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Abstract

This paper develops axiomatic foundations for a probabilistic theory of causal

strength. I proceed in three steps: First, I motivate the choice of causal Bayes nets

as a framework for defining and comparing measures of causal strength. Sec-

ond, I prove several representation theorems for probabilistic measures of causal

strength—that is, I demonstrate how these measures can be derived from a set

of plausible adequacy conditions. Third, I compare these measures on the basis

of their characteristic properties, including an application to quantifying causal

effect in medicine. Finally, I use the above results to argue for a specific measure

of causal strength and I outline future research avenues.
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1 Introduction

Causation is a central concept in human cognition. Knowledge of causal relationships

enables us to make predictions, to explain phenomena, and to understand complex

systems. Decisions are taken according to the effects which they are supposed to

bring about. Actions are evaluated according to whether or not they caused an event.

Since the days of Aristotle, causation has been treated primarily as a qualitative,

all-or-nothing concept. A huge amount of literature has been devoted to the qualita-

tive question “When is C a cause of E?” (e.g., Hume, 1739; Suppes, 1970; Lewis, 1973;

Mackie, 1974; Woodward, 2003). The comparative question “Is C or C’ a more effective

cause of E?” starts to get explored as well (e.g., Chockler and Halpern, 2004; Halpern

and Hitchcock, 2015). By contrast, the quantitative question “What is the strength

of the causal relationship between C and E?” is relatively neglected. This is surpris-

ing given the huge scope of applications in science, such as prediction, control and

manipulation, where causal judgments regularly involve a quantitative dimension: C

is a more effective cause of E than C’, the causal effect of C on E is twice as high

as the effect of C’, and so on (e.g., Rubin, 1974; Rosenbaum and Rubin, 1983; Pearl,

2001). For instance, regression coefficients are routinely interpreted as expressing the

causal strength of the predictor variable for the dependent variable. Regulatory med-

ical bodies only admit those drugs that have a substantial causal effect on recovery.

Cognitive psychologists use the concept of causal power to analyze human reasoning

(Cheng, 1997; Waldmann and Hagmayer, 2001; Sloman and Lagnado, 2015). In tort

law, the causal contributions of two actions to a damage (e.g., a car accident) have to

be weighed in order to determine individual liability (Rizzo and Arnold, 1980; Kaiser-

man, 2016b). All these judgments tap onto the concept of causal strength, and the size

of a causal effect.

Proposals for explicating this concept are rare and spread over different disciplines,

each with their own motivation and intended context of application. This includes cog-

nitive psychology (Cheng, 1997), computer science and machine learning (Pearl, 2000;
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Korb et al., 2011), statistics (Good, 1961a,b; Holland, 1986; Cohen, 1988), epidemiology

and clinical medicine (Davies et al., 1998), philosophy of science (Suppes, 1970; Eells,

1991), political philosophy and social choice theory (Braham and van Hees, 2009), and

legal theory (Rizzo and Arnold, 1980; Hart and Honoré, 1985). Although most of these

disciplines use a common formalism—probability theory—to express causal strength,

few axiomatic, principle-based explications are offered and normative comparisons of

different measures are rare (though see the survey paper by Fitelson and Hitchcock,

2011). That is the gap that this paper tries to fill.

Group/Outcome Effect No Effect Total Number
Treatment 1 A=20 B=100 A+B=120
Control 1 C=10 D=110 C+D=120
Treatment 2 A=45 B=75 A+B=120
Control 2 C=30 D=90 C+D=120

Table 1: The result of two clinical trials where the efficacy of a new migraine treatment
is compared to a control group. How should the causal strength of the treatment, as
opposed to the control, be quantified?

Measures of causal strength can differ substantially. The following example illus-

trates the differences and their practical implications. Consider a Randomized Con-

trolled Trial (RCT) where we administer a new migraine drug to a group of patients

and compare this treatment group to a control group which receives the standard

drug. Causal effect is measured on a binary scale: was the pain relieved or not? Sup-

pose the results are described by Table 1. In the epidemiological literature, several

measures have been proposed to measure the strength of such an effect (Davies et al.,

1998; Deeks, 1998; Sistrom and Garvan, 2004; King et al., 2012):

Relative Risk (RR) The ratio of the relative frequencies of an effect in both groups.

RR =
A/(A + B)
C/(C + D)

Absolute Risk Reduction (ARR) The difference between the relative frequencies of
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an effect in both groups.

ARR =
A

A + B
− C

C + D

Relative Risk Reduction (RRR) The difference between the relative frequencies of an

effect in both groups, relative to the frequency in the control group.

RRR =
A/(A + B)− C/(C + D)

C/(C + D)

Table 1 presents the outcomes of the trial (Treatment 1, Control 1). The relative risk is

RR = 2, meaning that the treatment halves the frequency of pain in the affected popu-

lation. The result looks similar for relative risk reduction RRR = 1, which amounts to

a 100% increase of recovery in the treatment group. However, the absolute risk reduc-

tion ARR = 0.083 tells a less enthusiastic story: only for 8,3% of the trial population,

the new treatment makes a difference. Since such measurements of causal strength di-

rectly affect clinical decision-making, the question which measure should be preferred

is vital and urgent (e.g., Stegenga, 2015; Sprenger and Stegenga, 2016).

To press this point even more, suppose that a second migraine drug is tested in

a different population. The design is again a Randomized Controlled Trial and the

data are given in the rows (Treatment 2, Control 2) in Table 1. We observe RR = 1.5,

RRR = 0.5 and ARR = 0.15. That is, while an evaluation in terms of RR and RRR

declares Drug 1 as the stronger cause of pain relief, an evaluation in terms of ARR

would lead to the conclusion that the Drug 2 is the much stronger cause of pain

relief. This poses an immediate practical dilemma for the doctor who is advising a

patient suffering from migraine. Which drug is more effective? Which one should she

prescribe? Similar examples occur in other disciplines whenever the causal strength

of two different interventions is compared.

The challenge for a philosophical theory of causal strength is to characterize the

various measures and to weigh the reasons for preferring one of them over another.
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In this paper, I develop axiomatic foundations for measures of causal strength. First,

I motivate the choice of causal Bayes nets as a framework where different measures

can be embedded and compared. The relata of the causal strength relation are con-

ceptualized as instantiations of binary variables (e.g., propositions). Second, I derive

representation theorems for various measures of causal strength, that is, theorems that

characterize a measure of causal strength in terms of a set of adequacy conditions.

Third, I compare and discuss these measures with a view towards applications: Un-

der which conditions are they invariant? What are beneficial and what are problematic

properties? To the extent that the proposed adequacy conditions are found compelling,

the technical results have normative implications for the choice of a measure of causal

strength. Indeed, I will make a case for a particular measure as opposed to working

with a plurality of causal strength measures. This distinguishes my results from in-

vestigations in formal epistemology where pluralism is the default position regarding

measures of confirmation and explanatory power (e.g., Schupbach and Sprenger, 2011;

Crupi and Tentori, 2012, 2013; Crupi et al., 2013).

The remainder of this paper is structured as follows: Section 2 motivates the choice

of causal Bayes nets as a framework for explicating causal strength and specifies the

formal structure of a causal strength measure. Section 3 contains the core of the paper:

the representation theorems for the various causal strength measures in terms of a

set of axioms or adequacy conditions. The methods of that section are partially taken

from confirmation theory and related areas of formal epistemology—an interesting

case of cross-fertilization in philosophy of science. Section 4 returns to the above

medical science example and applies the formal results of Section 3, while Section 5

discusses future research questions and concludes. The appendix contains the proofs

of the theorems.
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2 The Framework: Causal Bayes Nets

2.1 Probabilistic and Interventionist Accounts of Causation

Causes matter for their effects. This thought has already been articulated by David

Hume (1711–1776) in his famous description of two causally related objects: “if the

first object had not been, the second never had existed” (Hume 1748/77). This line

of reasoning has been developed later in counterfactual accounts of causation (Lewis,

1973, 1979).

However, causes do not always necessitate their effects. We classify smoking as a

cause of lung cancer although not every regular smoker will eventually suffer from

lung cancer. The same is true in other fields of science, e.g., when we conduct psy-

chological experiments or make economic policy decisions: interventions increase the

frequency of a particular response, but they do not guarantee it. Therefore, causal

relevance is often explicated as probability-raising, especially when reasoning at the

population level.

On the probabilistic account of causation, C is a cause of E if and only if C raises

the probability that E occurs (e.g. Reichenbach, 1956; Suppes, 1970; Cartwright, 1979;

Eells, 1991). This account captures the intuition that many causes make a difference

to their effects without necessitating them. Moreover, this account squares well with

many cases of scientific inference, like RCTs, where we compare the effect of two

different interventions. In such cases (e.g., the data from Table 1), it seems that the

stronger the divergence between the two groups, the greater the causal strength. In-

deed, probabilistic measures of causal strength, with their natural link to observed

relative frequencies, nicely square with an account of causation where causes raise the

occurrence rate of an effect.

