
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kripke's paradox and the Church-Turing thesis

Citation for published version:
Sprevak, M 2008, 'Kripke's paradox and the Church-Turing thesis', Synthese, vol. 160, no. 2, pp. 285-295.
https://doi.org/10.1007/s11229-006-9120-2

Digital Object Identifier (DOI):
10.1007/s11229-006-9120-2

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Synthese

Publisher Rights Statement:
© Sprevak, M. (2008). Kripke's paradox and the Church-Turing thesis. Synthese, 160(2), 285-295. The final
publication is available at link.springer.com

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. May. 2024

https://doi.org/10.1007/s11229-006-9120-2
https://doi.org/10.1007/s11229-006-9120-2
https://www.research.ed.ac.uk/en/publications/d36173ee-ef9e-4ff3-af29-3a6cb661257e


Published in Synthese (2008) 160: 285–295.
doi:10.1007/s11229-006-9120-2

mark.sprevak@ed.ac.uk

Kripke’s paradox and the Church–Turing
thesis

Mark Sprevak

University of Edinburgh

10 October 2006

Kripke (1982) presents a rule-following paradox in terms of what we meant by our past

use of ‘plus’, but the same paradox can be applied to any other term in natural language.

Many responses to the paradox concentrate on �xing determinate meaning for ‘plus’, or

for a small class of other natural language terms. �is raises a problem: how can these

particular responses be generalised to the whole of natural language? In this paper, I

propose a solution. I argue that if natural language is computable in a sense de�ned

below, and the Church–Turing thesis is accepted, then this auxiliary problem can be

solved.

1 Introduction

I do not aim to solve Kripke’s rule-following problem in this paper. I address a related

problem that should be a source of worry for respondents to Kripke. �is problem is

as follows. Kripke’s challenge about meaning is general: it can be applied to any term

in natural language. However, many responses to his challenge are speci�c: they aim to

�x meaning for particular terms or classes of terms. �e problem that I address is how

to extend these particular solutions to the entirety of natural language. I call this the

‘auxiliary problem’. �e auxiliary problem, although not Kripke’s rule-following problem,

is important nonetheless. Even if one managed to solve the rule-following problem for a

proper subset of natural language—an incredibly hard task—the auxiliary problem would

remain. �e auxiliary problem has received little or no attention in the literature. In this

paper, I describe the auxiliary problem, and I propose a solution. I argue that, provided

natural language is computable in a certain sense de�ned below, a result in computation

theory, the Church–Turing thesis, provides a solution.

Kripke’s challenge can be summarised as follows. Kripke’s sceptic asks what fact determ-

ined that you meant plus rather than quus in your past use of the term ‘plus’, where quus

1

http://dx.doi.org/10.1007/s11229-006-9120-2
mailto:mark.sprevak@ed.ac.uk


1 Introduction

is a function just like the addition function for all sums below those you have already

computed, but diverges for higher numbers. �e same question, suitably modi�ed, can be

asked about any term in natural language. �e sceptic’s challenge has generated a huge

number of responses.1 Some of the leading responses attempt to state a fact that �xes

meaning. Such ‘straight’ replies tend to restrict attention to a few terms, or to certain kinds

of terms. Solving the problem, even for these limited cases, would be a major achievement.

However, even if success is granted, the problem remains of generalising the solution. If

this cannot be done, then Kripke’s sceptic would be free to press her question for other

terms.

Maddy (1984) and McGinn (1984) argue that the sceptic’s challenge can be answered for

proper names (e.g. ‘Cicero’) and natural kind terms (e.g. ‘water’) by Kripke’s own causal

theory of reference. However, is not clear how the causal theory of reference could �x

determinate meaning for terms that are neither proper names nor natural kind terms (e.g.

‘friend’, ‘scientist’). Even ifMaddy andMcGinn are correct about proper names and natural

kind terms, it is not clear how their reply could be a general solution. Millikan (1990)

gives a di�erent reply to the sceptic. She argues that terms that are associated in salient

ways with our evolutionary history (e.g. ‘milk’, ‘danger’) have their meaning �xed by facts

about that history. Again, even if correct, this has limited scope as a solution. Not all terms

have distinctive associations with our evolutionary past. It is not clear, for example, how

Millikan’s account could �x the meaning of terms associated with recent concepts such

as ‘herbaceous border’ or ‘wicket keeper’. Fodor (1990) advocates yet another response

to the sceptic. He argues that the meanings of predicates are �xed by asymmetric nomic

relations that obtain between the tokening of a predicate, such as ‘. . . is a cow’, and the

property that it names, being a cow. Again, whatever the merits of this solution, it is

unlikely to succeed as a general account. For one thing, it requires a property to exist for

every meaningful predicate: a meaning-constituting asymmetric nomic relation cannot

obtain unless both predicate tokening and corresponding property exist. However, it is

far from clear which properties exist, and whether there are enough properties for each

meaningful predicate. Even if Fodor is correct about some terms, there may be other

terms without corresponding properties for which the sceptic can still press her question.

