
Can Partial Indexings Be Totalized? �Dieter SpreenFachbereich Mathematik, Theoretische InformatikUniversit�at{Gesamthochschule SiegenD{57068 Siegen, GermanyEmail: spreen@informatik.uni-siegen.deAbstractIn examples like the total recursive functions or the computable real numbers thecanonical indexings are only partial maps. It is even impossible in these cases to �nd anequivalent total numbering. We consider e�ectively given topological T0-spaces and studythe problem in which cases the canonical numberings of such spaces can be totalized, i. e.,have an equivalent total indexing. Moreover, we show under very natural assumptions thatsuch spaces can e�ectively and e�ectively homeomorphically be embedded into a totallyindexed algebraic constructively directed-complete partial order.IntroductionAn indexed or numbered set is a countable set with a (partial) map of the natural numbersonto the set. Numbered sets appear quite natural in constructive mathematics. The index ofan object encodes its construction. Via the indexing notions from computability theory can betransferred to abstract sets.A prominent example of a numbered set is the set of all partial recursive functions on thenatural numbers indexed by a G�odel numbering. As it is well known, this set has also otherindexings with very di�erent properties.First studies of numbered sets have been done by Mal'cev [10]. A comprehensive treatmentcan be found in Er�sov [4, 6, 7]. In this work only total numberings are considered, but there areimportant cases in which the indexings are only partial maps. The canonical indexing of thecomputable real numbers de�ned via normed Cauchy sequences [16] is an example. As has beenshown in [15], this numbering cannot be totalized, i. e., there is no equivalent total indexing ofthe computable reals.In the present paper we are interested in the question in which cases a partial indexing canbe totalized. We deal with two aspects of this problem:� When does a numbered set (X;x) have a total indexing which is equivalent to the givenpartial numbering x?� Can (X;x) be embedded into an indexed set (X̂; x̂) the indexing x̂ of which is total andextends the given indexing x?In order to treat with these questions we restrict ourselves to e�ectively given topological T0-spaces. For computer science this is not a severe limitation. Scott [13] and Smyth [14] pointedout that data types can be thought of as countably based topological T0-spaces with basic opensets for the �nitely describable properties of the data objects. Most structures considered inprogramming language semantics are equipped with a canonical topology. Prominent examplesare metric spaces, Scott domains,A- and f-spaces [2, 3, 5, 6]. As is shown in Stoltenberg-Hansenand Tucker [18] many algebraic structures e. g., all term algebras over a �nite signature, can becanonically embedded in complete ultrametric spaces as well as Scott domains.Topological spaces that satisfy certain natural e�ectivity requirements have been studiedby various authors. We consider countable T0-spaces (T; � ) with a countable, totally indexed�This research has partially been supported by ESPRIT BRA 72321



basis of the topology. Between the indices of basic open sets a relation of strong inclusionis de�ned such that the property of being a topological basis holds e�ectively with respectto this relation instead of to normal set inclusion. The points of the space are numbered insuch a way that the collection of all basic open sets containing a given point can uniformlybe enumerated. Moreover, from a (normed) enumeration of a base of basic open sets of aneighbourhood �lter one can compute the point determined by the �lter. Such indexings arecalled acceptable. As it is shown, for an acceptable numbering an equivalent total indexing ofthe space can be constructed if and only if all neighbourhood �lters can be enumerated in auniform way and among all such enumerations there is a principal one, which means that thereis a uniform enumeration of the neighbourhood �lters to which every other such enumerationcan be reduced.The condition that all neighbourhood �lters can uniformly be enumerated means that wecan e�ectively list procedures for the generation of bases for the neighbourhood �lters, at leastone for each such �lter. If we can e�ectively list all such procedures, the space is an algebraicconstructive predomain with respect to the specialization order such that all of its points arecomparable.This shows that the condition that all generation procedures for bases of neighbourhood�lters are listable is quite strong. Moreover, we see that e�ectivity requirements may havestructural consequences. For the special case of domain-like spaces we study which further im-plications the existence of a total acceptable numbering has. It turns out that any acceptableindexing of the space has an equivalent total indexing, if and only if the space is construc-tively directed-complete and the topology is the Scott topology. Here, a space is constructivelydirected-complete if every enumerable subset has a least upper bound with respect to the spe-cialization order. If the space has a smallest element, the total indexing can be constructed insuch a way that it is complete, which implies that the �xed point theorem holds. This resultunderlines the importance of the Scott topology for the study of computability on abstractstructures.As has been shown by Er�sov [4], every indexed set (X;x) with a total indexing x can beembedded in a numbered set (X̂; x̂) such that x̂ is both total and complete and x is reducibleto x̂. The set X̂ is obtained from X by adjoining a new element ?. The same constructioncan be carried out, if x is only a partial map. Again the indexing x̂ is total and complete.But, in general, if X is an e�ectively given T0-space, the numbering x̂ need not be acceptableand the embedding need not be e�ectively homeomorphic. The space X̂ does not have enoughpartial elements. We show in the case that the strong inclusion relation is e�ectively enumerablethat the given space T can be embedded into an algebraic constructive domain T̂ with a total,complete, and acceptable numbering. The embedding as well as its partial inverse are e�ectiveand e�ectively continuous. Moreover, under the embedding T is dense in T̂ . If all basic opensets in the topology � are closed as well, it is also a total subset of T̂ in the sense of Berger [1].The paper is organized in the following way. Section 1 contains basic de�nitions and prop-erties. The totalizability problem is studied for the general case of e�ectively given T0-spacesin Section 2 and for the special case of domain-like spaces in Section 3. In Section 4, �nally,the embedding result is derived.1 Basic de�nitions and propertiesIn what follows, let h ; i : !2 ! ! be a recursive pairing function with corresponding projections�1 and �2 such that �i(ha1; a2i) = ai. We extend the pairing function in the usual way to ann-tuple encoding. Let P (n) (R(n)) denote the set of all n-ary partial (total) recursive functions,and let Wi be the domain of the ith partial recursive function 'i with respect to some G�odelnumbering '. We let 'i(a)# mean that the computation of 'i(a) stops, 'i(a)# 2 C that itstops with value in C, and 'i(a)#n that it stops within n steps. In the opposite cases we write'i(a)" and 'i(a)"n respectively. If A � ! is not empty and recursively enumerable (r. e.), Asis the �nite subset of A which can be enumerated in s steps with respect to some �xed totalenumeration of A, i. e., As = ff(0); : : : , f(s � 1)g, where f 2 R(1) is the �xed enumeration.Let S be a nonempty set. A (partial) numbering � of S is a partial map �:! * S(onto)with domain dom(�). The value of � at n 2 dom(�) is denoted, interchangeably, by �n and�(n). Note that instead of numbering we also say indexing.2



