moreover, &; =
Wi(iy in this case. It follows that { B, | n +1 € W) } is a strong base of the neighbourhood
filter of y. Hence, g(s(¢)) is an index of a normed recursive enumeration of basic open set which
converges to y. Now, let the function pt € P(!) witness that the numbering « allows effective
limit passing. Then F~!(z;) = Tpt(g(s(i)))-

The idea to obtain a total acceptable extension of an acceptable numbering & of an effective
space T was to enlarge T by sufficiently many finite elements. By definition an element y € T'
is finite if it has a singleton strong base, say {B,}. This means that for all B,, with y € B,,
one has that n <g m. It follows that F(y) = Z,4+1. This shows that the embedding F preserves
finiteness. If one thinks of a basic open set as a finitely describable property, the finite elements
are characterized by only a finite part of the (infinite) information used to describe the total
elements of the space.

The following definitions are essentially due to Berger [1], who gave them in the context of
Scott domains.

Definition 4.3 Let (7, 7) be a Ty-space.

1. A finite subset {yo, ..., yo} of T is called separable, if there are open sets O, ..., O,
such that yop € Og, ..., ys € Oy and the intersection Oy N ---N O, is empty. We say in
this case that Oy, ..., O4 separate yo, ..., Yq.

2. A system U of disjunct pairs of open sets separates {yo, ..., Ya}, if there are Op, ..., Oy
among the first components of the pairs in i which separate yo, ..., yq4.
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3. U is separating if it separates every separable finite subset of T'.

For a subset M of T, let
EM) = {(01,0)erTx7 | MCOUO:}.

M is a total set if the system £(M) is separating and an element y of T is total if the singleton
{y} is a total set. Note that all elements of a total set are total.

Of course, one would like that the embedding F' also preserves totality. But this is not true,
in general. The next result should be compared with [1, Lemma 5].

Proposition 4.4 Let T be effective such that all basic open sets are also closed. Moreover,
let @ be acceptable, <p be r.e., T be the algebraic constructive domain constructed in Theorem
4.2, and F: T —= T be the embedding of T in T. Then F(T) is total.

Proof: Since the inverse image of B, under F~1 is Bn-l—l N F(T), we have that Bn-l—l NF(T) is
both open and closed in the induced topology on F/(T), for all n > 0. Tt follows that £(F(T))
contains all pairs (Bn,ext(Bn)), where ext(Bn) is the exterior of B,,. Note here that By is 7.
As a finite set of points is separable if and only if it can be separated by basic open sets, we
obtain that £(F(T')) is separating, which means that /(T is total.
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