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Abstract

The impact of experimental design on the interpretation of a scien-

tific experiment is a subject of major controversy. Are data a neutral

arbiter between competing hypotheses, or is their interpretation in-

timately connected to the experimental design from which they are

generated? The debate focuses on the relevance of stopping rules in

sequential trials. However, Bayesian and frequentist statisticians and

philosophers of science are apparently deadlocked in their controversy.

To resolve the deadlock, I suggest a threefold strategy: (i) to distin-

guish various senses of relevance of stopping rules, (ii) to consider the

requirements of experimental practice to a higher degree and (iii) to

review the alleged counterexamples from a decision-theoretic perspec-

tive. While maintaining the pre-experimental relevance of design and

stopping rules, this approach also leads us to the evidential, post-

experimental irrelevance of stopping rules.
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1 Exposition

Which relevance does the design of a statistical experiment in science have,

once the experiment has been performed and the data have been observed?

Do data speak for themselves or do they have to be assessed in conjunc-

tion with the design that was used to generate them? Few questions in the

philosophy of statistics are the subject of greater controversy.

The paradigmatic example is the inferential role of stopping rules in se-

quential trials. Those trials, that can be compared to the repeated toss of

a coin, accumulate evidence from several independent and identically dis-

tributed trials. Sequential trials are standardly applied in medicine when the

efficacy of a drug is tested by giving it to several patients after each other.

The stopping rule describes under which circumstances the trial is termi-

nated and is thus a centerpiece of the experimental design. Possible stopping

rules could be “give the drug to one hundred patients”, “give the drug until

the number of failures exceeds the number of recoveries” or “give the drug

until funds are exhausted”. In other words, they indicate the number of

repetitions of the trial as a function of some feature of the observed data,

i.e. technically speaking, a stopping rule τ is a function from a measurable

space (X∞,A∞) – the infinity product of the sample space – into the natural

numbers such that for each n ∈ N, the set {x|τ(x) = n} is measurable.1

In the above example, the question about the relevance of stopping rules

can be recast as the question whether our inference about the efficacy of

1I confine myself to noninformative stopping rules – stopping rules that are independent
of the prior distribution of the parameter. This means that for a sequence of random
variables (Xn)n∈N representing the trial results, the event {τ = n} is measurable with
respect to σ(X1, . . . , Xn). See Schervish 1995, 565.
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the drug should be sensitive to the proposed ways to conduct and to termi-

nate the experiment. If stopping rules were really indispensable and if we

performed less trials than the stopping rule prescribed, e.g. because funds

are exhausted or because unexpected side effects occur, a proper statisti-

cal interpretation of the observed data would be difficult, if not impossible.

The (ir)relevance of stopping rules thus has severe implications for scientific

practice and the proper interpretation of sequential trials. Therefore, both

scientists and philosophers of science should pay great attention to the ques-

tion whether stopping rules are a crucial and indispensable part of statistical

evidence or not.

The statistical community is deeply divided over that question. From

a frequentist (Neyman-Pearsonian, error-statistical) point of view, a biased

stopping rule, e.g. sampling on until the result favors our pet hypothesis,

will lead us to equally biased conclusions (Mayo 1996, 343-345). Bayesians,

however, claim that

“The design of a sequential experiment is [..] what the experi-

menter actually intended to do.” (Savage 1962, 76)

Since such intentions are “locked up in [the experimenter’s] head” (ibid.),

stopping rules cannot matter for sound inference (see also Edwards, Lind-

man and Savage 1963, 239). The following principle captures the Bayesian

position in a nutshell:2

Stopping Rule Principle (SRP): In a sequential experiment

with observed data x = (x1, . . . , xn), all experimental informa-

2See also Royall 1997, 68-71. Note that the first part of the SRP contains the Likelihood
Principle (Birnbaum 1962; Berger and Wolpert 1984).
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tion about ϑ is contained in the function Pn(x|ϑ); the stopping

rule τ that was used provides no additional information about ϑ.

(Berger and Berry 1988, 34, notation changed for convenience)

However, the debate is characterized by a mutual deadlock, because each

side presupposes their own inferential framework and measures by their own

standards. For instance, Howson and Urbach (2006, 251) bluntly claim that

unless the Bayesian position is led into absurdity in Bayesian terms, “there

is no case whatever for the Bayesian to answer”. Frequentists respond in

a similar way to the Bayesian charge, pointing out that error probabilities

are the hallmark of a sound inference, and that they do depend on stopping

rules (Mayo 1996, 348). But do we really have to wear Bayesian or frequentist

glasses in order to enter the debate? Isn’t there a strategy to overcome the

stalemate between Bayesians and frequentists?