�e auxiliary problem concerns how to extend particular solutions, such as those ofMaddy

and McGinn, Millikan, or Fodor, to the entirety of natural language. One simple-minded

approach would be to take the conjunction of all existing solutions, so that each �xes the

meaning of its own specialised terms. Sadly, in addition to being inelegant, this approach

is unlikely to succeed. �e existing solutions presuppose di�erent, and incompatible,

views of the underlying metaphysics. It would be inconsistent to take their conjunction.

Furthermore, there is no guarantee that a conjunction of existing approaches would be

able to cover the required ground: it is not obvious that even a conjunction would exhaust

natural language. In this paper, I argue for an alternative approach. Kripke himself, in the

context of a di�erent discussion, indicates the way to proceed.

1. For example, see Miller and Wright (2002) and references.

2



2 �e algorithm reply

2 �e algorithm reply

One possible reply to the sceptic that Kripke considers is the ‘algorithm reply’. �e

algorithm reply asserts that you meant plus rather than quus in your past use of ‘plus’

if you followed an addition algorithm when you applied ‘plus’ rather than a quaddition

algorithm. Kripke gives an example of an addition algorithm:

Take a huge bunch of marbles. First count out x marbles in one heap. �en

count out y marbles in another. Put the two heaps together and count out

the number of marbles in the union thus formed. �e result is x + y.
(Kripke 1982, p. 15)

�e algorithm reply claims that if you followed these instructions, rather than those of

a quus-like algorithm, then you succeeded in meaning plus rather than quus by ‘plus’.
However, as Kripke points out, this won’t do as an answer to the sceptic, since the sceptic

can repeat her challenge on the terms used by the algorithm. She can ask: what fact

determined in your past use of the term ‘count’ that you meant count rather than quount—
‘where to ‘quount’ a heap is to count it in the ordinary sense, unless the heap was formed

as the union of two heaps, one of which has 57 or more items, in which case one must

automatically give the answer ‘5” (p. 16). If one replies that one meant count rather than
quount because one followed a counting algorithm rather than a quounting algorithm,

then the sceptic can repeat her challenge on the terms of that algorithm, and so on. Kripke

is undoubtably right that the algorithm reply, by itself, fails miserably as an answer to the

sceptic. However, I wish to suggest that the algorithm reply, with a little help from the

Church–Turing thesis, can play a di�erent role: it can solve the auxiliary problem.

�e auxiliary problem is the problem of extending answers to the sceptic for particular

terms to the whole of natural language. Call the terms for which we already have an

answer to the sceptic (those terms for which we already have a particular solution), the

‘basic terms’. Call the other terms, those for which we do not yet have an answer to the

sceptic, the ‘non-basic terms’. In order for the algorithm reply to work, the meaning of

the non-basic terms has to be �xable using only basic terms. At �rst sight, this looks

unlikely. Natural language is incredibly heterogeneous. �e claim that it can be reduced

to combinations of a few basic terms looks implausible.

Before considering why the success of the algorithm reply seems unlikely, let us �rst

consider the reply in more detail. �e algorithm reply generalises a particular solution

to sceptic to the entirety of natural language. In order to do this, it requires: (1) that we

follow algorithms that give the conditions of correct application of all non-basic terms;

(2) that those algorithms use only basic terms. If these two conditions are met, then the

algorithm reply works as follows: in your past use of a non-basic term ⌜x⌝ you meant x by

it just in case you followed an appropriate algorithm when you applied the term. If you

followed an appropriate ⌜x⌝-algorithm when you applied ⌜x⌝, then you meant x by ⌜x⌝; if
you did not follow an appropriate ⌜x⌝-algorithm, then you did not mean x by ⌜x⌝.