De�nition 1.1 Let � and � be numberings of the set S.1. � � �, read � is reducible to �, if there is a function g 2 P (1) such that: dom(�) � dom(g),g(dom(�)) � dom(�), and �m = �g(m), for all m 2 dom(�).2. � � �, read � is equivalent to �, if � � � and � � �.IfA and C are sets of natural numbers, their characteristic functions �A and �C , respectively,are numberings of the set f0; 1g. In this special case the above reducibility and equivalencenotions reduce to the corresponding notions for sets known from computability theory [12],which we denote in the same way.De�nition 1.2 A numbering � of the set S is said to be1. precomplete, if for any function g 2 P (1) there is a function f 2 R(1) such that f(n) 2dom(�) and �f(n) = �g(n), for n 2 dom(g) with g(n) 2 dom(�)2. complete, if there is some element e 2 S, called the special element, such that for anyfunction g 2 P (1) there is a function f 2 R(1) such that f(n) 2 dom(�), for all n 2 !with either n =2 dom(g) or n 2 dom(g) and g(n) 2 dom(�), and �f(n) = �g(n), for alln 2 dom(g) with g(n) 2 dom(�), and �f(n) = e, for all n 2 ! n dom(g)A subset X of S is completely enumerable, if there is an r. e. set A such that �n 2 X if andonly if n 2 A, for all n 2 dom(�). If A is recursive, X is said to be completely recursive. Xis enumerable, if for some r. e. set A � dom(�) we have that X = f �n j n 2 A g. Thus, X isenumerable if we can enumerate a subset of the index set of X which contains at least one indexfor every element of X, whereas X is completely enumerable if we can enumerate all indices ofelements of X and perhaps some numbers which are not used as indices by the numbering �.A relation R � S � S is completely enumerable, if there is an r. e. set A such that (�i; �j) 2 Rif and only if hi; ji 2 A, for all i, j 2 dom(�).Now, let T = (T; � ) be a countable topological T0-space with a countable basis B. LetB be an indexing of B. In the applications we have in mind the basic open sets can bedescribed in some �nite way. The indexing B is then obtained by an encoding of the �nitedescriptions. Moreover, in these cases there is a canonical relation between the (code numbersof the) descriptions which is stronger than the usual set inclusion between the described sets.This relation is r. e., which in general is not true for set inclusion. It has been turned out ine�ective topology that one has to work with this stronger relation (cf. e. g. [15, 16, 17]).De�nition 1.3 Let �B be a transitive binary relation on !. We say that:1. �B is a strong inclusion, if for allm, n 2 dom(B), fromm �B n it follows that Bm � Bn.2. B is a strong basis, if �B is a strong inclusion and for all z 2 T and m, n 2 dom(B) withz 2 Bm \Bn there is a number a 2 dom(B) such that z 2 Ba, a �B m and a �B n.For what follows we assume that �B is a strong inclusion with respect to which B is a strongbasis. Moreover, to simplify matters we will suppose throughout this paper that the empty setis not included in B.De�nition 1.4 Let T = (T; � ) be a countable topological T0-space with a countable basis B,and let x and B be numberings of T and B, respectively. We say that:1. x is computable if there is some r. e. set L such that for all i 2 dom(x) and n 2 dom(B),hi; ni 2 L if and only if xi 2 Bn.2. T is e�ective, if B is a total indexing and the property of being a strong basis holdse�ectively, which means that there exists a function sb 2 P (3) such that for i 2 dom(x)and m, n 2 ! with xi 2 Bm \ Bn, sb(i;m; n)#, xi 2 Bsb(i;m;n), sb(i;m; n) �B m, andsb(i;m; n) �B n. 3



Thus, x is computable if and only if all basic open sets Bn are completely enumerable, uniformlyin n.As it is easily veri�ed, T is e�ective if x is computable, B is total and the strong inclusionrelation is r. e. Note that very often the totality of B can easily be achieved, if the space isrecursively separable, which means that it has a dense enumerable subset, called its dense base.In the sequel we always assume that T is e�ective.As it is well-known, each point y of a T0-space is uniquely determined by its neighbourhood�lter N (y) and/or a base of it. A point y is called �nite, if N (y) has a �nite and hence asingleton base. Moreover, on T0-spaces there is a canonical partial order, the specializationorder, which we denote by �� .De�nition 1.5 Let T = (T; � ) be a T0-space, and y, z 2 T . y �� z if N (y) � N (z).Let us now consider some important standard examples of e�ective T0-spaces.Example 1.6 (Constructive domains) Let Q = (Q;v) be a partial order. A nonemptysubset S of Q is directed, if for all y1, y2 2 S there is some u 2 S with y1, y2 v u. Theway-below relation n on Q is de�ned as follows: y1n y2 if for every directed subset S of Qthe least upper bound of which exists in Q, the relation y2 v FS always implies the existenceof a u 2 S with y1 v u. Note thatn is transitive. Elements y 2 Q with y n y are calledcompact. For points y, z 2 Q such that at least one of them is compact, yn z if and only ify v z.A subset Z of Q is a basis of Q, if for any y 2 Q the set Zy = f z 2 Z j zn y g is directedand y = FZy. A partial order that has a basis is called continuous. If all elements of Z arecompact, Q is said to be algebraic.Now, assume that Q is countable and let x be an indexing of Q. Then Q is constructivelydirected-complete, if each of its enumerable directed subsets has a least upper bound in Q. LetQ be constructively directed-complete and continuous with basis Z. Moreover, let � be a totalnumbering of Z. Then (Q;v; Z; �; x) is said to be a constructive predomain, if the restrictionof the way-below relation to Z as well as all sets Zy, for y 2 Q, are completely enumerable withrespect to the indexing � and � � x. It is called constructive domain if, in addition, the partialorder has a smallest element.The numbering x of Q is is said to be admissible, if the set f hi; ji j �i n xj g is r. e. andthere is a function d 2 R(1) such that for all indices i 2 ! for which �(Wi) is directed, xd(i) isthe least upper bound of �(Wi). In the case of constructive domains it is shown in [19] thatsuch numberings exist. They can even be chosen as total. In what follows we always assumethat the numbering x of a constructive predomain is admissible.It is well known that on constructively directed-complete partial orders there is a canonicaltopology �: the Scott topology. A subset X of Q is open, if it is upwards closed with respectto v and intersects each enumerable directed subset of Q of which it contains the least upperbound. In the case of a constructive predomain this topology is generated by the sets Bn =f y 2 Q j �nn y g with n 2 !. It follows that Q = (Q; �) is a countable T0-space with acountable basis. Observe that the specialization order on Q coincides with the partial order v[9]. Moreover, compactness matches with �niteness. Obviously, every admissible numbering iscomputable. Since Z is dense in Q we also obtain that Q is recursively separable.De�ne m �B n, �nn �m:Then �B is a strong inclusion with respect to which the collection of all Bn is a strong basis.Because the restriction ofn to Z is completely enumerable, �B is r. e. It follows that Q ise�ective.Example 1.7 (Constructive A- and f-spaces) A- and f-spaces have been introduced byEr�sov [2, 3, 5, 6, 8] as a more topologically oriented approach to domain theory. They are notrequired to be complete.Let Y = (Y; �) be a topological T0-space. For a subset X of Y , int(X) is its interior.Moreover, for y, z 2 Y de�ne y � z if z 2 int(fu 2 Y j y �� u g). Then y is �nite if and onlyif y � y. Y is an A-space, if there is a subset Y0 of Y satisfying the following three properties:4



1. Any two elements of Y0 which are bounded in Y with respect to the specialization orderhave a least upper bound in Y0.2. The collection of sets int(fu 2 Y j y �� u g), for y 2 Y0, is a basis of topology �.3. For any y 2 Y0 and u 2 Y with y � u there is some z 2 Y0 such that y � z and z � u.Any subset Y0 of Y with these properties is called basic subspace.Let Y be countable and Y0 have a numbering �. For m, n 2 dom(�) set Bn = int(fu 2 Y j�n �� u g) and de�ne m �B n, �n � �m:Then �B is a strong inclusion with respect to which fBn j n 2 dom(�) g is a strong basis. TheA-space Y with basic subspace Y0 is constructive, if the numbering � is total, the restriction of� to Y0 is completely enumerable, and the neighbourhood �lter of each point has an enumerablestrong base of basic open sets. As has been shown in [17], under these assumptions Y has acanonical numbering x such that Y is e�ective. Moreover, it is recursively separable with densebasis Y0.Let Y = (Y; �) be again an arbitrary topological T0-space. An open set V is an f-set, ifthere is a some element zV 2 V such that V = f y 2 Y j zV �� y g. The uniquely determinedelement zV is called f-element. Y is an f-space, if the following two conditions hold:1. If U and V are f-sets with nonempty intersection, then U \ V is also an f-set.2. The collection of all f-sets is a basis of topology �.An f-space is constructive, if the set of all f-elements has a total numbering � such that therestriction of the specialization order to this set as well as the boundedness of two f-elementsis completely recursive and there is a function su 2 R(2) such that in the case that �n and �mare bounded, �su(n;m) is their least upper bound, and if the neighbourhood �lter of each pointhas an enumerable base of f-sets.Every f-space is an A-space with basic subspace the set of all f-elements, which are exactlythe �nite elements of the space. Moreover, for y, z 2 Y with y or z being an f-element, y � zif and only if y �� z. It follows that also every constructive f-space is a constructive A-space.Example 1.8 (Constructive metric spaces) Let R denote the set of all real numbers, andlet � be some canonical total indexing of the rational numbers. Then a real number z is saidto be computable, if there is a function f 2 R(1) such that for all m, n 2 ! with m � n, theinequality j�f(m) � �f(n)j < 2�m holds and z = limm �f(m). Any G�odel number of the functionf is called an index of z. This de�nes a partial indexing  of the set Rc of all computable realnumbers.Now, let M = (M; �) be a separable metric space with range(�) � Rc, and let � be a totalnumbering of the dense subset M0. A sequence (ya)a2! of elements of M0 is said to be normed,if �(ym; yn) < 2�m, for all m;n 2 ! with m � n. Moreover, (ya) is recursive, if there is somefunction f 2 R(1) such that ya = �f(a), for all a 2 !. Any G�odel number of f is called an indexof (ya).M is said to be constructive, if the restriction of the distance function � to M0 has onlyrational values and is e�ective, i. e., if there is some function d 2 R(2) such that for all i,j 2 !, �(�i; �j) = �d(i;j), and each element y ofM is the limit of a normed recursive sequence ofelements ofM0. If m is the index of such a sequence, set xm = y. Otherwise, let x be unde�ned.Then x is a numbering of M with respect to which and the indexing  of the computable realnumbers the distance function is e�ective (cf. [15]).As is well-known, the collection of sets Bhi;mi = f y 2M j �(�i; y) < 2�m g (i, m 2 !) is abasis of the canonical Hausdor� topology � on M . Because the usual less-than relation on thecomputable real numbers is completely enumerable [11], it follows that x is computable. Ashas been shown in [15], a point y 2M is �nite if and only if it is isolated.De�ne hi;mi �B hj; ni , �(�i; �j) + 2�m < 2�n:Using the triangular inequation it is readily veri�ed that �B is a strong inclusion and thecollection of all Ba is a strong basis. Moreover, �B is r. e. It follows that M is e�ective.5