However, a purely probabilistic account struggles with various aspects of causal

reasoning. Pearl (2000, 2011) objects that causal claims go beyond the pure associa-

tional level that is encoded in probability distributions; they express how the world

would change in response to interventions. Hence,
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“[e]very claim invoking causal concepts must rely on some premises that

invoke such concepts; it cannot be inferred from, or even defined in terms

of statistical associations alone.” (Pearl, 2011, 700)

The classical example is a case where cause and effect are correlated, but independent

conditional on a common cause. In the Netherlands, a high crime rate (E) has recently

been found to be correlated with a high percentage of migrants living in the affected

neighborhoods (C). In particular, p(E|C) > p(E|¬C). This suggests that a high rate

of migrants in a neighborhood leads to more crimes being committed. However, the

correlation could be explained by a common cause: the low socio-economic status of

these neighborhoods (Jensma, 2014). Call this variable X. Conditional on the various

levels of average income in a neighborhood, there was no correlation between the

crime rate and the number of migrants: p(E|C, X = x) ≈ p(E|¬C, X = x). Figure 1

gives a graphical representation. The naïve probabilistic account gets this wrong and

judges the number of migrants to be a cause of the high crime rate.

To solve this problem, contextual unanimity has been demanded: the putative

cause has to raise the probability of the effect in every background context (e.g.,

Cartwright, 1979). However, such a condition is very strict: causal relations vanish

as soon as there is a single background context where the probability is lowered. For

purposes of control and intervention, such a requirement is often impractical. It has

also been criticized as failing to match our intuitions in causal reasoning: we would

like to uphold the claim that smoking causes lung cancer, even if there is a subpopula-

tion with a rare gene, where smoking actually decreases the probability of lung cancer

(Dupré, 1984).

The interventionist account of causation (Spirtes et al., 2000; Pearl, 2000; Wood-

ward, 2003) provides an alternative to a purely probabilistic model of causation. It

supplements the probabilistic account with counterfactual thinking. On the interven-

tionist account, causal reasoning is always relative to the choice of a causal model M:

a directed acyclical graph (DAG) G, consisting of a set of vertices (=variables) and

directed edges, and a probability distribution over the variables in G. Figure 1 is a
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X

EC

Figure 1: A typical common cause (conjunctive fork) structure. Conditional on X, the
variables C and E are independent. Moreover, an intervention on C would disrupt the
causal arrow from X to C and not have any effect on E.

simple example of a DAG. The edges represent how an intervention on a variable

transfers to other variables; conversely, lack of a direct connection between variables

codifies a conditional independence. DAGs can also codify Pearl’s “causal assump-

tions” underneath our causal reasoning, when the arrows are interpreted causally. For

instance, each variable is assumed to be independent of its non-descendants, given its

direct causes (=its parents)—this is the famous Causal Markov Condition. Causally

interpreted DAGs are called causal Bayes nets.

On the interventionist account, C is a cause of E if and only if an intervention on

C causes a change of value in E, or changes the probability that E takes a certain value

(Woodward, 2012). Note that the interventionist account conceives causation as a rela-

tionship between variables, whereas the probabilistic account describes relationships

between events, or instantiations of such variables.1

But what is an intervention in the first place? An ideal intervention forces a variable

C to take a certain value while breaking the influence of other variables. In a DAG,

this amounts to breaking all arrows that lead into that variable. Pearl’s notation for

such an intervention is do(C = x). Formally, this means “lifting C from the influence

of the old functional mechanism and placing it under the influence of a new mech-

anism that sets the value C = x while keeping all other mechanisms undisturbed”

(Pearl, 2000, 70, notation changed). Imagine that we would like to study the effects of

classroom light on whether students are awake or asleep. The intensity of classroom

1In this paper, I italicize all propositional variables; their instantiations are printed in roman script,
following Bovens and Hartmann (2003).
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light depends in turn on the settings of the audiovisual system. However, we may

press the light switch manually, overruling the system settings, and then study the

effects of our intervention on the students (e.g., they wake up from deep sleep). This

way, we directly intervene on the light intensity and break the functional dependency

on the preconfigured system settings.

The interventionist account naturally distinguishes genuinely causal relations be-

tween C and E from relations where both variables are correlated as a result of a

common cause X. When one intervenes on C, the causal arrow leading from X to C

is broken and no effect on E occurs. See Figure 1. While the probabilistic account

compares p(E|C) and p(E|¬C), the interventionist account focuses on probability of

the effect conditional on an intervention on the cause (see also Meek and Glymour,

1994).

By explicating causal strength relative to causal models represented by causal Bayes

nets, this paper combines both perspectives. Causal Bayes nets make it easy to spot

which interventions affect which variables, and they have proved to be extremely use-

ful for causal inference in science (e.g., Pearl, 2000; Spirtes et al., 2000). On top of this,

they resemble other tools for causal inference, such as neural networks or connection-

ist expert systems. All in all, explicating causal strength relative to causal Bayes nets

looks like a sound methodological assumption to make (see also Korb et al., 2011).

However, I also take over some elements from the probabilistic account of causa-

tion. First, I define causal strength as a relationship between propositions rather than

variables, which is inspired by the question “how much does the cause raise the prob-

ability of the effect?”. Second, statistical relevance plays a major role in the explication

of causal strength measures. The next section fleshes out the details of my hybrid

account.

2.2 Explicating the Determinants of Causal Strength

As stated above, I understand causal strength as a relationship between propositions:

claims about the values of variables in a causal model, such as X = x, Y = y, and so
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on. To keep notation simple, I focus on binary propositional variables, but nothing

prevents us from generalizing the results to propositions about multicategorical or

metric (e.g., real-valued) variables. I explain implications for more complex cases of

causal inference at the end of the paper.

Let L be a propositional language with elements C, E ∈ L. The causal strength

between C and E is defined relative to a causal model M = (G, p(·)) ∈ M: a directed

acyclical graph G which includes the propositional variables C ∈ {C,¬C} and E ∈

{E,¬E}, and a probability distribution p(·) over the variables in G. The set of causal

models over variables from L is denoted by M. Moreover, my approach quantifies

causal strength with respect to a single background context, sidestepping a substantial

discussion in the field of probabilistic causation (e.g., Cartwright, 1979; Dupré, 1984;

Eells, 1991).

After these preliminaries, we are now ready for describing the determinants of

causal strength.

Formality For two propositions C, E ∈ L and a causal model M ∈ M, the causal

strength of C on E relative to M, η(C, E), is a continuous real-valued function

operating on a subset of L2 ×M, namely the set

S := {〈C, E, M〉 ∈ L2 ×M|M contains the variables C and E} (1)

In particular, the causal strength measure η(C, E) can be represented by a con-

tinuous function f : [0, 1]3 → R such that

η(C, E) = f (p(C), p(E|do(C)), p(E|do(¬C)))

Here, do(C) and do(¬C) are convenient notational shortcuts for setting the binary

variable C to its values C and ¬C. For reasons of convenience, reference to a causal

model is dropped in the notation of η. Also, in the adequacy conditions to follow, we

will always assume that M contains the variables C and E when we quantify over C,
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E and M.

Formality fixes the formal structure and the determinants of a causal strength

measure η(C, E). In particular, it can be expressed as a function of the base rate

of the cause and the probability of E under the relevant interventions on the cause:

p(E|do(C)) and p(E|do(¬C)). This takes up the basic idea behind probabilistic rele-

vance accounts of causation, which is essentially contrastive. More precisely, we ex-

press causal strength as a function of p(C), p(E|do(C)) and p(E|do(¬C)), given a par-

ticular background context. Many of our measures will also maintain the intuition that

positive causes need to raise the probability of their effects: C causes E if and only if

p(E|do(C)) > p(E|do(¬C)), and C prevents E if and only if p(E|do(C)) < p(E|do(¬C)).

The only difference to the venerable probabilistic account consists in the fact that we

use the interventionist calculus instead of simple conditional probabilities.

Formality does not distinguish between causation at the population level (=event-

types) and causation at the individual level (=singular events). The probabilistic-

interventionist calculus is suited for describing causal strength at both levels. This

distinction does not cover actual causation, or “cause in fact” (Halpern and Pearl,

2005a,b). In those cases, one already knows that both the cause and the effect oc-

curred: instead of estimating the predictive value of the cause, one has to attribute the

effect to one of the causes, and to compare the contribution of different causes. Most

results below are not meant to apply to actual causation.