I believe that we can break the deadlock, and here I outline my strat-

egy. First, we make the distinction between pre-experimental and post-

experimental evidential relevance explicit. This will help us to disentangle

and to classify the existing arguments. Second, we elicit which conception of

statistical evidence best responds to the practical needs of empirical scien-

tists. This has immediate consequences for the relevance of stopping rules.

Third, we assert the pre-experimental relevance and post-experimental ir-

relevance of stopping rules and vindicate this standpoint from a decision-

theoretic perspective. Thus, instead of solely relying on foundational in-

tuitions, we combine arguments from mathematical statistics and decision

theory with a methodological perspective on the needs of experimental prac-

tice.
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2 Measures of Evidence: A Practitioner’s Per-

spective

The two senses in which stopping rules can be relevant correspond to two

stages of a sequential trial: first, the pre-experimental stage where the trial is

planned and the stopping rule is determined, and second, the post-experimental

stage where observed data are interpreted and transformed into an evidential

assessment. For the latter project, we need evidence measures that summa-

rize raw data to make us see which of two competing hypotheses is favored

over its rival. Such quantifications help us to endorse or to reject scientific

hypotheses or to make policy-relevant decisions. For instance, frequentist

statistics is concerned with statistical testing and the comparison of two

mutually exclusive hypotheses, the null hypothesis H0 and the alternative

H1. After looking at the data, one of them is accepted and the other one

is rejected. Such decision rules are characterized and ranked according to

their error probabilities, i.e. the probability of erroneously rejecting the null

hypothesis (type I error) and the probability of erroneously rejecting the

alternative hypothesis (type II error).3 However, such error probabilities

characterize (pre-experimentally) a particular testing procedure and do not

directly tell us (post-experimentally) the strength of the observed evidence.

For this reasons, frequentists supplement their error analysis by a measure

of evidence, such as p-values, significance levels, or most recently, degrees of

severity (Mayo and Spanos 2006, 337-346). Neglecting subtle differences be-

3Other frequentist procedures, such as constructing confidence intervals, are equally
justified by the error probabilities which characterize that procedure. Thus, in the re-
mainder of the paper, I focus on the hypothesis testing framework.
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tween those measures, they are united in measuring the evidence against H0

by summing up the H0-likelihoods of those observations that have a greater

discrepancy from the null hypothesis than the observed value x:

p := PH0(T (X) ≥ T (x)). (1)

Here T is a suitable (minimally sufficient) transformation of the data that

indicates the discrepancy between the data and H0. In other words, p-values

(taken pars pro toto4) give the probability that, if the null hypothesis were

true and the experiment were repeated, the results would speak at least as

much against H0 as the actual data do. Thus, p-values summarize the evi-

dential import of the data and measure the tenability of the null hypothesis

in the light of incoming evidence such that we can base further decisions on

them. Indeed, p-values are widespread in the empirical sciences and often

a compulsory benchmark for experimental reports, e.g. in medicine or ex-

perimental psychology. In particular, only results with a p-value lower than

0.05 are generally believed to be (statistically) significant and publishable

(Goodman 1999).

All those measures of evidence are sensitive to the used stopping rule.

This comes as no surprise since each stopping rule shapes up a different

sample space, e.g. in a fixed sample size scheme and a variable sample size

scheme, different observations are possible. In other words, p-values do not

only depend on the likelihoods of the actually observed results, but also

on the likelihood of results that could have been observed under the actual

4In Mayo and Spanos’s (2006, 342) framework, the severity with which H1 passes a
test against H0 is equal to 1− p.
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experimental design as equation (1) makes clear. Hence, for a frequentist

statistician who works with p-values, significance levels, degrees of severity or

the like, the strength of the observed evidence depends on the used stopping

rule.

To see whether this is a desirable or embarrassing property, we should

clarify our expectations of a measure of statistical evidence. Evidence about

a parameter is required for inferences about that parameter, e.g. for sensible

estimates and decisions to work with this rather than that value (e.g. ϑ = ϑ0

instead of ϑ = ϑ1). An evidence measure transforms the data as to provide

the basis for a scientific inference. In order to be suitable for public communi-

cation in the scientific community and for use in research reports, a measure

of evidence should be free of subjective bias and immune to manipulation, as

well as independent of prior opinions. While we can disagree on the a priori

plausibility of a hypothesis, we should agree on the strength of the observed

evidence – that is the very point of evidence-based approaches in science

and policy-making. Therefore we need a method to quantify the information

contained in the data that is independent of idiosyncratic convictions and

immune to deliberate manipulations.