Beside the computable real numbers, well known examples of constructive metric spaces areBaire space, that is, the set R(1) of all total recursive functions with the Baire metric [12], andthe set ! with the discrete metric.Since we work with strong inclusion instead of set inclusion, we had to adjust the notion ofa topological basis. In the same way we have to modify that of a �lter base.De�nition 1.9 Let H be a �lter. A nonempty subset F of H is called strong base of H if thefollowing two conditions hold:1. For all m, n 2 dom(B) with Bm, Bn 2 F there is some index a 2 dom(B) such thatBa 2 F , a �B m, and a �B n.2. For all m 2 dom(B) with Bm 2 H there some index a 2 dom(B) such that Ba 2 F anda �B m.If x is computable, a strong base of basic open sets can e�ectively be enumerated for eachneighbourhood �lter. The next result proved in [17] shows that for e�ective spaces this can bedone in a normed way.De�nition 1.10 An enumeration (Bf(a))a2! with f : ! ! ! such that range(f) � dom(B)is said to be normed if f is decreasing with respect to �B . If f is recursive, it is also calledrecursive and any G�odel number of f is said to be an index of it.In case (Bf(a)) enumerates a strong base of the neighbourhood �lter of some point, we sayit converges to that point.Lemma 1.11 Let T be e�ective and x be computable. Then there are functions q 2 R(1)and p 2 R(2) such that for all i 2 dom(x) and all n 2 ! with xi 2 Bn, q(i) and p(i; n) areindices of normed recursive enumerations of basic open sets which converge to xi. Moreover,'p(i;n)(0) �B n.In what follows, we want not only to be able to generate normed recursive enumerations ofbasic open sets that converge to a given point, but conversely, we need also to be able to passe�ectively from such enumerations to the point they converge to.De�nition 1.12 Let x be a numbering of T . We say that:1. x allows e�ective limit passing if there is a function pt 2 P (1) such that, ifm is an index ofa normed recursive enumeration of basic open sets which converges to some point y 2 T ,then pt(m)# 2 dom(x) and xpt(m) = y.2. x is acceptable if it allows e�ective limit passing and is computable.If x is computable, each neighbourhood �lter N (y) has a completely enumerable strongbase of basic open sets, namely the set of all Ba with y 2 Ba. As it is shown in [17], T has aprecomplete acceptable numbering if, conversely, N (y) has an enumerable strong base of basicopen sets, for all y 2 T , and �B is r. e. In case that, in addition, the indexing B is total, Tis e�ective with respect to this numbering. Moreover, indexings which are computable and/orallow e�ective limit passing are related to each other in the subsequent way.Lemma 1.13 Let T be e�ective. Then for any two numberings x0 and x00 of T the followinghold:1. If x0 is computable and x00 allows e�ective limit passing, then x0 � x00.2. If x0 is computable and x00 � x0, then x00 is also computable.3. If x0 allows e�ective limit passing and x0 � x00, then x00 allows e�ective limit passing too.Corollary 1.14 Let T be e�ective and x be acceptable. Then for any numbering x0 of T thefollowing hold:1. x0 is computable if and only if x0 � x. 6



2. x0 allows e�ective limit passing if and only if x � x0.3. x0 is acceptable if and only if x0 � x.As it is easily veri�ed, the acceptable indexings of a constructive predomain are just theadmissible ones. In the case of a constructive metric space M acceptable numberings x allowthe computation of limits, which means that there is a function li 2 P (1) such that, if m isan index of a converging normed recursive sequence (ya)a2! of elements of the dense base ofM, then li(m)# 2 dom(x) and xli(m) = lima ya [17]. This shows that acceptable numberings ofe�ective T0-spaces are well behaved.2 On totalizationAs we have seen in the last section, there are indexed sets like the constructive domains, wherethe numbering is well behaved and can be chosen as total, whereas in other cases like thecomputable reals the indexing is also well behaved, but only a partial map. The question weare interested in in this section is the following:Given an indexed set (X;x) with a well behaved partial indexing x, is there totalwell behaved numbering x̂ of X, which is equivalent to x, i. e., can x be totalized?The subsequent lemma is a consequence of a result in [15].Lemma 2.1 Let T be e�ective without �nite points. If the numbering x is acceptable, it cannotbe total.We have already mentioned that in the case of a Hausdor� space �niteness matches withisolatedness. Thus, it follows that the canonical indexing  of the computable reals cannot betotalized, which means that the answer to the above question is negative, in general. It is theaim of this section to present a su�cient and necessary condition for totalizability. But notethat we do not deal with the problem in the full generality of indexed sets. We restrict ourselvesto e�ective T0-spaces T = (T; � ) with acceptable numberings x.Let Pt be the collection of all neighbourhood �lters of points of T . As has already beenmentioned, in the case that T is e�ective and T is computably indexed each of these �ltershas an enumerable strong base of basic open sets. If H is such a �lter and fBn j n 2Wi g is astrong base of H set Fi = H, otherwise let Fi be unde�ned. Then F is a numbering of Pt.Proposition 2.2 Let T be e�ective, x be acceptable, and �B be r. e. Then T has a totalnumbering �x with �x � x, if and only if Pt is enumerable.Proof: Let �x be a total indexing of T with �x � x. By Corollary 1.14 a numbering of Tis reducible to x, just if it is computable. It follows that there is a function v 2 R(1) withWv(i) = fn j �xi 2 Bn g, for i 2 !. Since the collection of all Bn with �xi 2 Bn is a strong baseof the neighbourhood �lter of �xi, we have that Fv(i) is this �lter, for all i 2 !. This shows thatPt is enumerable.For the converse implication let t 2 R(1) such that range(F � t) = Pt. Moreover, for i 2 !,de�ne �xi to be the uniquely determined point of T with neighbourhood �lter Ft(i). Then �x isa total numbering of T . It remains to show that �x is computable. We have for i, n 2 !�xi 2 Bn , Bn 2 Ft(i) , (9a 2Wt(i))a �B n;which shows that f hi; ni j �xi 2 Bn g is r. e.Note that the assumption that Pt is enumerable means that Pt has a total numberingwhich factorizes through F . In [17] it is shown that acceptable numberings of T are maximalamong the computable numberings of T with respect to reducibility. As we will show now, anacceptable indexing of T can be totalized, exactly if Pt has a total numbering which is maximalamong the numberings of Pt that factorize through F .Theorem 2.3 Let T be e�ective, x be acceptable, and �B be r. e. Then T has a total numberingx̂ which is equivalent to x, if and only if there exists a function v 2 R(1) with range(v) � dom(F)such that 7