Notably, Formality leaves out external factors such as typicality, normative expec-

tations and defaults, which are of theoretical significance and have been shown to

affect causal judgments in experimental settings (Knobe and Fraser, 2008; Hitchcock

and Knobe, 2009; Halpern and Hitchcock, 2015). While this implies that our model

does not capture all factors that may influence judgments of causal strength, there

are many applications (e.g., quantifying effect size in science) where it is desirable to

eliminate normative considerations, and to estimate causal strength from observations

and the results of interventions alone.

Formality is also blind to mediator variables—variables on a path between C and
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Figure 2: Mediators on the paths linking cause C and effect E.

E—and the presence of multiple paths leading from C to E (see Figure 2). Also this

choice is conscious. The reason is that mediators are often not directly measurable.

When we administer a medical drug (C) to cure migraine (E), there are numerous

mediators in an appropriate causal model that includes C and E. However, the medical

practitioner, who has to choose between different drugs, is mainly interested in the

overall effect that C has on E (how often does migraine go away?), not in the details of

causal transmission within the human body. Therefore I keep the model simple and

amalgamate the effects that C may have on E via different paths into one number—the

average or total effect of C on E (e.g., Dupré, 1984; Eells, 1991).

Sometimes, measuring path-specific effects is vital for policy-making and causal

attribution. My decision to focus on total effect does not rule out a path-specific

perspective, quite to the contrary. Measures of path-specific effect supervene on ele-

mentary measure of causal strength (e.g., Pearl, 2001). Only when such a measure is

chosen, one can get the calculations off the ground and meaningfully separate direct

from indirect effect. By investigating the properties of these elementary measures, this

paper grounds any template for measuring path-specific causal strength.

Table 2, which follows Fitelson and Hitchcock (2011), translates various probabilis-

tic measures of causal strength to the causal Bayes nets framework. By investigating

their formal properties, the following section creates a basis for comparing, discussing
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Pearl (2000) η(C, E) = p(E|do(C))

Suppes (1970) η(C, E) = p(E|do(C))− p(E)

Eells (1991) η(C, E) = p(E|do(C))− p(E|do(¬C))

“Galton” (covariation) η(C, E) = 4p(do(C)) p(do(¬C))[p(E|do(C))− p(E|do(¬C))]

Lewis (1986) η(C, E) =
p(E|do(C))

p(E|do(¬C))

Cheng (1997) η(C, E) =
p(E|do(C))− p(E|do(¬C))

1− p(E|do(¬C))

Good (1961a,b) η(C, E) =
1− p(E|do(¬C))

1− p(E|do(C))

Table 2: Some prominent measures of causal strength. I follow the labels of Fitelson
and Hitchcock (2011).

and appraising these measures. In the end, I will also defend my personal preferences

and draw some tentative conclusions regarding the question of whether we should

work with a single causal strength measure, or a plurality of measures. The dialectics

of the argument go either way: on the one hand, I use plausible adequacy conditions

to back a specific measure, on the other hand, I use implausible adequacy conditions

to argue against competitors.

3 The Representation Theorems

3.1 General Adequacy Conditions

The previous section has determined the mathematical structure and determinants

of measures of causal strength. The adequacy conditions in this subsection deal

with general properties of the measures, in particular with their ranking of different

cause/effect pairs.

We start with comparing two putative causes of an effect E. Suppose we ask what
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is a stronger cause of car accidents (E): drunk driving (C1) or bad weather conditions

(C2)? One may answer that C1 is a stronger cause of E than C2 if and only if C1 makes

E more expected than C2. In other words, a cause of an effect is stronger than another

cause if it has a higher likelihood of producing the effect. Consequently, we judge

drunk driving to be a stronger cause of car accidents than bad weather. The following

condition describes that way of reasoning.

Effect Production For propositions C1, C2, and E ∈ L and a causal model M ∈ M,

η(C1, E) > η(C2, E) if and only if p(E|do(C1)) > p(E|do(C2))

It may be objected that Effect Production neglects the contrastive nature of mea-

sures of causal strength. They should measure the degree of causal dependence on

C as opposed to ¬C, that is, the difference that an intervention on C makes for E.

Measures that satisfy Effect Production, however, are not sensitive to what happens

if ¬C1 or ¬C2 is the case. On the other hand, production rather than dependence

is an important part of many theories of causation (e.g., Dowe, 2000; Hall, 2004) and

measures of causal strength that focus on the probability of producing E should not

be dismissed from the start.

Inspired by the above concerns, the next adequacy condition focuses on the differ-

ence that two competing causes make for the target effect:

Difference-Making For propositions C1, C2, and E ∈ L and a causal model M ∈ M,

η(C1, E) > η(C2, E)

if and only if for a continuous function g : [0, 1]2 → R which is monotonically

increasing in the first and monotonically decreasing in the second argument,

without being constant in either argument:

g(p(E|do(C1)), p(E|do(¬C1))) > g(p(E|do(C2)), p(E|do(¬C2)))
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This condition adopts a contrastive perspective on causal strength: we only look at the

difference which two interventions make for the effect.2 The monotonicity constraint

on g expresses the intuitive condition that the more likely a cause C is to bring about

an effect E, the more sizeable its causal effect, all other things being equal. Vice versa

for ¬C. Such ways of causal reasoning are particularly relevant for RCTs and other

contexts where treatment (C) and control (¬C) groups are compared with respect to

their causal effect, e.g., for comparing the strength of two medical drugs.

We now proceed from the determinants to the scaling properties of causal strength

measures. I follow Fitelson and Hitchcock (2011) in explicating the degree to which C

prevents E as the degree to which C causes ¬E, that is, the absence of E. To measure

causation and prevention on the same scale, we now demand that the causal strength

of C for E equal the causal strength of C for ¬E, in terms of its absolute values. The

idea is that the negative causal effect of C on E (=the degree of causal prevention) is

just the flip side of the positive effect of C on ¬E; we are dealing with one and the

same propositional variable. This leads us to Fitelson and Hitchcock’s

Causation-Prevention Symmetry (CPS) For propositions C, E ∈ L and a causal

model M ∈ M,

−η(C, E) = η(C,¬E)

Evidently, only measures of causal strength which take both positive and negative

values can satisfy CPS. Positive causal strength indicates positive causation, negative

causal strength indicates prevention. As a consequence, η(C, E) = 0 denotes neutral

causal strength.3 A purely ordinal version of CPS is the following, strictly weaker

condition:

Weak Causation-Prevention Symmetry (WCPS) For propositions C, E1, and E2 ∈ L
2Base rates of causes may still matter for the effect. For instance, if C1 and C2 are two independent

causes of E, then p(E|do(C2)) = p(E|do(C2), C1)p(C1) + p(E|do(C2),¬C1)p(¬C1) takes into account the
base rate of the competing cause C1.

3This should not be conflated with causal irrelevance. A cause can be relevant for an effect, and yet,
the overall effect can be zero, e.g., when contributions via different paths cancel out. This is different
from a case where there is no causal connection between C and E.
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and a causal model M ∈ M, let E1 and E2 be screened off by a common cause C

(i.e., E1 ⊥⊥ E2 given C and ¬C). Then

η(C, E1) > η(C, E2) if and only if η(C,¬E1) < η(C,¬E2)

This condition demands that if C is a stronger cause of E1 than of E2, then C prevents

¬E1 more than ¬E2. The common cause condition has been added to avoid interactions

between E1 and E2 which might confound our intuitions.

I will often rescale candidate measures into a form that satisfies CPS. Moreover,

to avoid that the discussion depends too much on specific scaling properties, I will

usually not compare individual measures, but equivalence classes of measures, char-

acterized by the causal strength rankings they impose. The key concept is ordinal

equivalence. Two measures η and η′ are ordinally equivalent if and only if for all

propositions C, C’, E, E’ ∈ L and causal models M ∈ M,

η(C, E) > η(C′, E′) if and only if η′(C, E) > η′(C′, E′)

relative to M. Two ordinally equivalent measures may use different scales, but they

produce the same causal strength rankings and share most philosophically interesting

properties. The following subsections provide representation theorems for classes of

ordinally equivalent measures.

3.2 Causal Production and the Pearl Measure

Rank Team Points Team Points
after 36 out of 38 rounds after 37 out of 38 rounds

1 Roma 78 Inter 79
2 Inter 76 Roma 78
3 Juve 74 Juve 74

Table 3: A motivating example for Conditional Equivalence. Top of the Seria A after
36 and 37 out of 38 rounds, respectively.
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In this section, I provide an axiomatic characterization of Pearl’s measure of causal

effect η(C, E) = p(E|do(C)) (Pearl, 2000). To this end, I introduce another adequacy

condition. Consider Table 3. Three teams in the Italian Seria A—AS Roma, FC In-

ternazionale (“Inter”), and Juventus (“Juve”)—are still competing for the scudetto, the

national soccer championship. On the penultimate match day, Inter beats Juve in the

Derby d’Italia while Roma loses to another team. Call this conjunction of events C. Let

E1 = Inter will win the championship and E2 = Roma will be the runner-up. Given

C, E1 and E2 are logically equivalent. (Juve misses four and five points on both teams

and cannot surpass them any more.) In that case, we might say that C causes E1 and

E2 to an equal degree: given C, we cannot distinguish between both propositions. This

intuition is stated in the following adequacy condition:

Conditional Equivalence For C, E1 and E2 ∈ L and a causal model M ∈ M, as-

sume that E1 and E2 are logically equivalent given C (i.e., E1 ∧C |= E2 and

E2 ∧C |= E1). Then η(C, E1) = η(C, E2).