To clarify the point, consider an example. A malicious experimenter

conducts a sequential trial with a certain stopping rule, but the evidence

against the null which she finds is not as strong as desired. In particular,

the p-value is not significant enough to warrant rejection of the null and to

publish the results (p ≈ 0.051). What can she do? The first option consists in

outright fraud – she could fake some data (e.g. replace some observed failures

by successes) and make the results significant in that way. While tempting,
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such a deception of the scientific community is risky and would be heavily

punished if discovered. The career of our experimenter would be over once

and for all. Therefore a second option looks more attractive: not to report

the true stopping rule τ1 (fixed sample size), but a modified stopping rule τ2

under which the data D yield a p-value smaller than 0.05.5 The results are

now “statistically significant” and get published. But clearly, as readers of

a scientific journal, we want to be protected against such tricks. The crucial

point is that the malicious experimenter did not manipulate the data: she was

just insincere about her intentions when to terminate the experiment. Using

fake data involves considerable risk: if continued replications fail to reproduce

the results, our experimenter will lose all her reputation. By contrast, she can

never be charged for insincerely reporting her intentions. The crucial point

here is not the frequently uttered intuition that “intentions cannot matter

for strength of evidence” (cf. p. 4), but rather that the scientific community

is unable to control whether these intentions have been correctly reported.

This inability to detect subjective distortion and manipulation of statistical

evidence is a grave problem for frequentist methodology.

What kind of answers could the frequentist give? To propose a standard-

ized stopping rule τ , such as fixed sample size, does not help: experimenters

could still use another stopping rule τ ′ and report the results as if they had

been generated by τ . What about the (actually made) proposal to fix and

to publicly declare a stopping rule in advance? This sounds good, but a

5For instance, she could have tested the null hypothesis ϑ = 0.5 in 46 Bernoulli (suc-
cess/failure) trials with fixed sample size and have obtained 29 successes with p = 0.052.
However, under a Negative Binomial stopping rule (sample until you get 17 failures), the
p-value would have been p = 0.036 < 0.05.
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stopping rule which covers all eventualities in advance is hard, if not impos-

sible, to find. What if research funds expire because the trial proves to be

more expensive than thought? What if unexpected technical problems blur

the measurements or force the termination of the experiment? These prob-

lems are certainly no remote thought experiments – they frequently occur

in scientific practice. Considering all those external influences in advance,

and assigning probabilities to them (!), as it is required for explicit stop-

ping rules, is certainly not feasible. Should we then consider data from early

stopped experiments as entirely worthless because this course of events was

not accounted for in planning the experiment and formulating the stopping

rule?

At this point, we cannot just be a little bit frequentist – if we believe in

the evidential, post-experimental relevance of stopping rules, then we have to

be silent on the meaning of data where the stopping rule is unavailable, and

to answer the above question in the affirmative. But if we throw the data

into the trash bin, we give away a great deal of what reality tells us, imped-

ing scientific progress as well as responsible, evidence-based policy-making.

In fact, no journal article that reports p-values (and is implicitly commit-

ted to the relevance of stopping rules) ever bothers about fine-tuning the

stopping rule to the external circumstances under which the experiment was

conducted. Thus, empirical scientists do not take the relevance of stopping

rules as seriously as their widespread adherence to the frequentist framework

of statistical inference suggests. In fact, they have no other choice when

they want to maintain ordinary experimental practice. Specifying the stop-

ping rule in advance sounds good, but specifying the correct, comprehensive

10



stopping rule (which we need to interpret the results properly) is practically

impossible. Thus, the frequentist understanding of evidence, whether expli-

cated as p-values, significance levels or degrees of severity, is unable to cope

with the practical problems that arise when the relevance of stopping rules

is taken seriously.