1. range(F � v) = Pt and2. for all functions g 2 P (1) with range(g) � dom(F) and range(F � g) = Pt one hasF � g � F � v.Proof: Let x̂ be a total indexing of T which is equivalent to x. Then x̂ is acceptable. Letv 2 R(1) be as in the proof of Proposition 2.2. Moreover, let s 2 R(1) such that 's(a) is a totalenumeration of Wa, if Wa is not empty, and de�ne f 2 R(1) by'f(i)(0) = 's(i)(0);'f(i)(a+ 1) = 8<: �rst n enumerated with n 2Wi,n �B 'f(i)(a), and n �B 's(i)(a + 1) if such an n exists,unde�ned otherwise:Then 'f(i) is de�ned on an initial segment of !. In addition, 'f(i)(a) �B 'f(i)(a � 1), for alla 2 dom('f(i)) with a > 0. If i 2 dom(F), the collection of all Bn with n 2 Wi is a strongbase of some neighbourhood �lter H. Thus, 'f(i) is a total function in this case and as 's(i)enumerates Wi, we obtain that the set of all Bn with n 2 range('f(i)) is also a strong base ofH. Now, let p̂t 2 P (1) witness that x̂ allows e�ective limit passing and let the function g 2 R(1)such that range(g) � dom(F) and range(F �g) = Pt. Then we have for i 2 dom(g) that f(g(i))is an index of a normed recursive enumeration of a base of basic open sets of Fg(i). Moreover,it converges to x̂p̂t(f(g(i))). Hence Fg(i) = N (x̂p̂t(f(g(i)))) = Fv(p̂t(f(g(i)))), for all i 2 dom(g),which shows that F � g � F � v.For the converse implication let x̂ be the total indexing of T according to Proposition 2.2.We only have to show that x � x̂. Let L � ! witness that x is computable and let w 2 R(1) withWw(i) = fn j hi; ni 2 L g. Then fBn j n 2Ww(i) g is a strong base of N (xi), for i 2 dom(x).It follows that range(F � w) = Pt. Let k 2 P (1) witness that F � w � F � v. Then x̂k(i),for i 2 dom(x), is the uniquely determined point of T with neighbourhood �lter Fv(k(i)). AsFv(k(i)) = Fw(i) = N (xi), we have that x̂k(i) = xi.It follows from this proof that under the assumptions of the theorem condition (2) holds justif there is some function h 2 P (1) so that for all i 2 dom(x), h(i)# and N (xi) = Fv(h(i)), i. e., ifone can e�ectively pass from a point to (an enumeration of a strong base of) its neighbourhood�lter, a requirement which reverses the condition of allowing e�ective limit passing.The conditions (1) and (2) of the above theorem are obviously satis�ed if Pt is completelyenumerable. But as we shall see next this requirement is very strong and forces the space T tohave a very special structure.Theorem 2.4 Let T be e�ective, x be acceptable, and Pt be completely enumerable. Then Tis an algebraic constructive predomain, in which all elements are comparable.Proof: By Theorem 2.3 we can assume that x is a total indexing. Let s, t 2 R(1) such that's(a) is a total enumeration ofWa, if this set is not empty, and Wt(a) is the r. e. set enumeratedby 'a. Moreover, let Wc be the index set of Pt.Claim 1 (T;�� ) is constructively directed-complete.Let X be a directed enumerable subset of T and f 2 R(1) such that range(x � f) = X. Fur-thermore, let v 2 R(1) with Wv(i) = fn j xi 2 Bn g, for i 2 !, and We = S fWv(f(i)) j i 2 ! g.Set g(a) = �m : 'c(t(a))#m. By the recursion theorem there is some index b such that for alln 2 ! 'b(n) = � 's(v(f(b)))(n) if 'c(t(b))"n;'s(e)(n� g(b)) otherwise.Assume that g(b)". Then 'b is an enumeration of all indices n with xf(b) 2 Bn. Hencet(b) 2 Wc, which contradicts our assumption. Thus g(b)#, i. e., t(b) 2Wc.Since Wv(f(b)) is included in We, it follows that 'b enumerates We and hence that fBn jn 2 We g is a strong �lter base of the neighbourhood �lter of some point z 2 T . For i 2 !,Wv(f(i)) is the index set of a strong �lter base of N (xf(i)). Therefore, z is an upper bound ofX. Let xa be another upper bound of X. Then Wv(f(i)) is a subset of Wv(a), for all i 2 !,which implies that We is contained in Wv(a) and thus that z �� xa. This shows that z is theleast upper bound of X. 8



Claim 2 There are functions h, k 2 R(1) such that xh(m) is �nite and Bk(m) = f y 2 T jxh(m) �� y g, for all m 2 !. Moreover, for every n 2 !, Bn is the union of all Bk(hi;ni) withxi 2 Bn,Let w 2 R(1) so thatWw(n) is the set of all indices i with xi 2 Bn, for all n 2 !. In addition, letthe function pt 2 P (1) witness that x allows e�ective limit passing and let the function q 2 R(1)be as in Lemma 1.11. Set g(b; n) = �m : 'c(t(b))#m^'w(n)(pt(b))#m. By the recursion theoremthere is then a function r 2 R(2) such that'r(i;n)(m) = � 'q(i)(m) if 'c(t(r(i; n)))"m or 'w(n)(pt(r(i; n)))"m;'q(i)(g(r(i; n); n) � 1) otherwise.Now, let xi 2 Bn and assume that g(r(i; n); n)". Then r(i; n) is an index of a normed enu-meration of basic open sets that converges to xi. Hence, t(r(i; n)) is an index of N (xi), i. e.,t(r(i; n)) 2 Wc. Moreover, we have that pt(r(i; n))# and xpt(r(i;n)) = xi. It follows thatxpt(r(i;n)) 2 Bn, which implies that g(r(i; n); n)# in contradiction to our assumption. Thereforeg(r(i; n); n)#, for all i, n 2 ! with xi 2 Bn. Set ĝ(i; n) = g(r(i; n); n)� 1.Since t(r(i; n)) 2 Wc, the collection of all B('r(i;n)(a)) (a 2 !), i. e., the set fB('q(i)(0)),: : : , B('q(i)(ĝ(i; n)))g, is a strong base of the neighbourhood �lter of some �nite point z 2 T .Then z �� xi, as xi 2 B('q(i)(a)), for all a 2 !. Assume next that there is some y 2B('q(i)(ĝ(i; n))) with z 6�� y. Then there exists a basic open set Bm such that z 2 Bm, buty =2 Bm. Because N (z) is generated by the basic open set B('q(i)(ĝ(i; n))), we have that thisset is included in Bm. It follows that y 2 Bm. This contradicts our choice of Bm. So, we obtainthat B'q(i)(ĝ(i;n)) = f y 2 T j z �� y g:As B is a strong basis of the topology, there is some index a such that a �B 'q(i)(ĝ(i; n))and z 2 Ba. Moreover, sincefB('q(i)(ĝ(i; n)))g is a strong �lter base of N (z), we obtain that'q(i)(ĝ(i; n)) �B a. Thus 'q(i)(ĝ(i; n)) �B 'q(i)(ĝ(i; n)), which implies that r(i; n) is an indexof a normed enumeration of basic open sets converging to z. Therefore xpt(r(i;n)) = z.Because g(r(i; n); n)#, we know that z 2 Bn. It follows that B('q(i)(ĝ(i; n))) is a subsetof Bn. As we have already seen, xi 2 B('q(i)(ĝ(i; n))). Thus, Bn is the union of all setsB('q(i)(ĝ(i; n))) with i 2 ! such that xi 2 Bn.By the computability of the numbering x there is some function d 2 R(1) which enumeratesall pairs hi; ni with xi 2 Bn. De�neh(m) = pt(r(�1(d(m)); �2(d(m)))) and k(m) = 'q(i)(ĝ(�1(d(m)); �2(d(m))));then it follows from above that both functions have the desired properties.Claim 3 For all m 2 !, xh(m) is compact.Let m 2 ! and X be a directed subset of T with least upper bound z such that xh(m) �� z.Then z 2 Bk(m). Since the neighbourhood �lter N (z) of z is the union of all neighbourhood�lters N (y), for y 2 X, it follows that there is some y 2 X so that y 2 Bk(m), i. e., xh(m) �� y.Claim 4 For i 2 !, xi = F fxh(hi;ni) j n 2 ! ^ xi 2 Bn g.As we have already seen, xi is an upper bound of all xh(hi;ni) with n 2 ! such that xi 2 Bn. Lety 2 T be a further upper bound of these elements and assume that xi 2 Ba, for some a 2 !.Then y 2 Bk(hi;ai) and hence y 2 Ba, as Bk(hi;ai) is contained in Ba. Thus xi �� y, whichshows that xi is the least upper bound of all xh(hi;ni), for n 2 ! such that xi 2 Bn.It follows that the set of all xh(m) (m 2 !) is an algebraic basis of (T;�� ). Moreover, thecollection of all sets f y 2 T j xh(m) �� y g is a basis of topology � . Since xh(m) �� xh(n) ifand only if xh(n) 2 Bk(m), we have that the restriction of the specialization order to the basisfxh(a) j a 2 ! g is completely enumerable. Similarly, we obtain for each element xi that the setof all xh(m) with m 2 ! such that xh(m) �� xi is completely enumerable.Claim 5 Any two elements of T are comparable.9