Taking this condition together with Formality and Effect Production, we can prove

the following theorem:

Theorem 1 (Representation Theorem for ηp) All measures of causal strength that satisfy

Formality, Effect Production and Conditional Equivalence are ordinally equivalent to

ηp(C, E) = p(E|do(C))

Pearl (2000, 70) calls ηp(C, E) = p(E|do(C)) the “causal effect” of C on E. It is easily

generalizable to the case to the causal strength of an intervention for a metric variable

E (rather than a proposition), where causal strength corresponds to the average value

of E under an intervention on C: ηP(C, E) = E[E|do(C)] (ibid.).

Pearl’s measure also fits well with cases of causal attribution. Kaiserman (2016a,b)

suggests that when several causes contribute to an effect, degree of causal contribution

and partial liability in legal reasoning should be proportional to ηp. The driver’s
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drunkenness (C1) has a much higher tendency to produce an accident (E) than the bad

weather conditions (C2); our judgments of causal strength and causal contribution

should mirror this fact. Kaiserman also applies a normalized version of ηp to voting

bodies in order to measure the causal contributions of different parties to a decision

(cf. Braham and van Hees, 2009). Note, however, that ηp violates Difference-Making,

and it does not distinguish between (positive) causation, causal prevention, and causal

neutrality.

3.3 Separability of Effects and the Probability-Raise Measure

The probabilistic causation literature identifies causes by their raising of the probabil-

ity of an effect. C raises the probability of E just in case

p(E|C) > p(E). (2)

While some authors, such as Skyrms (1980) and Eells (1991), prefer to identify

probability-raising in a strictly contrastive way (i.e., p(E|C) > p(E|¬C)), Equation (2) is

probably the most venerable and intuitive expression of the idea of probability-raising

(Reichenbach, 1956; Suppes, 1970; Cartwright, 1979). The corresponding measure of

causal strength is, in the interventionist notation,

ηpr(C, E) = p(E|do(C))− p(E). (3)

While this measure has never been defended systematically (though see the cursory

reference to ηpr in Pearl, 2011, 717), it is a natural candidate for measuring causal

strength: it quantifies the extent to which an intervention on C raises the base rate

of E. Indeed, ηpr can be characterized in a simple and straightforward way, using the

following property:

Separability of Effects For C ∈ L, two mutually exclusive propositions E1, E2 ∈ L

and a causal model M ∈ M, there is a function f : R2 → R, monotonically
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increasing in each argument, such that

η(C, E1 ∨ E2) = f (η(C, E1), η(C, E2))

with

η(C, E1 ∨ E2) > η(C, E1) if and only if p(E2|do(C)) > p(E2)

η(C, E1 ∨ E2) = η(C, E1) if and only if p(E2|do(C)) = p(E2)

η(C, E1 ∨ E2) < η(C, E1) if and only if p(E2|do(C)) < p(E2)

and vice versa for E1 and E2 reversed.

Separability of Effects is an eminently intuitive and practical principle. For example,

if E1 and E2 state that the value of a variable X is in the (disjoint) intervals I1 and I2,

respectively, we can use Separability of Effects to calculate the causal strength of C on

X ∈ I1 ∪ I2 from the causal strength of C for E1 and E2. Moreover, it states that the

causal strength for the disjunction is greater than the causal strength for the individual

effects just in case C is a (positive) cause of either effect.

With the help of Separability of Effects, we can characterize ηpr up to ordinal equiv-

alence:

Theorem 2 (Representation Theorem for ηpr) All measures of causal strength that satisfy

Formality, Effect Production and Separability of Effects are ordinally equivalent to

ηpr(C, E) = p(E|do(C))− p(E)

As an additional benefit, ηpr satisfies the Causation-Prevention Symmetry CPS.

We now proceed to representation theorems for measures which violate Effect

Production and satisfy Difference-Making instead. Given Formality and Difference-

Making, each of the adequacy conditions discussed below is sufficient to single out

a measure of causal strength up to ordinal equivalence. In this specific sense, the
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C X E

Figure 3: A DAG representing causation along a single path.

following conditions are pairwise inconsistent with each other.

3.4 Multiplicativity on Single Paths and the Difference Measure

How should causal strength combine on a single path, e.g., in the graph in Figure 3?

If causal strength is conceived of as the intensity of a physical process linking cause

and effect, overall causal strength should be a function of the causal strength between

the individual links. But which function g : R2 → R should be chosen such that

η(C, E) = g(η(C, X), η(X, E))?

A couple of requirements suggest themselves. First of all, g should be symmetric:

the order of mediators in a chain does not matter. Whether a weak link precedes a

strong link, or vice versa, should not matter for overall causal strength. Second, it

seems that the overall causal strength cannot be stronger than the weakest link in the

chain: If C and X are almost independent, it does not matter how strongly X and E

are correlated: the causal strength will be still weak. Similarly, if both links are weak,

the overall link will be even weaker. On the other hand, if the link is maximally strong

(e.g., η(C, X) = 1), then the strength of the entire chain will just be the strength of the

rest of the chain. Perfect connections between two nodes neither raise nor attenuate

overall causal strength (see also Good, 1961a, 311–312).

A very simple function that satisfies all these requirements is multiplication. Thus,

I propose the following principle:

Multiplicativity on Single Paths If the variables C and E are connected via a single

path with intermediate node X, then η(C, E) = η(C, X) · η(X, E).

As a corollary, we obtain that for a causal chain with multiple mediators, e.g.,
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C → X1 → . . .→ Xn → E,

η(C, E) = η(C, X1) · η(X1, X2) · . . . · η(Xn−1, Xn) · η(Xn, E)

In many cases, causal reasoning follows that principle. For instance, taking a medical

drug (C) may lower cholesterol levels substantially (X), but the effect of the drug on

mortality (E) via its impact on cholesterol may still be minuscule—just because choles-

terol is only one of many causes of mortality. Incidentally, Multiplicativity on Single

Paths assumes transitivity of causation, which is warranted for the binary variable

models considered in this paper (Korb et al., 2011; Halpern, 2016).

It is now possible to characterize all measures that satisfy Multiplicativity on Single

Paths, in addition to Formality and Difference-Making:

Theorem 3 (Representation Theorem for ηd) All measures of causal strength that satisfy

Formality, Difference-Making and Multiplicativity on Single Paths are ordinally equivalent to

ηd(C, E) = p(E|do(C))− p(E|do(¬C))

This is a simple and intuitive quantity that measures causal strength by comparing

the effect that different interventions on C have on E. Indeed, ηd is straightforwardly

applicable in statistical inference. For example, in clinical trials and epidemiological

studies, ηd(C, E) reduces to Absolute Risk Reduction, or ARR.

Holland (1986, 947) calls ηd the “average causal effect” of C on E—a label that is

motivated by the fact that ηd aggregates the strength of different causal links. Pearl

(2001) uses ηd as the basis for developing a theory of direct and indirect causal effects.

Neither of them justifies the choice of ηd on foundational grounds—a gap that is closed

by Theorem 3.

Note that ηd also satisfies CPS and Separability of Effects—in fact, it is the only

measure based on Difference-Making that satisfies this property. Moreover, ηd can be
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C

E1 E2

Figure 4: An effect E2 which is irrelevant regarding the causal relation between C and
E1.

rewritten as

ηd(C, E) = p(E|do(C))− p(E|do(¬C))

= p(¬E|do(¬C)) + p(E|do(C))− 1

Modulo subtraction of a constant, ηd(C, E) is a sum of two quantities that have been

called causal/explanatory necessity and causal/explanatory sufficiency by Hempel

(1965) and Pearl (2000). The names are natural: p(¬E|do(¬C)) indicates to what extent

C is necessary for producing E (what happens if an intervention brings about ¬C?), and

p(E|do(C)) indicates to what extent the presence of C is sufficient for producing E (what

happens if an intervention brings about C?). ηd(C, E) intuitively combines these two

plausible ways of thinking about causal strength.

3.5 No Dilution for Irrelevant Effects and Probability Ratio Measures

How strongly does C cause the conjunction of two effects—E1 ∧ E2—when C affects

only one of them positively, and the other effect (say, E2) is independent of C and of

E1? In such circumstances, we may call E2 an “irrelevant effect”. This situation is

represented visually in the DAG of Figure 4.