The non-frequentist alternatives, such as likelihood ratios, or their gener-

alization, Bayes factors, fare much better. These measures of evidence merely

build on publicly accessible factors, such as the likelihood of observed data

under competing hypotheses, and possibly explicit prior distributions:

B(H1, H0, x) :=
P (H1|x)

P (H1)

P (H0|x)

P (H0)
=

∫
ϑ∈H1

P (ϑ|H1)P (x|ϑ,H1) dϑ∫
ϑ∈H0

P (ϑ|H0)P (x|ϑ,H0) dϑ
. (2)

For the case of two competing point hypotheses H0 and H1, the Bayes factor

collapses into the likelihood ratio of the two hypotheses:

L(H1, H0, x) =
P (x|ϑ = ϑ1)

P (x|ϑ = ϑ0)
. (3)

It is easy to check that both (2) and (3) conform to the SRP and remain

unaffected by stopping rules.6 Furthermore, Lele (2004) has shown that

in comparing point hypotheses, the likelihood ratio is the only measure of

evidence that satisfies a number of reasonable invariance conditions.7

The preceding arguments have dealt with the evidential, post-experimental

6Note that this does not hold for improper priors where the integral over the probability
density is not equal to 1, see Mayo and Kruse 2001.

7A prima facie counterargument against Bayes factors consists in the “subjectivity”
of the prior probabilities in B(H1, H0, ·). But priors can be reported separately and
disentangled from the “impact of the evidence”.
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irrelevance of experimental design. Now we have to integrate this position

into a decision-theoretic framework and defend it against attempts to ren-

der it incoherent. Furthermore, we have to explore why stopping rules often

appear to be relevant and whether they are pre-experimentally relevant, i.e.

relevant for responsible and efficient planning of an experiment.

3 Coherent Testing: A Decision-Theoretic Ar-

gument

How can frequentist statisticians respond to the charge? Usually, they aim

at a reductio ad absurdum of the evidential irrelevance of stopping rules (e.g.

Mayo 1996; Mayo and Kruse 2001), i.e. they try to beat the Bayesians

and their allies in their own game. One example is the following: Medical

scientists conduct a phase II trial, i.e. trial with 100-300 participants that

test the efficacy of a newly invented drug. If the drug proves to be effective

in the phase II trial, a large-scale randomized controlled (phase III) trial will

take place. Due to the costs of the experiments, the desire for subsequent

funding, pressure from the pharmacy industry, etc., the scientists would be

happier with a significant result (i.e. rejecting the null hypothesis that the

new drug is not effective) than an insignificant one. Thus, upon learning

that the collected results do not achieve the required significance level, our

scientists decide to sample on and to include new patients. Finally, they

obtain a result that would, if reported as a fixed sample size experiment,

move the test into phase III. Shouldn’t we be suspicious about such a move?
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Isn’t such a conclusion less trustworthy than a conclusion drawn from the

same data, but achieved in a “honest” way, without any interim decisions?

Mayo writes:

“[...] the try-and-try-again method allows experimenters to attain

as small a level of significance as they choose (and thereby reject

the null hypothesis at that level), even though the null hypothesis

is true.” (Mayo 1996, 343)

Due to the dodgy way in which the conclusion was achieved, frequentist

statisticians are ostensibly justified to assert that such data do not provide

genuine evidence against the null hypothesis. Whereas Bayesians are al-

legedly unable to detect that the experiment was biased towards a particular

conclusion (see the discussion in Savage 1962). Evidently, the above example

can be easily transferred to other testing problems in science.

Counterexamples of the above type raise two kinds of worries. The first is

a pre-experimental one, namely that certain stopping rules inevitably drive

our inference into a particular direction. Hence, Bayesians apparently neglect

bias and manipulation as a source of impressively high posterior probabilities.

This worry is addressed by the results of Kadane, Schervish and Seidenfeld

(1996) who prove that the posterior probability of a hypothesis cannot be

arbitrarily manipulated. If we stop an experiment if and only if the posterior

of a hypothesis raises above a certain threshold, there will be a substantial

chance that the experiment never terminates. It is therefore not possible to

reason to a foregone conclusion and to appraise a wrong hypothesis, or to

discredit a true hypothesis, come what may.

13



Of course, this does not mean that Bayesians should deny the impor-

tance of experimental design. By contrast, when each single sample comes

at a certain cost (such as in medical trials where surveillance is expensive),

Bayesians and frequentists alike have to design the experiment in a way that

the expected sample size is minimized. Indeed, a huge pile of literature deals

with designing sequential experiments, both from Bayesian and frequentist

perspectives (e.g. Wald 1947; Armitage 1975; Berry 1987). So both sides

are well advised to affirm the pre-experimental relevance of stopping rules,

and also of error probabilities. The crucial question is the post-experimental

issue: once we have observed the data, do we gain anything from learning

the stopping rule according to which they have been produced?