Let xi, xj 2 T and assume that both are incomparable. Moreover, let K be the halting set andde�ne g(n) = �a : n 2 Ka. Then there is a function f 2 R(1) such that'f(n)(a) = � 'q(i)(a) if n =2 Ka or a is even,'q(j)(a� g(n)) otherwise.If n =2 K it follows that the collection of all Bm with m 2 range('f(n)) is a strong base ofN (xi). Hence t(f(n)) 2Wc.If n 2 K the set of all B('f(n)(a)) such that a < g(n) or a is even is a strong base of N (xi)and the set of all B('f(n)(a)) such that a � g(n) and a is odd is a strong base of N (xj). Sincexi and xj are incomparable, we obtain that the collection of all Bm with m 2 range('f(n)) isnot a �lter base. Thus t(f(n)) =2Wc.This shows that K � Wc, which implies that Wc is not r. e., a contradiction. It follows thatxi and xj are comparable.The question arises whether under the above assumptions T must also have a smallestelement. As follows from the next example, this does not hold.Example 2.5 Let (Q;v; Z; �; x) be an algebraic constructive predomain which is an in�nitelydescending chain. Then the basic open sets Bi with Bi = f y 2 T j �i v y g are comparable. Itfollows that if Wj is nonempty then the set of all Bi with i 2 Wj is a strong �lter base of theneighbourhood �lter of the least upper bound of all �i with i 2 Wj . This shows that that j isthe index of a strong base of basic open sets of the neighbourhood �lter of some point in Q ifand only if Wj is not empty. As a consequence we obtain that Pt is completely enumerable inthis case.We close this section by a necessary and su�cient condition for Pt to be completely enu-merable which should be compared with Theorem 2.3.Proposition 2.6 Pt is completely enumerable if and only if there are functions v, g 2 R(1)such that1. range(F � v) = Pt and2. for all indices i such that range('i) � dom(F) and range(F � 'i) = Pt, 'i = v � 'g(i).Proof: Assume that Pt is completely enumerable and let A � ! be its index set. Moreover,let v 2 R(1) be an enumeration of A. Then there is some function g 2 R(1) such that 'g(i)(j) =�a : v(a) = 'i(j). Obviously, the functions v and g have the desired properties.For the proof of the converse implication let i 2 range(v) and j 2 ! such that Fj = Fi. Wewant to show that also j 2 range(v). Let to this end b, c 2 ! with v(c) = i and'b(a) = � j if a = c;v(a) otherwise.Then we have that F('b(c)) = Fj = Fi and F('b(a)) = Fv(a), for a 6= c. Hence range(F�'b) =Pt. It follows that j = 'b(c) = v('g(b)(c)), which shows that j 2 range(v).3 Domain-like spaces and total numberingsIn the last section we derived a necessary and su�cient e�ectivity requirement for the existenceof a total acceptable numbering of a given e�ective T0-space. Now, in this section, we considera more restricted class of spaces, which includes constructive predomains, A- and f-spaces, andpresent a structural necessary and su�cient condition for the existence of a total acceptableindexing of the space.An essential property of constructive predomains, A- and f-spaces, is that their canonicaltopology has a basis with every basic open set Bn being an upper set generated by a pointwhich is not necessarily included in Bn but in hl(Bn), wherehl(Bn) =\ fBm j n �B m g:10



De�nition 3.1 Let T = (T; � ) be a countable T0-space with a countable strong basis B, andlet x and B be numberings of T and B, respectively. We say that T is e�ectively pointed, ifthere is a function pd 2 P (1) such that for all n 2 dom(B), pd(n)# 2 dom(x), xpd(n) 2 hl(Bn)and xpd(n) �� z, for all z 2 Bn.Obviously, Bn � f z 2 T j xpd(n) �� z g � hl(Bn):The next result, which is derived in [15], shows that e�ectively pointed spaces have typicalproperties of domains.Lemma 3.2 Let T be e�ective and e�ectively pointed and let x be computable. Moreover, lety 2 T and n 2 !. Then the following hold:1. T is recursively separable with dense base fxa j a 2 range(pd) g.2. The set fxpd(a) j y 2 Ba g is directed and y is its least upper bound.3. If m is an index of a converging normed recursive enumeration of basic open sets, thenthe enumeration converges to the least upper bound of �xpd('m(a))�a2! .4. If y is �nite, then y 2 fxa j a 2 range(pd) g.5. If xpd(n) is �nite, then hl(Bn) = f z 2 T j xpd(n) �� z g.As we will see �rst, for e�ectively pointed spaces the existence of a total acceptable num-bering has very strong consequences: the space is constructively directed-complete and thetopology is the Scott topology.Proposition 3.3 Let T be e�ective and e�ectively pointed. Moreover, let x be total and ac-ceptable. Then (T;�� ) is constructively directed-complete and � is the Scott topology.Proof: Let X be an enumerable directed subset of T . ThenC = fn 2 ! j X \Bn 6= ; gis r. e. Since X is not empty, the same is true for C. Let f 2 R(1) be an enumeration of C.Moreover, let v 2 R(1) such that Wv(n) = f i 2 ! j xi 2 Bn g and let A � ! be r. e. so thatX = fxi j i 2 A g. Finally, let sb 2 P (3) witness that T is e�ective. De�neg(0) = f(0);g(a+ 1) = sb(�rst i enumerated with i 2 A \Wv(g(a)) \Wv(f(a+1)); g(a); f(a+ 1)):Claim 1 For all a 2 !, g(a)# 2 C.By de�nition g(0) 2 C. Assume that g(a) 2 C. Then X intersects both Bg(a) and Bf(a+1).Let this be witnessed by y, y0 2 X. Since X is directed, there is some y00 2 X such thaty, y0 �� y00. The point y00 witnesses that X \ Bg(a) \ Bf(a+1) is not empty. It follows thatg(a+1)#. Let {̂ be the �rst i enumerated with i 2 A\Wv(g(a))\Wv(f(a+1)). Then x{̂ 2 Bg(a+1)and x{̂ 2 X \Bg(a) \Bf(a+1). Hence X intersects Bg(a+1), i. e., g(a + 1) 2 C.It follows that g 2 R(1). Now, let p 2 R(2) be as in Lemma 1.11 and let pt, pd 2 P (1),respectively, witness that x allows e�ective limit passing and T is e�ectively pointed. Moreover,let h 2 P (2) and r, s 2 R(2) be de�ned byh(a; j) = �c : 'v(g(a))(j)#c;r(0; j) = 0;r(a+ 1; j) = 8<: r(a; j) if h(r(a; j); j)"a or there is some n � a such that 'v(n)(j)#a,and for all m � r(a; j) + 1, 'v(n)(pd(g(m)))"a;r(a; j) + 1 otherwise, 11