There are two basic intuitions about what such effects mean for overall causal

strength: either causal strength is diluted when passing from E1 to E1 ∧ E2, or it is not.

Dilution means that adding E2 to E1 diminishes causal strength, that is, η(C, E1 ∧ E2) <
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η(C, E1). Conversely, a measure is non-diluting if and only if in these circumstances,

η(C, E1 ∧ E2) = η(C, E1). This amounts to the following principle:

No Dilution for Irrelevant Effects For propositions C, E1, E2 ∈ L and a causal model

M ∈ M, let E2 ⊥⊥ C, and E2 ⊥⊥ E1 conditional on C. Then η(C, E1 ∧ E2) = η(C, E1).

Non-diluting measures of causal strength that satisfy Difference-Making can be

neatly characterized.4 In fact, they are all ordinally equivalent to Lewis’ probability

ratio measure (Lewis, 1986), as the following theorem demonstrates.

Theorem 4 (Representation Theorem for ηr) All measures of causal strength that satisfy

Formality, Difference-Making, and No Dilution for Irrelevant Effects are ordinally equivalent

to

ηr(C, E) =
p(E|do(C))

p(E|do(¬C))

and its rescaling to the [−1; 1] range

ηr′(C, E) =
p(E|do(C))− p(E|do(¬C))

p(E|do(C)) + p(E|do(¬C))
.

To some extent, this result can be interpreted as a reductio ad absurdum of the prob-

ability ratio measure family. After all, given the lack of a causal connection between

C and E2, it is plausible that C causes E1 ∧ E2 to a smaller degree than E1. Rain in

New York on November 26, 2016 (C) affects umbrellas sales in that city (E1), but it

does not affect whether FC Barcelona will win their next Champions League match

(E2). Therefore, the causal effect of rain on umbrella sales should be stronger than

the causal effect on umbrella sales in conjunction with Barcelona winning their next

match. This is bad news for ηr and ηr′ .

A way around this problem consists in restricting No Dilution for Irrelevant Effects

to prevention rather than (positive) causation. According to the intuition that underlies

CPS and WCPS, if C is a strong preventive cause of E1, then it is a strong positive cause

4Incidentally, the premises of the No Dilution condition are compatible with a prima facie correlation
between E1 and E2. However, this correlation vanishes as soon as we control for different levels of C.
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of ¬E1. Changing the prevented effect from E1 to E1 ∧ E2 then amounts to changing the

positively caused effect from ¬E1 to ¬(E1 ∧ E2) = ¬E1 ∨ ¬E2. In other words, we make

the (positive) effect less specific. It is not clear why this relaxation should attenuate

causal strength, and for this reason, degree of prevention should not be diluted by

adding irrelevant effects.5 We obtain the following adequacy condition:

No Dilution for Irrelevant Effects (Prevention) For propositions C, E1, E2 ∈ L and a

causal model M ∈ M let E2 ⊥⊥ C, E2 ⊥⊥ E1 conditional on C, and let C be a

preventive cause of E1. Then η(C, E1 ∧ E2) = η(C, E1).

I have motivated No Dilution for Irrelevant Effects (Prevention) by means of causation-

prevention symmetries; so it is natural that both conditions should go together. In-

deed, they figure in one and the same representation theorem.

Theorem 5 (Representation Theorem for ηcg) All measures of causal strength that sat-

isfy Formality, Difference-Making, No Dilution for Irrelevant Effects (Prevention) and Weak

Causation-Prevention Symmetry are ordinally equivalent to

ηcg(C, E) =


p(E|do(C))−p(E|do(¬C))

1−p(E|do(¬C))
if C is a positive cause of E

p(E|do(C))−p(E|do(¬C))
p(E|do(¬C))

if C is a preventive cause of E

For the case of positive causation, this measure agrees with two prominent proposals

from the literature. The psychologist Patricia Cheng (1997) derived

ηc(C, E) :=
p(E|do(C))− p(E|do(¬C))

1− p(E|do(¬C))
(4)

(that is, ηcg without the above case distinction) from theoretical considerations about

how agents perform causal induction and called it the “causal power” of C on E.

5I owe this line of argument to Sander Beckers. Moreover, there is an analogy to Vincenzo Crupi and
Katya Tentori’s discussion of probabilistic measures of explanatory power: they argue that explanatory
power should be diluted for adding irrelevant explananda to a good explanation, but they plea for non-
dilution in the case of explanatory failure (Crupi and Tentori, 2012, 369–371)—see also Cohen (2016).
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C

E1E2

Figure 5: A typical common cause structure where C screens off the two effects E1 and
E2.

Cheng’s measure is in turn ordinally equivalent to the measure

ηg(C, E) =
p(¬E|do(¬C))

p(¬E|do(C))
=

1− p(E|do(¬C))

1− p(E|do(C))

that the statistician and philosopher of science I.J. Good (1961a,b) derived from a com-

plex set of adequacy conditions. This ordinal equivalence, noted first by Fitelson and

Hitchcock (2011), is evident from the equation below.

ηc(C, E) =
−p(¬E|do(C)) + p(¬E|do(¬C))

p(¬E|do(¬C))
= − 1

ηg(C, E)
+ 1

The two previous theorems elucidate that ηr and ηcg are based on the same principle:

the No Dilution for Irrelevant Effects property. The crucial question which separates

the two classes of measures is whether this property should hold across the board or

just for preventive causes.

3.6 Conjunctive Closure and the Logarithmic Ratio Measure

Consider a variable C that affects a set of other variables E1, E2, . . . , which would

be unrelated to each other, were it not for their common cause C. In this scenario,

represented visually in Figure 5, one could ask whether the and the individual effects

(E1, E2) constrain the strength of the causal link between C and the conjunction of

these variables. In other words, we ask how η(C, E1 ∧ E2) depends on η(C, E1) and

η(C, E2), and under which circumstances the former is a function of the latter.
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Imagine, for example, that a medical drug has two side effects—diarrhea and sore

throat—which are independent of each other. Both side effects are caused with the

same strength t. It is then natural to say that the overall side effect of the medical

drug is also equal to t since there is no interaction between both effects. Apart from

the intuitive plausibility, this principle facilitates practical calculations because we can

often infer the strength of a cause C for an aggregate effect from the strength of C for

the individual effects. This is similar to the principle of Separability of Effects, but

now for a conjunction rather than a disjunction of effects. Formally:

Conjunctive Closure For propositions C, E1 and E2 ∈ L, and a causal model M ∈ M

with E1 ⊥⊥ E2, the following implication holds:

η(C, E1) = η(C, E2) = t ⇒ η(C, E1 ∧ E2) = t (5)

Incidentally, this line of reasoning resembles the Conjunction Principle in epis-

temology, which states that justification and/or knowledge are closed under logical

conjunction. Shogenji (2012) transfers this principle to the quantitative dimension and

to probabilistic measures of justification. When (i) the degree of justification of H1

and H2 given E is both equal to t and (ii) H1 and H2 are probabilistically independent

(unconditionally and conditionally on E), then the degree of justification of H1 ∧H2

should also be equal to t. Put differently, justification is not diluted under the conjunc-

tion of independent propositions.6 Shogenji (2012) calls this the Special Conjunction

Principle, and Conjunctive Closure demands a similar property for measures of causal

strength.

It is possible to characterize measures which satisfy Conjunctive Closure up to

ordinal equivalence (see also Atkinson, 2012):

Theorem 6 (Representation Theorem for ηcc) All measures of causal strength that satisfy

6Without the independence assumption, this principle would immediately collapse due to lottery
paradox-type counterexamples.
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Formality, Difference-Making and Conjunctive Closure are ordinally equivalent to

ηcc(C, E) =
log p(E|do(C))

log p(E|do(¬C))

Although this measure has not yet been proposed in the literature, it is based on a

reasonable principle, and therefore a serious candidate for measuring causal strength.

This result concludes our axiomatic characterization of measures of causal strength.

We now proceed to a practical application and a comparison of the candidate mea-

sures.

4 Application: Quantifying Causal Effect in Medicine

A natural scientific application of probabilistic measures of causal strength consists in

quantifying the size of an effect that an intervention on one variable has on another.

Randomized Controlled Trials (RCTs) in clinical medicine, or cohort studies in epis-

temology, are particularly salient applications. As we have seen in the introduction,

the medical literature uses different measures to quantify causal strength. They can

be translated into our framework by writing observed relative frequencies as condi-

tional probabilities under an intervention. In particular, the measures we discussed in

the introduction—relative risk, relative risk reduction, absolute risk reduction—can be

given the following reading:

RR =
p(E|do(C))

p(E|do(¬C))
(Relative Risk)

ARR = p(E|do(C))− p(E|do(¬C)) (Absolute Risk Reduction)

RRR =
p(E|do(C))− p(E|do(¬C))

p(E|do(¬C))
(Relative Risk Reduction)

It is not difficult to relate these measures to measures of causal strength. For
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example, RR is just the familiar probability ratio measure ηr, whereas ARR turns out

to be the difference measure ηd. RRR = RR - 1 is ordinally equivalent to ηr, too.