To decide the question, note that in science, hypothesis testing is used to

substantiate decisions of all kinds, such as establishing a working hypothesis

for further research, moving a trial into the next stage, or approving of a new

medical drug. Thus, we should adopt a decision-theoretic perspective where

gains and losses for right and wrong decisions, and the risk of various testing

strategies, are taken into account. As I do not want to beg the question, I

focus on a frequentist understanding of risk with respect to hypothesis tests

and decision rules. In the remainder of the section I demonstrate that not

the Bayesians, but the frequentists are beaten in their own game. Let me

elaborate.

In testing hypotheses and making decisions, frequentists rely on pre-

specified error probabilities. In particular, they specify the level of the type

I error – the probability of erroneously rejecting the null hypothesis (e.g.

α = 0.05) – and aim at the most powerful test (i.e. the test with the low-
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est type II error) at this level. This gives a decision rule for accepting or

rejecting the null hypothesis. In particular, upon learning that stopping rule

τ1 was used, frequentist inference interprets the data as produced by the

statistical model induced by τ1. In other words, the frequentist hypothesis

test – usually the most powerful test at level α – and the associated decision

rule are based on calculations in that model. Vice versa if they learn that τ2

was used, etc. Such a stopping-rule sensitive procedure is, in the frequentist

understanding, preferred to a procedure that interprets the data as gener-

ated by an arbitrary stopping rule. I take this to be the canonical way to

phrase the post-experimental relevance of stopping rules in frequentist terms

(see Schervish, Seidenfeld and Kadane 2002 on fixed-level testing). In the

calculations below, this standpoint is expressed in the decision rule δS.

Now, assume that the following conditions are met:

1. Let ϑ ∈ Rm be the parameter of interest, with H0 : ϑ ∈ Θ0 ⊂ Rm and

H1 : ϑ ∈ Θ1 ⊂ Rm. Let (X ,A,Pϑ, ϑ ∈ Θ0 ∪ Θ1) be the corresponding

statistical model, with observed data x ∈ X n.

2. Let Sx be the set of non-informative stopping rules τ (cf. p. 3) such

that ∀y ∈ X∞: if yi = xi ∀i ≤ n, then τ(y) = n. In other words, Sx is

the set of (non-informative) stopping rules that could have been used

to generate the data x.

3. Let µ be a probability measure on (Sx,B), and let δS : Sx → {0, 1}, for

each τ ∈ Sx, be the following 0-1 decision rule: H0 is rejected if and

only if H1 passes, conditional on x, an α-level significance test against

H0, in the model (X n,An,PτΘ0
,PτΘ1

).
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4. Let δτ a 0-1 decision rule that interprets data x invariably as a result

of an experiment with stopping rule τ , and rejects H0 if and only if

H1 passes, conditional on x, an α-level significance test against H0, in

the model (X n,An,PτΘ0
,PτΘ1

). Since τ is treated as a constant, either

δτ = 0 or δτ = 1.

5. Let L = (lij)i,j∈{0,1} be the loss matrix – lij being the loss suffered by

opting for Hi when Hj is true –, with l00 < l10 and l01 > l11.

Proposition: Assume 1.-5. let R(ϑ, ·) be the frequentist risk of a decision

rule, understood as the expected loss if ϑ happens to be the true parameter.

Then:

• For each τ ∈ Sx, either R(ϑ, δτ ) < R(ϑ, δS) ∀ϑ ∈ Θ0, or R(ϑ, δτ ) <

R(ϑ, δS) ∀ϑ ∈ Θ1.

• For each ϑ ∈ Θ0 ∪Θ1, there is a τ ∈ Sx such that R(ϑ, δτ ) < R(ϑ, δS).

Proof: For each τ ∈ Sx, either δτ = 0 or δτ = 1. Assume first δτ = 0.

Let then ϑ ∈ H0. Then R(ϑ, δτ ) = l00 and

R(ϑ, δS) = µ0 l00 + (1− µ0) l10

where µ0 := µ{τ ∈ Sx|H0 is accepted on the basis of x in PτΘ0
}.

R(ϑ, δS)−R(ϑ, δτ ) = µ0 l00 + (1− µ0) l10 − l00

= (1− µ0) (l10 − l00)

> 0.
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Similarly for δτ = 1 where we choose ϑ ∈ H1:

R(ϑ, δS)−R(ϑ, δτ ) = µ0 l01 + (1− µ0) l11 − l11

= µ0 (l01 − l11)

> 0.