ands(a; j) = � maxf c � a j r(c; j) 6= r(c+ 1; j) g if for some c � a, r(c + 1; j) 6= r(c; j),0 otherwise.By the recursion theorem there is some index c such that'c(0) = 'p(pd(g(1));g(0))(0)'c(a + 1) =8<: 'p(pd(g(r(a;pt(c))+1));'c(s(a;pt(c))))(a� s(a; pt(c))) if r(a+ 1; pt(c)) =r(a; pt(c));'p(pd(g(r(a;pt(c))+2));'c(a))(0) otherwise.Then c is an index of a normed recursive enumeration of basic open sets which starts to convergeto xpd(g(1)), until xpt(c) has been found in Bg(0), say in a steps, and for all n � a such thatxpt(c) is found in Bn there is some e � 1 such that also xpd(g(e)) is found in Bn, then goes onconverging to xpd(g(2)), until xpt(c) has been found in Bg(1), say in a0 steps, and for all n � a0such that xpt(c) is found in Bn there is some e0 � 2 such that also xpd(g(e0)) is found in Bn, andso on.Claim 2 The function k with k(a) = r(a; pt(c)) is of unrestricted growth.Obviously, the function k is monotone. Assume that there is some a 2 ! such that k(�a) =k(a), for all �a � a. Then c is an index of a normed recursive enumeration of basic opensets converging to vpd(g(k(a)+1)). Thus pt(c)# and xpt(c) = xpd(g(k(a)+1)). Since g(k(a) +1) �B g(k(a)), we have that xpd(g(k(a)+1)) 2 Bg(k(a)). It follows that h(k(a); pt(c))#. Let�a = maxfa; �j : h(k(a); pt(c))#jg. Then h(k(a); pt(c))#�a. By our assumption on k and a thereis therefore some n � �a with 'v(n)(pt(c))#�a such that 'v(n)(pd(g(m)))", for allm � k(a)+1. Itfollows that xpt(c) 2 Bn and hence xpd(g(k(a)+1)) 2 Bn, which means that 'v(n)(pd(g(k(a)+1))#,in contradiction to what we have seen before.It follows that for all a 2 !, h(a; pt(c))#, which implies that pt(c)#. Let z = xpt(c).Claim 3 The point z is an upper bound of X.By the construction of the function 'c we have that z 2 Bg(a), for all all a 2 !. Thus, z is anupper bound of all xpd(g(a)). Now, let y 2 X. By Lemma 3.2, y is the least upper bound ofall points xpd(n) such that y 2 Bn. If y 2 Bn, it follows that n 2 C. As a consequence of theconstruction of the function g, there exists a number an, for each n 2 C, such that g(an) �B n.Hence xpd(n) �� xpd(g(an)) �� z, which implies that y �� z.Claim 4 Let z0 be another upper bound of X. Then z �� z0.As a further consequence of the unrestricted growth of the function k we have that for everyn 2 ! with z 2 Bn there is some m 2 ! such that xpd(g(m)) 2 Bn. By Claim 1 we know that Xintersects Bg(a), for all a 2 !. It follows that X intersects Bn, for all n 2 ! with z 2 Bn. Now,let n 2 ! so that z 2 Bn. Then there is some y 2 X \ Bn. Hence y �� z0. It follows that alsoz0 2 Bn, which shows that z �� z0.We obtain that z is the least upper bound of X. Moreover, we have seen that X intersectseach basic open set Bn with z 2 Bn, which means that � is the Scott topology.The next result shows that the above condition is not only necessary but also su�cient forthe existence of a total acceptable numbering of space T .Proposition 3.4 Let T be e�ective, e�ectively pointed, and constructively directed-complete.Moreover, let x be computable. Then T has a total numbering x̂ which allows e�ective limitpassing. If, in addition, � is the Scott topology the indexing x̂ is acceptable.Proof: Let L � ! witness that x is computable and let v 2 R(1) such that Wv(n) = f i j hi; ni 2L g. Moreover, let s 2 R(1) be an enumeration of all indices i such that Wi is not empty andlet r 2 R(1) such that for those i 2 ! for which Wi is not empty, 'r(i) enumerates all indices nfor which Wv(n) intersects pd(Wi). Here, the function pd 2 P (1) witnesses that T is e�ectively12



pointed. Set f = r � s and let the function sb 2 P (3) witness that T is e�ective. Furthermore,de�neg(i; 0) = 'f(i)(0);g(i; a+ 1) = sb(�rst n enumerated with n 2 pd(Ws(i)) \Wv(g(i;a)) \Wv('f(i)(a+1)));g(i; a); 'f(i)(a+ 1)):Claim 1 If fxpd(n) j n 2Ws(i) g is directed, then g(i; a + 1)# 2 range('f(i)).By de�nition g(i; 0) 2 range('f(i)). Assume that g(i; a)# 2 range('f(i)). Then we have forX = fxpd(n) j n 2Ws(i) g that X intersects both Bg(i;a) and B('f(i)(a + 1)). Since X isdirected, it follows as in the above proof that the common intersection of these three setsis also not empty and hence that g(i; a + 1)#. Let n̂ be the �rst n enumerated with n 2pd(Ws(i))\Wv(g(i;a)) \Wv('f(i)(a+1)). Then xn̂ 2 X \Bg(i;a+1), i. e., g(i; a+1) 2 range('f(i)).Let h 2 R(1) with 'h(i)(a) = g(i; a). As follows from the construction, for every i 2!, ('h(i)(a)) is a nonempty �nite or in�nite sequence that is decreasing with respect to thestrong inclusion relation �B . Thus, the set fxa j a 2 range(pd �'h(i)) g is directed. Since T isconstructively directed-complete, it has a least upper in T . Setx̂i =G fxa j a 2 range(pd �'h(i)) g:Then x̂ is total.Claim 2 If the set fxpd(a) j a 2Ws(i) g is directed, the point x̂i is its least upper bound.Let X = fxpd(n) j n 2Ws(i) g and let z be its least upper bound. As we have seen in the proofof Claim 1, there is some y 2 X \Bg(i;a), for every a 2 !. It follows that x('h(i)(a)) �� y �� z,for each a. Hence x̂i �� z. For the veri�cation of the converse inequality let n 2 Ws(i) andxpd(n) 2 Bm. By the construction of the function g there is then some number am such thatg(i; am) �B m. We obtain that xpd(m) �� xpd(g(i;am)) �� x̂i and thus, by Lemma 3.2, thatxpd(n) �� x̂i, which implies that also z �� x̂i.Since every point y 2 T is the least upper bound of the enumerable directed set of all xpd(n)with y 2 Bn, it follows that the map x̂ is onto. Thus, it is a numbering of T .Claim 3 The indexing x̂ allows e�ective limit passing.Let m be an index of a normed recursive enumeration of basic open sets which convergesto a point y 2 T . Then y is the least upper bound of the set of all x(pd('m(a))) witha 2 !, by Lemma 3.2. As this set is directed, it follows with Claim 2 that y = x̂t̂(m). Heret̂(n) = �i : t(n) = s(i), where t 2 R(1) such that Wt(n) = range('n), for n 2 !.Now, in addition, assume that � is the Scott topology.Claim 4 The indexing x̂ is computable.Since x̂i is the least upper bound of a directed set and � is the Scott topology, we havex̂i 2 Bn , G fxa j a 2 range(pd �'h(i)) g 2 Bn, (9a)a 2 range(pd �'h(i)) ^ xa 2 Bn:Thus, the set L̂ = f hi; ni j (9a)a 2 range(pd �'h(i)) ^ ha; ni 2 L g witnesses that x̂ is com-putable.Summing up what we have proved so far, we obtain the subsequent result.Theorem 3.5 Let T be e�ective and e�ectively pointed. Moreover, let x be computable. ThenT has a total acceptable numbering, if and only if T is constructively directed-complete and �is the Scott topology.The next result extends the necessary and su�cient condition which ensures the existenceof a total acceptable numbering of the space so that the indexing can be constructed in such away that it is even complete. 13