Apart from the mathematical characterization, also normative arguments in favor

or against causal strength measures carry over to these effect size measures. Since

the probability ratio measure ηr satisfies No Dilution for Irrelevant Effects, so do RR

and RRR. The value of those measures does not change when irrelevant propositions

are added to the effect. This can have extremely undesirable consequences, also from

a practical point of view. The causal effect of a painstiller on relieving headache is,

according to ηr, as big as the causal effect of that drug on relieving headache and

a completely unrelated phenomenon, e.g., lowering cholesterol levels. Such proper-

ties are grossly misleading and may have devastating practical consequences. A drug

which is highly effective for curing one of two unrelated symptoms will be mistaken

for curing both symptoms at once, even if the second symptom is causally discon-

nected from the drug. Hence, our formal results undermine the use of those measures

in clinical practice. These conclusions exceed the realm of purely causal inference and

also concern observational studies, e.g., measuring the risk that certain dietary habits

pose for two completely different kinds of cancer.

On the other hand, the defining properties of ηd, in particular Multiplicativity on

Single Paths, suit clinical practice well. We have already seen the example that taking

a medical drug (C) may lower cholesterol levels substantially (X), but the effect of the

drug on mortality (E) via its impact on cholesterol is minuscule. Combining causal

strength along a single path with the formula ηd(C, E) = ηd(C, X) · ηd(X, E) takes this

into account: the overall causal strength will be very small if one of the links is tenuous.

Finally, our theoretical arguments nicely square with decision-theoretic and epis-

temic arguments for preferring absolute over relative risk measures in medicine, e.g.,

the neglect of base rates in relative risk measures (Stegenga, 2015). Pursuing this topic

in detail deserves a separate paper, but one feature should be listed. Suppose the

treatment group is given a new drug against influenza. The control group is given a

placebo. Assume that we know the costs and benefits of fast recovery (E) as opposed
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to delayed or no recovery (¬E), as well as the costs of administering the treatment

and the control (broadly construed, including harmful side effects). Then we can de-

termine the optimal decision for future cases on the basis of the value of ηd in the

observed sample. Here “optimal” is understood in the sense of maximizing expected

utility. Among the measures investigated in this paper, ηd (respectively ARR) is the

only measure that is sufficient for determining optimal decisions (Sprenger and Ste-

genga, 2016). Other measures require additional information, such as the base rate of

recovery in the control group.

It should now be evident that probabilistic measures of causal strength have impor-

tant applications in scientific inference and beyond. This analysis provides valuable

guidance for evaluating those measures and choosing between them.

5 Discussion

This paper has provided axiomatic foundations for a probabilistic theory of causal

strength. Synthesizing ideas from the probability-raising and the interventionist view

of causation, I have proposed to evaluate causal strength relative to a causal Bayes

net in which causes and effects are embedded. Causal strength is determined by the

probability of an effect under interventions that bring about C and ¬C, p(E|do(C))

and p(E|do(¬C)), and the base rate of the cause, p(C). Both causes and effects have

been understood as propositions rather than as events, objects or variables, and the

evaluation of causal strength has taken place relative to a single background context.

After introducing the conceptual and mathematical framework, I have character-

ized various measures of causal strength in terms of various axioms and adequacy

conditions. Such a characterization makes it possible to assess the merits of the differ-

ent measures in the literature by means of assessing the plausibility of the adequacy

conditions. Even if more than a single measure survives the theoretical scrutiny, one

can still form informed preferences. While causal Bayes nets provide the framework

for our analysis, the methods for characterizing the various measures, and for proving
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the theorems, are partially transferred from various parts of formal epistemology, in

particular Bayesian confirmation theory and Bayesian analyses of explanatory power.

Notably, the investigated measures fall into two major categories: those who satisfy

Effect Production (=causes are ranked in terms of their tendency to produce the effect)

and those who satisfy Difference-Making (=causal strength is an increasing function of

p(E|do(C)) and a decreasing function of p(E|do(¬C))). The Pearl measure ηp(C, E) =

p(E|do(C)) and the probability-raise measure ηpr(C, E) = p(E|do(C)) − p(E) satisfy

Effect Production, while the other measures violate it. The measures in that second

group straightforwardly express the counterfactual dependence of E on C: how much

does a change in the value of C affect the outcome E? Therefore they satisfy Difference-

Making while ηp and ηpr violate that property.7 These two measures are not based on

the contrastive value that a cause has for an effect and may not be suitable for compar-

ing the effect of different interventions on C. That said, they may be applicable when

we are more interested in questions of attribution and liability than in the predictive

value of a cause for an effect (e.g., Kaiserman, 2016a,b). In such cases, questions of

causal production may be more relevant than questions of counterfactual dependence

(see also Beckers, 2016).

To underscore the different angle of the discussed measures, consider a case of

causal overdetermination (e.g., Lewis, 1973):

An assassin puts poison into the king’s wine glass (C). If the king does not

drink the wine, a (reliable) backup assassin will shoot him. The king drinks

the wine and dies (E).

Assuming the presence of the backup assassin as the relevant background context, the

Pearl measure ηp(C, E) ≈ 1 judges the assassin’s action as a strong cause of the king’s

death, even if the king’s fate was sealed anyway. The measure ηd(C, E), however,

disagrees: since the assassin’s action barely made a difference to the effect, ηd(C, E) ≈
7ηpr is insensitive to p(E|do(¬C)) if p(C) = 1. Here we see an important difference between proba-

bilistic measures of causal strength and probabilistic confirmation measures: in the latter field, that case
would be classified as degenerate and unimportant, whereas there is no reason for doing so in causal
reasoning. Causal strength assessments make sense for all base rates of the cause.
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0. The two groups of measures will also diverge in cases where an action produces an

effect, but by doing so, preempts an even stronger cause. Our probabilistic measures

of causal strength thus neatly mirror different ways of understanding causal relevance.

In the light of these ambiguities, prospects may look bleak for the project of com-

ing up with “the one true measure of causal strength”. Also in the related field of

confirmation theory, ambitions to establish a single probabilistic measure (e.g., Milne,

1996) did ultimately give way to a plurality of confirmation measures (e.g., Fitelson,

2001; Brössel, 2013; Crupi, 2013). But I contend that the situation is different for causal

strength. Among the measures that are based on the Difference-Making principle, it is

possible to form rational preferences that are more than personal taste. Take a look at

the properties of the measures summarized in Table 4. It is notable that only two mea-

sures (ηd and ηcg) satisfy the Weak Causation-Prevention Symmetry, although this is

an eminently sensible property. The same can be said about Multiplicativity on Single

Paths, which is only satisfied by Eells’ measure ηd. This is also the only measure based

on Difference-Making which satisfies Separability of Effects, allowing for an easy de-

composition of complex effects. On the other hand, Theorem 4 points out problems

with the rivaling measure ηr: when a causally disconnected proposition is added to

the effect, causal strength remains unchanged. Theorem 5 shows a analogous result

for the case of causal prevention and the Good-Cheng measure ηcg, but in that case, it

is less obvious that this property is harmful.

Property
Measure FORM EP DM CPS WCPS CE SE MUL NDIE NDIEP CC
Pearl (ηp) yes yes no no yes yes no no no no no
Probability Raise (ηpr) yes yes no yes yes no yes no no no no
Difference (ηd) yes no yes yes yes no yes yes no no no
Probability Ratio (ηr, ηr′) yes no yes no no no no no yes yes no
Cheng/Good (ηcg) yes no yes yes yes no no no no yes no
Conjunctive Closure (ηcc) yes no yes no no no no no no no yes

Table 4: A classification of different measures of causal strength according to the adequacy
conditions they satisfy. FORM = Formality, EP = Effect Production, DM = Difference-Making,
CPS = Causation-Prevention Symmetry, WCPS = Weak Causation-Prevention Symmetry, CE
= Conditional Equivalence, SE = Separability of Effects, MUL = Multiplicativity on Single
Paths, NDIE = No Dilution for Irrelevant Effects, NDIEP = No Dilution for Irrelevant Effects
(Prevention), CC = Conjunctive Closure.
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All in all, the above analysis provides good grounds for using ηd as a default mea-

sure of causal strength for purposes of prediction, intervention and control. Indeed,

also Pearl (2001) bases his quantification of path-specific effects on ηd as underlying

the baseline measure of causal strength. This paper provides an argument why Pearl’s

choice is actually sound, and why ηd is an adequate measure of average or total causal

effect (Holland, 1986). The formal analysis also mirrors and supports practice- and

decision-oriented arguments for ηd, as pointed out in Section 4.