The second part of the proposition follows immediately. �

Corollary: Preferring δS over δτ = 0 and δτ = 1 leads to incoherence,

for any value of ϑ, in the sense that a Dutch book (viz. a sure loss) can be

construed against these preferences.

Proof: Follows straightforwardly from the second part of the proposition.

Compare to the argument given in section 5.1. of Schervish, Kadane and

Seidenfeld 2003.

Remark 1: The proposition sounds complicated, but it merely captures

the intuitive conjecture that it depends on the true value of ϑ which decision

rule minimizes the frequentist risk. Also note that the result is independent

of µ, i.e. when we get to know the used stopping rule post-data, it does not

matter whether this particular stopping rule was likely to be chosen at the

outset.
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Remark 2: The frequentist’s dilemma bears a close relationship to the

problem of testing a hypothesis at a fixed level when a random choice between

different experiments is made (Cox 1958) or when the value of a nuisance

parameter is unknown (Schervish, Kadane and Seidenfeld 2003). In both

cases, sticking to fixed-level testing leads to incoherence.8

A practical application of this result is an experiment where we are told

the data, but not the stopping rule. Assume that post-mortem elicitation

would take some time and effort. The above results tell us that if we decide

to treat the data as generated by e.g. a fixed sample size experiment, we will

do better than waiting for the true stopping rule to be reported for some

values of ϑ, while doing worse for others. Thus, in a frequentist framework

there can be no general argument for taking into account the stopping rule,

as opposed to neglecting it. More precisely, if a frequentist prefers stopping-

rule-sensitive fixed-level testing to a fixed-level test of H0 with respect to

arbitrary stopping rules, her set of preferences is incoherent. In the medical

trial example given at the outset, this implies that caring for the actually used

stopping rule (instead of treating the trial as, say, a fixed-sample experiment)

makes certain presuppositions on our beliefs about the drug efficacy ϑ: for

certain values of ϑ, the expected loss will decrease, while for others, it will

increase. Thus, prior expectations on ϑ have to be formulated to decide

between both options. But these kind of expectations on ϑ (such as prior

8Teddy Seidenfeld reminded me that δS is an inadmissible (dominated) decision rule, in
the sense that a test which is randomized over the elements of Sx could achieve a lower type
II error than δS , while maintaining the same type I error level α, see Cox 1958. However,
since µ is in general unknown, this remains a result of purely theoretical interest.
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distributions) are what frequentist statisticians or philosophers of statistics,

by the very nature of their approach, want to avoid.9

Bayesians, on the other hand, avoid these troubles by assessing evidence

in terms of Bayes factors and posterior probabilities which are not at all

affected by stopping rules. Hence, the practical argument against the post-

experimental relevance of stopping rules from section 2 obtains a theoretical,

decision-theoretic vindication.

4 Evaluation: A Philosopher’s Conclusion

The debate about the relevance of experimental design and stopping rules

is blurred by the lack of clarity about which kind of relevance is meant.

Equivocation and confusion result. Moreover, the debate is characterized by

a mutual deadlock. To resolve it, I have suggested to distinguish pre- and

post-experimental relevance, and to choose a position that corresponds to the

practical needs of empirical science. Such a position has to reject the post-

experimental, evidential relevance of stopping rules: First, such a standpoint

would yield measures of evidence that are easily manipulable, without any

means of control on behalf of scientific institutions. Thus, such measures of

evidence cannot play their proper role in scientific communication. Second,

such a standpoint would also lead to decision-theoretic incoherence. In par-

ticular, a frequentist who claims the post-experimental relevance of stopping

rules, cannot avoid to refer to prior expectations on the unknown parameter,

9Frequentists might, while conceding that their decision rule is strictly spoken incoher-
ent, maintain that it is at least risk-averse in the following sense: the expected loss of δS
will always figure between the expected losses of δτ = 0 and δτ = 1. This argument will
be pursued in further work.
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undermining the very foundations of frequentist inference.

The valid core of the frequentist argument is the pre-experimental rele-

vance of stopping rules as a means of providing for efficient, cost-minimizing

sampling. The lack of disentanglement between both concepts of relevance

has obfuscated the debate and led to the belief that stopping rules should

matter post-experimentally, too. This belief is, however, fallacious. Hence,

experimental design – and in particular, the design of stopping rules – re-

mains indispensable for scientific inference, but in a more narrow sense than

frequentists statisticians and philosophers of science believe.
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