Theorem 3.6 Let T be e�ective and e�ectively pointed. Moreover, let x be computable. ThenT has a total acceptable complete numbering with special element ? 2 T , if and only if T isconstructively directed-complete, � is the Scott topology, and T has a smallest element ?.Proof: Assume that T is constructively directed-complete, � is the Scott topology, and T hasa smallest element ?. Then T is obviously basic open. Let �n be an index of T with respect tothe indexing B. Moreover, let s 2 R(1) such that Ws(i) = Wi [ f�ng. Let the function r 2 R(1)be as in the proof of Proposition 3.4 and set f = r � s. De�ne the function g 2 P (2) with thisfunction f as in the proof of Proposition 3.4. All other functions and sets which are not de�nedhere will be as in that proof. As there it follows that the set fxa j a 2 range(pd �'h(i)) g isdirected.Set x̂i =G fxa j a 2 range(pd �'h(i)) g:Then we obtain that x̂ is a total acceptable numbering of T . Note that in the proof that x̂allows e�ective limit passing one has now to use t as witnessing function.It remains to show that x̂ is complete with special element ?. Let k 2 P (1) and de�nev 2 R(1) such thatWv(i) = fn j k(i)# ^ hk(i); ni 2 L̂ g. By Lemma 3.2 we obtain for i 2 dom(k)that the set of all points xpd(a) with a 2 Wv(i) is directed with least upper bound x̂k(i).Therefore, it follows with Proposition 3.4, Claim 2 that x̂v(i) = x̂k(i), for i 2 dom(k). Ifi =2 dom(k), the set Ws(v(i)) contains only the index �n. Hence x̂v(i) = x̂pd(�n) = ?.Now, conversely, let T have a total acceptable complete numbering with special element ?.It remains to show that ? is the smallest element of T . Let n 2 ! with ? 2 Bn and x̂a 2 T .Moreover, assume that x̂a =2 Bn. Since x̂ is computable, Bn is completely enumerable. Thus,the function d which is de�ned by d(i) = a, if x̂i 2 Bn, and is unde�ned, otherwise, is partialrecursive. By the completeness of x̂ there is a total recursive function �d so thatx̂ �d(i) = � x̂a if x̂i 2 Bn;? otherwise.Moreover, the �xed point theorem holds with respect to x̂ [4]. Hence, there is some index e suchthat x̂e = x̂ �d(e). If we assume that x̂e 2 Bn, we obtain that x̂e = x̂a and thus that x̂e =2 Bn. Onthe other hand, if we assume that x̂e =2 Bn, we have that x̂e = ?, which implies that x̂e 2 Bn.It follows that x̂a 2 Bn. This shows that ? �� x̂a.4 Embedding into totally indexed spacesIn the Section 2 we have seen that there are examples of e�ective T0-spaces with an acceptablepartial numbering such that the numbering cannot be totalized. As followed from a result in[15], this is always the case if the space contains no �nite points. The question which we wantto investigate in this section is the following:Given an e�ective T0-space T with a partial acceptable numbering x. Can T beembedded into another e�ective space T̂ with a total acceptable indexing x̂ suchthat x̂ extends x?Since we are dealing with e�ective topological spaces, the embedding should of course bee�ective and preserve the topological structure.De�nition 4.1 Let T = (T; � ) and T 0 = (T 0; � 0), respectively, be countable topological spaceswith countable topological bases B and B0, and let x, x0, B, and B0, respectively, be numberingsof T , T 0, B, and B0. Then a map F :T ! T 0 is is said to be1. e�ective if there is a function f 2 P (1) such that f(i)# 2 dom(x0) and F (xi) = x0f(i), forall i 2 dom(x).2. e�ectively continuous if there is a function h 2 R(1) such that for all n 2 dom(B0),Wh(n) � dom(B) and F�1(B0n) = SfBm j m 2 Wh(n) g.14



In case F is an embedding, i. e., one-to-one, it is called e�ectively homeomorphic, if both Fand its partial inverse F�1:F (T )! T are e�ectively continuous.In the last section it was shown that e�ectively pointed e�ective spaces do have a totalacceptable indexing, if the space is constructively directed-complete and the topology is theScott topology. In the applications such spaces contain many �nite points. An obvious idea istherefore to construct T̂ by adding su�ciently many �nite elements to T .Er�sov [4] showed for total numberings that every indexed set (X;x) can be e�ectively em-bedded into an indexed set (X̂; x̂) with a complete indexing x̂. The set X̂ is obtained from Xby adding a new element, say ?, to X which is the special element of the numbering x̂. Thisconstruction can also be applied to the case of partial indexings. The result is again a supersetwith a total complete numbering. But note that the embedding is only e�ective. In general itis not e�ectively homeomorphic. Moreover, the indexing x̂ need not be computable.To see this assume that T̂ is an e�ective space with T̂ = T [ f?g and the embedding of Tinto T̂ is e�ectively homeomorphic. Moreover, assume that x̂ is computable and T is not basicopen. Let B̂n be a basic open set in topology �̂ . Then it is completely enumerable. As we haveseen in the proof of Theorem 3.6, B̂n is already the whole space T̂ if it contains the specialelement ?. Thus, if B̂n is not T̂ , it is contained in T , which means that is also open in theinduced topology on T . Now, let F be the embedding of T into T̂ and let G:F (T )! T be itspartial inverse. Moreover, let g 2 R(1) witness the e�ective continuity of G. Then we have thatF (T ) = G�1(T ) = [ fG�1(Bn) j n 2 ! g = [ f B̂m \ F (T ) j (9n 2 !)m 2Wg(n) g= [ f B̂m j (9n 2 !)m 2 Wg(n) g:Note here that G�1(Bn) and hence B̂m are strictly included in F (T ), for m 2Wg(n) and n 2 !.As the numbering x̂ is both total and computable and the embedding F is e�ective, it followsthat dom(x) is r. e., which is not the case, in general. Consider for example the metric spaceof all total recursive functions with the Baire metric and let it be indexed by the restriction ofsome G�odel numbering. Then it is an e�ective space with an acceptable numbering. But, as iswell known, the domain of the indexing is a �02-complete set.In what follows, by starting from a given e�ective space with an r. e. strong inclusion rela-tion and a partial acceptable indexing we construct a new space which has a total acceptablenumbering and in which the given space can be embedded in an e�ective and e�ectively home-omorphic way. The points of the new space will be r. e. �lters of the reexive hull of the givenstrong inclusion relation extended by a greatest element.Theorem 4.2 Let T be e�ective, x be acceptable, and �B be r. e. Then there is an algebraicconstructive domain T̂ with a total acceptable complete numbering x̂ and an e�ectively home-omorphic embedding F :T ! T̂ such that both F and its partial inverse are e�ective and F (T )is an enumerable dense subset of T̂ .Proof: For m, n 2 ! de�nem 2 n , n = 0 _m = n _ [m 6= 0 ^ n 6= 0 ^m� 1 �B n� 1]:Then the relation 2 is obviously r. e., reexive, and transitive with 0 as greatest element. De�neT̂ to be the set of all r. e. �lters of 2, i. e., the collection of all nonempty r. e. subsets of ! whichare upwards closed with respect to 2 and which with any two elements m and n contain anelement a such that a 2 m, n, and order it by set inclusion. Then (T̂ ;�) is a partial order withthe �lter f0g as smallest element.Our �rst aim is to construct a total numbering x̂ of T̂ . Let to this end s 2 R(1) be anenumeration of all indices i such that Wi is not empty and let r 2 R(1) such that for thosei 2 ! for which Wi is not empty, 'r(i) enumerates Wi. Set f = r � s. Moreover, let A be theset of all coded pairs hm;ni with m 2 n and E be the set of all hm;n; n0i such that hm;ni,hm;n0i 2 A. Then there are functions h, k 2 R(1) such that 'h(i)(0) = 'f(i)(0), 'k(i)(0) = 1,and the following conditions hold:1. If h'h(i)(a); 'f(i)('k(i)(a))i 2 Aa+1, then 'h(i)(a + 1) = 'h(i)(a) and 'k(i)(a + 1) ='k(i)(a) + 1. 15