What remains to do? First of all, I aim at generalizing the framework from binary

variables to categorical and real-valued variables. Indeed, many measures of effect size

for real-valued variables, such as Cohen’s d or Glass’s ∆, are based on the difference

of group means, and ηd might be extended naturally into this direction. In many cases

the analysis can even be applied without further modifications. For instance, imagine

we are interested in a metric variable θ, and our observations E depend on the value

of θ. The two hypotheses of interest are H0 : θ ≤ θ0 and H1 : θ > θ0, a common

scenario in statistics. Then, we can apply the above measures using pH0(E) and pH1(E)

(and a Bayesian prior over H0 and H1) in order to determine the causal effect of H0

vs. H1 on E. The same can be said for the case that E is a real-valued variable: we can

identify a subset I of the range of E that we are interested in, and quantify the causal

effect of C on the proposition that E ∈ I. Thus, it is not always necessary that C and

E be propositional variables. Eventually, our approach may go a longer way toward

modeling causal inference in science than the binary framework suggests.

Second, the properties of the above measures in complicated networks (e.g., more

than one path linking C and E) have not been investigated. Is it possible to show,

for example, how degrees of causation along different paths can be combined in an

overall assessment of causal strength, e.g., similar to Theorem 3 in Pearl (2001)?

Third, this work can be connected to information-theoretic approaches to causal

specificity (Weber, 2006; Waters, 2007; Korb et al., 2011; Griffiths et al., 2015). The

more narrow the range of effects that an intervention is likely to produce, the more

specific the cause is to the effect. How does this concept relate to causal strength and
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to what extent can both research programs learn from each other?

Fourth, one can apply this theory to canonical examples in the causation literature

and explore whether these models of causal strength squares well with the significance

of normality and norms in causal reasoning (Knobe and Fraser, 2008; Hitchcock and

Knobe, 2009).

These are all open and exciting questions, and it is not difficult to come up with

others. I hope that the results presented herein are promising enough to motivate a

further pursuit of an axiomatic theory of causal strength.
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A Proofs of the Theorems

Proof of Theorem 1: The proof relies on a recent result by Michael Schippers (2016)

in the field of confirmation theory. Schippers demonstrates that the following three

conditions are necessary and sufficient to characterize the posterior probability p(H|E)

as an adequate measure of degree of confirmation c(E, H), up to ordinal equivalence.

Formality (Confirmation) There is a measurable function f ′ : [0, 1]3 → R such

that for any H, E ∈ L with probability distribution p(·), c(E, H) =

f ′(p(E), p(H), p(H∧ E)).

Final Probability Incrementality For any sentences H, E1, and E2 ∈ L with probabil-

ity measure p(·),

c(E1, H) > c(E2, H) if and only if p(H|E1) > p(H|E2).

Local Equivalence If H1 and H2 are logically equivalent given E, then c(E, H1) =

c(E, H2).

It is easy to see that Final Probability Incrementality translates into Effect Production

when the pair (H, E1,2) is mapped to (E, C1,2):

η(C1, E) > η(C2, E) if and only if p(E|C1) > p(E|C2)

The same is true for Local Equivalence: with (H1,2, E) mapped to (E1,2, C). The con-

dition postulates that if E1 and E2 are logically equivalent given C, then η(C, E1) =

η(C, E2). This is just the same as Conditional Equivalence, using different variable

names.

Thus it remains to show that Formality (Causal Effect) can be transformed into

Formality (Confirmation) by a suitable change of variables. We already know that

there exists a f : [0, 1]3 → R such that η(C, E) = f (p(C), p(E|do(C)), p(E|do(¬C)).
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Since we only want to characterize f mathematically, we restrict ourselves to the case

where E is among the descendants of C and they share no common causes. We assume

that p(C) ∈ (0, 1). This allows us to write

p(E∧C) = p(C)p(E|do(C)) p(E) = p(C)p(E|do(C)) + (1− p(C))p(E|do(¬C))

which we can transform into the equations

p(E|do(C)) =
p(E∧C)

p(C)
p(E|do(¬C)) =

p(E)− p(C)p(E|do(C))

1− p(C)
(6)

Hence, we can write p(E|do(C)) and p(E|do(¬C)) as functions of p(C), p(E) and

p(E∧C). In other words, there is a function f ′(p(C), p(E), p(C∧ E)) that characterizes

η(C, E), namely

f ′(p(C), p(E), p(C ∧ E)) := f
(

p(C),
p(E∧C)

p(C)
,

p(E)− p(C)p(E|do(C))

1− p(C)

)
= f (p(C), p(E|do(C)), p(E|do(¬C))

= η(C, E)

f ′ is continuous because f and the functions in Equation (6) are. Thus we can extend

f ′ canonically to the set {p(C) ∈ {0, 1}}. Hence we can invoke Schippers’ theorem,

and for any measure of causal strength η that satisfies Formality, Effect Production

and Local Equivalence, η(C, E) = p(E|C) up to ordinal equivalence. q.e.d.

Proof of Theorem 2: Like in the previous theorem, we make use of a result for

confirmation measures to prove the theorem (Crupi et al., 2013). We map Formal-

ity (Causal Strength) onto Formality (Confirmation) and Effect Production onto Final

Probability Incrementality, like in the proof of the previous theorem. Finally, using a

suitable change of variables (C → E, E1 → H1, E2 → H2), it is easy to see that Separa-

bility of Effects is a stronger version of the following principle:

Disjunction of Alternative Hypotheses Assume H1 and H2 are inconsistent with
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each other. Then,

c(H1 ∨H2, E) > c(H1, E) if and only if p(H2|E) > p(H2)

c(H1 ∨H2, E) = c(H1, E) if and only if p(H2|E) = p(H2)

c(H1 ∨H2, E) < c(H1, E) if and only if p(H2|E) < p(H2)

Crupi et al. (2013) show that the difference measure cd := p(H|E) − p(H) is, up to

ordinal equivalence, the only confirmation measure that satisfies Formality (Confir-

mation), Final Probability Incrementality and Disjunction of Alternative Hypotheses.

Because these conditions are isomorphic to Formality (Causal Strength), Effect Pro-

duction and Separability of Effects, their results prove the parallel result for measures

of causal strength: the probability-raise measure ηpr(C, E) = p(E|do(C))− p(E) is, up

to ordinal equivalence, the only measure that satisfies the three latter conditions. q.e.d.

Proof of Theorem 3: The proof of this representation theorem proceeds in several

steps. First, we will show that η(C, E) = f (p(C), p(E|do(C)), p(E|do(¬C)) does not

depend on p(C).

C1

E

C2

Figure 6: A classical collider/joint effect structure in a causal net.

The proof of this first claim proceeds by contradiction. Consider that there are

real numbers x1, x2, y, z ∈ [0, 1] such that f (x1, y, z) 6= f (x2, y, z). Then choose E,

C1 and C2 such that E is a joint effect of C1 and C2 with x1 = p(C1), x2 = p(C2),

y = p(E|do(C1)) = p(E|do(C2)), z = p(E|do(¬C1)) = p(E|do(¬C2)). In this case,

Difference-Making tells us that η(C1, E) = η(C2, E). However, on the other hand, we
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also know

η(C1, E) = f (x1, y, z) 6= f (x2, y, z) = η(C2, E)

This leads to a straightforward contradiction. Hence, from now on we focus on the

function g : [0, 1]2 → R such that η(C, E) = g(p(E|do(C)), p(E|do(¬C)).

The second step of the proof consists in deriving the equality

g(α, ᾱ) · g(β, β̄) = g(αβ + (1− α)β̄, ᾱβ + (1− ᾱ)β̄) (7)

To this end, recall the Bayesian network from the main paper. It is reproduced in

Figure 7. Again, for the purpose of investigating the formal properties of g, we can

focus on those cases where p(E|±C) and p(E|±C) agree.

C X E

Figure 7: The Bayesian Network for causation along a single path.

We know by Multiciplity on Single Paths that

η(C, E) = η(C, X) · η(X, E)

= g(p(X|do(C)), p(X|do(¬C))) · g(p(E|do(X)), p(E|do(¬X)))

= g(p(X|C), p(X|¬C)) · g(p(E|X), p(E|¬X))

and at the same time,

η(C, E) = g(p(E|do(C)), p(E|do(¬C)))

= g

(
∑
±X

p(X|C)p(E|C, X), ∑
±X

p(X|¬C)p(E|¬C, X)

)
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Combining both equations yields

g(p(X|C), p(X|¬C)) · g(p(E|X), p(E|¬X))

= g

(
∑
±X

p(X|C)p(E|C, X), ∑
±X

p(X|¬C)p(E|¬C, X)

)

With the variable settings

α = p(X|C) β = p(E|X)

ᾱ = p(X|¬C) β̄ = p(E|¬X)

equation (7) follows immediately.

Third, we are going to show that

g(x, y) = g(x− y, 0) (8)

To this end, we first note a couple of facts about g:8

Fact 1 g(α, 0)g(β, 0) = g(αβ, 0). This follows immediately from equation (7) with

ᾱ = β̄ = 0.

Fact 2 g(1, 0) = 1. With β = 1, the previous fact entails that g(α, 0)g(1, 0) = g(α, 0).

Hence, either g(α, 0) ≡ 0 for all values of α (which would trivialize g) or g(1, 0) =

1.

Fact 3 g(0, 1) = −1. Fact 1 entails (with α = β = 0, ᾱ = β̄ = 1) that g(0, 1) · g(0, 1) =

g(1, 0) = 1. Hence, either g(0, 1) = −1 or g(0, 1) = 1. If the latter were the case,

then g would take positive values although p(E|do(C)) = 0 and p(E|do(¬C)) >

0, in violation of Difference-Making. Thus, g(0, 1) = −1.

Fact 4 g(−1, 0) = −1. By Fact 1, g(−1, 0) · g(−1, 0) = g(1, 0) = 1. Then we apply the

8In the proof, negative arguments of g figure. This may look problematic, but it is not. We just
show that any g(·, ·) that satisfies Equation (7) on[0, 1]2 has an extension to a function on R2 that satisfies
certain properties, which can in turn be used for saying something about the behavior of g on [0, 1]2.
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same reasoning as in the proof of Fact 3.

Fact 5 g(0, 1) · g(β, β̄) = g(β̄, β). Follows immediately from equation (7) with α = 0,

ᾱ = 1.

These facts will allow us to derive Equation (8). Note that (8) is trivial if y = 0. So we

can restrict ourselves to the case that y > 0. We choose the variable settings

α =
y− x

y
β = 0

ᾱ = 0 β̄ = y

Then we obtain by means of Equation (7) and the previously proven facts

g(x, y) = g((y− x)/y, 0) · g(0, y)

= g(y− x, 0) · g(1/y, 0) · g(0, y) (Fact 1)

= g(y− x, 0) · g(1/y, 0) · g(y, 0) · g(0, 1) (Fact 5)

= g(y− x, 0) · g(1, 0) · g(−1, 0) (Fact 1+3+4)

= g(x− y, 0) (Fact 1+2)

This implies

η(C, E) = g(p(E|do(C)), p(E|do(¬C))) = g(p(E|do(C))− p(E|do(¬C)), 0)

Hence, η(C, E) is a function of p(E|do(C)) − p(E|do(¬C)) only. From Difference-

Making we can infer that g must be monotonically increasing in its first argument

and monotonically decreasing in its second argument. This concludes the proof of

Theorem 3. q.e.d.

Proof of Theorem 4: The proof relies on a move from the proof of Theorem 1 in

Schupbach and Sprenger (2011). Consider three variables C, E1 and E2 which satisfy
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the premises of the No Dilution for Irrelevant Effects Principle. This means that

p(E1 ∧ E2|do(C)) = p(E1|do(C)) p(E2|do(C))

p(E1 ∧ E2|do(¬C)) = p(E1|do(¬C)) p(E2|do(¬C))

p(E2) = p(E2|do(¬C)) = p(E2|do(C))

In particular, it follows that

p(E1 ∧ E2|do(C)) = p(E2) p(E1|do(C))

p(E1 ∧ E2|do(¬C)) = p(E2) p(E1|do(¬C))

According to Formality and Difference-Making, the causal strength measure η can be

written as η(C, E1) = g(p(E1|do(C)), p(E1|do(¬C))) for a continuous function g. From

No Dilution for Irrelevant Effects and the above calculations we can infer that

g(p(E1|do(C)), p(E1|do(¬C))) = η(C, E1)

= η(C, E1 ∧ E2)

= g(p(E1 ∧ E2|do(C)), p(E1 ∧ E2|do(¬C)))

= g(p(E2) p(E1|do(C)), p(E2) p(E1|do(¬C)))

Since we have made no assumptions on the values of these probabilities, we can infer

the general relationship

g(x, y) = g(cx, cy). (9)

for all 0 < c ≤ min(1/x, 1/y). Without loss of generality, let x > y. Then, choose c :=

1/x. In this case, equation (9) becomes

g(x, y) = g(cx, cy) = g(1, y/x).

This implies that g must be a function of y/x only, that is, of the ratio
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p(E|do(C))/p(E|do(¬C)). Difference-Making then implies that all such functions must

be monotonically increasing, concluding the proof of Theorem 4. q.e.d.

Proof of Theorem 5: We write the causal strength measure η as

η(C, E) =


η+(C, E) for positive causation

η−(C, E) for causal preemption

We know from the previous theorem that η−(C, E) must be ordinally equivalent

to ηr(C, E). Now we show that all η+(C, E)-measures are ordinally equivalent to

ηg(C, E) = p(¬E|do(¬C))/p(¬E|do(C)). Since we have already shown that ηg and

ηc are ordinally equivalent, this is sufficient for proving the theorem.

Because of Formality, we can represent η+ by a function g(x, y) with x =

p(E|do(C)) and y = p(E|do(¬C)). Suppose that there are x > y and x′ > y′ ∈ [0, 1]

such that (1− y)/(1− x) = (1− y′)/(1− x′), but g(x, y) 6= g(x′, y′). (Otherwise η+

would just be a function of ηg, and we would be done.) In that case we can find a

probability space such that p(E1|do(C)) = x, p(E1|do(¬C)) = y, p(E2|do(C)) = x′,

p(E2|do(¬C)) = y′ and C screens off E1 and E2 (proof omitted, but straightforward).

Hence η+(C, E1) 6= η+(C, E2). By Weak Causation-Prevention Symmetry, we can then

infer η−(C,¬E1) 6= η−(C,¬E2).

However, since η− is ordinally equivalent to ηr, there is a function f such that

η−(C,¬E1) = f
(

p(¬E1|do(C))

p(¬E1|do(¬C))

)
= f

(
1− x
1− y

)
η−(C,¬E2) = f

(
p(¬E2|do(C))

p(¬E2|do(¬C))

)
= f

(
1− x′

1− y′

)

By assumption,
1− x
1− y

=

(
1− y
1− x

)−1

=

(
1− y′

1− x′

)−1

=
1− x′

1− y′

and so we can infer η−(C,¬E1) = η−(C,¬E2), showing a contradiction.
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Hence η+(C, E) can be represented by a monotonically increasing function of

p(¬E|do(¬C))/p(¬E|do(C)), completing the proof of Theorem 5. q.e.d.

Proof of Theorem 6: By Formality and Difference-Making, we have that η(C, E) =

g(p(E|do(C)), p(E|do(¬C))) for some continuous function g : [0, 1]2 → R. Assume

that η(C, E1) = η(C, E2) = t, that C screens off E1 and E2 and that p(E1|do(C)) =

p(E2|do(C)) = x, p(E1|do(¬C)) = p(E2|do(¬C)) = y, for some x, y ∈ R. By the

Conjunctive Closure Principle, we can infer

η(C, E1 ∧ E2) = η(C, E1) = g(x, y)

Moreover, we can infer

η(C, E1 ∧ E2) = g(p(E1 ∧ E2|do(C)), p(E1 ∧ E2|do(¬C)))

= g(p(E1|do(C)) · p(E2|do(C)), p(E1|do(¬C)) · p(E2|do(¬C)))

= g(x2, y2)

Taking both calculations together, we obtain

g(x2, y2) = g(x, y) (10)

as a structural requirement on the function g, since we have not made any assumptions

on x and y.

Following Atkinson (2012) and his proof idea, we now define u = log x
log y and define

a function f : R2 → R such that f (x, u) := g(x, y). Equation (10) then implies the

requirement

f (x2, u) = g(x2, y2) = g(x, y) = f (x, u)
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and by iterating the same procedure, we also obtain

f (x2n, u) = f (x, u)

for some n ∈ N. Due to the continuity of f , we can infer that f cannot depend on its

first argument. Moreover, taking the limit n→ ∞ yields f (x, u) = f (0, u). Hence, also

g(x, y) = f (0, u) = f (0, log x/ log y)

and we see that

η(C, E) = h
(

log p(E|do(C))

log p(E|do(¬C))

)
for some function h : R → R. It remains to show that h is monotonically increas-

ing. Difference-Making implies that η(C, E) is an increasing function of p(E|do(C))

and a decreasing function of p(E|do(¬C)). So it must be an increasing function of

log p(E|do(C))/ log p(E|do(¬C)), too. This implies that h is a monotonically increas-

ing function. Hence, all measures of causal strength that satisfy Formality, Difference-

Making and the Conjunctive Closure Principle are ordinally equivalent to

ηcc(C, E) =
log p(E|do(C))

log p(E|do(¬C))
. q.e.d.
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