2. If (1) does not hold and h'f(i)('k(i)(a)); 'h(i)(a)i 2 Aa+1, then 'h(i)(a + 1) ='f(i)('k(i)(a)) and 'k(i)(a+ 1) = 'k(i)(a) + 1.3. If (1) and (2) do not hold and there is some m � a + 1 such that m 2 Ws(i);a+1 andhm;'h(i)(a); 'f(i)('k(i)(a))i 2 Ea+1, then 'h(i)(a + 1) = �m � a + 1 : m 2 Ws(i);a+1 ^hm;'h(i)(a); 'f(i)('k(i)(a))i 2 Ea+1 and 'k(i)(a+ 1) = 'k(i)(a) + 1.4. If (1)-(3) do not hold then 'h(i)(a+ 1) = 'h(i)(a) and 'k(i)(a+ 1) = 'k(i)(a).Obviously 'h(i)(a) 2 Ws(i), for all a 2 !.Claim 1 If Ws(i) is a �lter, then the function 'k(i) is of unrestricted growth.Assume that there is some a 2 ! such that 'k(i)(�a) = 'k(i)(a), for all �a � a. Then 'k(i)(a) and'f(i)('k(i)(a)) are not comparable with respect to 2 because of conditions (1) and (2). SinceWs(i) is a �lter, there is some m 2Ws(i) such that m 2 'k(i)(a), 'f(i)('k(i)(a)). It follows thatcondition (3) holds with respect to some argument �a � a. This implies that 'k(i)(�a) > 'k(i)(a),which contradicts our assumption.Now, de�ne x̂ by x̂i = fm 2 ! j (9a)'h(i)(a) 2 m g:Then x̂i 2 T̂ , for every i 2 !.Claim 2 The map x̂ is onto.Let ŷ 2 T̂ . Since ŷ is nonempty and r. e., there is some index i such that ŷ = Ws(i). Hencex̂i � ŷ, as range('h(i)) � Ws(i). For the converse inclusion let c 2 ŷ. Then there exists somea 2 ! with c = 'f(i)(a). As we have just seen, the function 'k(i) ranges over all nonzeronatural numbers. Moreover, 'h(i)(0) = 'f(i)(0). Thus, it follows from the above constructionthat there is some �a � a such that 'h(i)(�a) 2 c, which means that c 2 x̂i.This shows that x̂ is a total numbering of T̂ . As it is readily veri�ed, (T̂ ;�) is constructivelydirected-complete with respect to this numbering. Note that the least upper bound of a directedenumerable subset of T̂ is the union of all �lters in this set.As next step we construct a basis for T̂ . For n 2 ! setẑn = fm 2 ! j n 2 m g:Then ẑn is an r. e. �lter.Claim 3 For all n 2 !, ẑn is compact.Let X̂ be an directed subset of T̂ such that ẑn � S X̂ . Then n 2 S X̂ , which means that thereis some ŷ in X̂ with n 2 ŷ. Since ŷ is a �lter, it follows that ẑn � ŷ.Claim 4 For all ŷ 2 T̂ the set f ẑn j ẑn � ŷ g is directed and ŷ is its least upper bound.Let ẑm, ẑn � ŷ. Then m, n 2 ŷ. Hence there is some a 2 ŷ such that a 2 m, n. It follows thatẑm, ẑn � ẑa. Thus, the set of all ẑn with ẑn � ŷ is directed. In order to see that ŷ is its leastupper bound, note for a 2 Sf ẑn j ẑn � ŷ g that a 2 ẑm, for some m 2 ! such that ẑm � ŷ, andhence that a 2 ŷ. If, conversely, a 2 ŷ then ẑa � ŷ, which shows that a 2 Sf ẑn j ẑn � ŷ g.As ŷ is r. e., for ŷ 2 T̂ , and ẑn � ŷ exactly if n 2 ŷ, the set of all n 2 ! with ẑn � ŷ isr. e. Moreover, since ẑm � ẑn if and only if n 2 m, we also have that f hm;ni j ẑm � ẑn g isr. e. Finally, with t 2 R(1) such that Ws(t(n)) = fng it is x̂t(n) = ẑn. Thus, T̂ is an algebraicconstructive domain.The Scott topology on T̂ has as canonical basis the collection of all setsB̂n = f ŷ 2 T̂ j ẑn � ŷ g:As x̂i 2 B̂n , ẑn � x̂i , n 2 x̂i , (9a)'h(i)(a) 2 n;we obtain that the indexing x̂ is computable.Claim 5 The numbering x̂ allows e�ective limit passing.16



Let p̂t 2 P (1) such that Ws(p̂t(a)) = fn 2 ! j (9c)'a(c) 2 n g. Moreover, let m be an index of aconverging normed recursive enumeration of basic open sets. We have to show that p̂t(m)# inthis case and that the enumeration converges to x̂p̂t(m). AsB̂a � B̂c , ẑc � ẑa , a 2 c;it follows that the set fn 2 ! j (9c)'m(c) 2 n g is an r. e. �lter. Hence, it is not empty, whichmeans that p̂t(m)#. Moreover, x̂p̂t(m) =Ws(p̂t(m)). Since x̂p̂t(m) 2 B̂n if and only if n 2 x̂p̂t(m),i. e., if and only if 'm(a) 2 n, for some a 2 !, we have that x̂p̂t(m) 2 B̂('m(c)), for all c 2 !.Furthermore , for all n 2 !, if x̂p̂t(m) 2 B̂n then there is some a 2 ! such that B̂('m(a)) � B̂n.Thus, the collection of all B̂('m(c)), for c 2 !, is a strong base of the neighbourhood �lter ofx̂p̂t(m).It follows that the numbering x̂ is acceptable, which by Theorem 3.6 implies that it is alsocomplete.Since for any y 2 T the set of all Bn such that y 2 Bn is a strong base of the neighbourhood�lter of y, it follows that fn+ 1 j y 2 Bn g[f0g is a �lter with respect to 2. We de�ne F :T ! T̂by F (y) = fn+ 1 j y 2 Bn g [ f0g:As every point in T is uniquely determined by its neighbourhood �lter and/or a base of it,the map F is one-to-one. Moreover, since x is computable, we have that it is also e�ective. Notethat xi 2 Bn if and only if F (xi) 2 B̂n+1. Hence, both F and F�1 are e�ectively continuous.In addition, we obtain that F (T ) is dense in T̂ .Claim 6 F�1 is e�ective.Let w 2 R(1) such that 'w(a) is a total enumeration of all numbers n with n+ 1 2Wa, if thereare such numbers, and de�ne g 2 R(1) by'g(i)(0) = 'w(i)(0);'g(i)(a + 1) =8<: �rst n enumerated with n+ 1 2Wi,n �B 'g(i)(a), and n �B 'w(i)(a+ 1) if such an n exists,unde�ned otherwise:If x̂i 2 F (T ) there is some point y 2 T such that x̂i = fn+ 1 j y 2 Bn g [ f0g. Moreover, x̂i =Ws(i) in this case. It follows that fBn j n+ 1 2Ws(i) g is a strong base of the neighbourhood�lter of y. Hence, g(s(i)) is an index of a normed recursive enumeration of basic open set whichconverges to y. Now, let the function pt 2 P (1) witness that the numbering x allows e�ectivelimit passing. Then F�1(x̂i) = xpt(g(s(i))).The idea to obtain a total acceptable extension of an acceptable numbering x of an e�ectivespace T was to enlarge T by su�ciently many �nite elements. By de�nition an element y 2 Tis �nite if it has a singleton strong base, say fBng. This means that for all Bm with y 2 Bmone has that n �B m. It follows that F (y) = ẑn+1. This shows that the embedding F preserves�niteness. If one thinks of a basic open set as a �nitely describable property, the �nite elementsare characterized by only a �nite part of the (in�nite) information used to describe the totalelements of the space.The following de�nitions are essentially due to Berger [1], who gave them in the context ofScott domains.De�nition 4.3 Let (T; � ) be a T0-space.1. A �nite subset fy0; : : : , yag of T is called separable, if there are open sets O0; : : : , Oasuch that y0 2 O0, : : : , ya 2 Oa and the intersection O0 \ � � � \ Oa is empty. We say inthis case that O0; : : : , Oa separate y0; : : : , ya.2. A system U of disjunct pairs of open sets separates fy0; : : : , yag, if there are O0; : : : , Oaamong the �rst components of the pairs in U which separate y0; : : : , ya.17
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