It is important to see that if (1) and (2) are met, then the algorithm reply provides a

watertight answer to the auxiliary problem. In the ‘plus’ example above, the sceptic was

able to raise her question by questioning the meanings of the component terms of the

3



2 �e algorithm reply

‘plus’ algorithm. �at strategy is now blocked. By hypothesis, all of the terms used by the

algorithms of the algorithm reply are basic. �erefore, the sceptic’s problem cannot be

raised again for those terms. Perhaps a di�erent strategy is open to the sceptic. Perhaps

she can question the determinacy of the notion of ‘following an algorithm’. However, this

strategy is blocked too. What is involved in following a particular algorithm is fully spelled

out by the terms of that algorithm. If those terms have determinate meaning, then it is

determinate what is involved in following that algorithm. �e sceptic cannot, for example,

question whether one is really followed an algorithm Aor a divergent algorithm quAwhen

applying a term ⌜x⌝. �e only way that one could have followed a divergent algorithm

quAwould be if algorithm A had di�erent terms, or terms with di�erent meanings. But

by hypothesis, algorithm A has �xed terms with �xed meanings. So if one follows an

algorithm with the terms of algorithm A, there can be no question of one following a

di�erent algorithm quA. Algorithms, if available at all, provide a watertight answer to the

auxiliary problem.

�ere are three reasons why one might doubt that the algorithm reply can work.

First, one might doubt that one has the right set of basic terms. �e algorithm reply

requires that the conditions of correct application of every non-basic term can be de�ned

using only basic terms. How can one be sure that one’s collection of basic terms is up to the

job? Short of the Herculean task of actually providing all the algorithms, there seems no

reason for thinking that one’s collection is adequate. Which terms one counts as basic will

depend on the solution one favours to Kripke’s sceptical problem. If one follows Maddy

and McGinn, then the basic terms will be proper names and natural kind terms. If one

follows Millikan, then the basic terms will be evolutionarily salient terms. If one follows

Fodor, then the basic terms will be those whose tokenings stand in asymmetric nomic

relations with their corresponding properties. What reason do we have for thinking that

any of these terms can specify the conditions of correct application of all other terms in

natural language?

�e second worry is that natural language may not be reducible to basic terms at all.

Natural language could turn out to be holistic rather than reducible. Natural language is

holistic just in case there is no single small subset of basic terms from which all other terms

can have their conditions of correct application de�ned. If natural language is holistic,

then although the conditions of correct application of some words can be given in terms

of others, no systematic reduction to a single basic set of terms is possible. In other words,

there is no privileged set of terms whose determinacy, if �xed, would �x the determinacy

of the rest of language too. Natural language would not ‘bottom out’ in a single small

basic vocabulary, instead it would hang together in a holistic web of de�nitions. If natural

language is holistic, then the algorithm reply is doomed: whatever basic set of terms one

chooses—short of the limit of choosing every term in natural language—the algorithm

reply cannot extend that solution to other terms. In order for the algorithm reply to work,

natural language must be reducible. Natural language is reducible just in case there is a
small subset of basic terms from which all other terms can have their conditions of correct

application de�ned. �e worry is that we seem to have no reason to think that natural

language is reducible, or reducible to any signi�cant degree. Indeed, intuitions seem to

favour a contrary nature: a glance at a dictionary seems to show a holistic structure, rather

than reduction to a single basic vocabulary.

4



3 �e computability assumption

�e third worry is that providing an algorithm for how to apply a term is tantamount to

giving a de�nition of that term, and the existence of de�nitions is, in general, suspect.

Doubts about the existence of de�nitions come from a number of sources, including

Wittgenstein’s discussion of the di�culty of de�ning ‘game’, Quine’s argument against the

existence of analytic truths, and cognitive science work, such as that of Rosch (1973), on

the non-de�nitional nature of our concepts. �e idea that terms generally have de�nitions

looks, on many grounds, to be suspect. �erefore, the sceptic’s choice of a term that does
have a de�nition, ‘plus’, may give the misleading impression that the algorithm reply can

do more work than it can.

All of these concerns about the algorithm reply can be answered. With a small elaboration,

the algorithm reply can be shown to be an adequate solution to the auxiliary problem.

3 �e computability assumption

Before discussing the solution, the idea needs to be introduced that following a rule can be

understood as computing a function. �is is not intended to be controversial.2 Functions

are mappings from one set to another. Rules are instructions on how to act: they tell one,

in this situation perform this action. It is possible to think of a rule as a function mapping

a set of situations to a set of actions, and the process of following a rule as the process of

computing that function.

�ere are at least two senses of rule, and two senses of function. Following the terminology

of Church (1941), the term ‘function’ can refer to a function-in-extension or a function-

in-intension. A function-in-extension is the set of input/output pairs associated with the

function. For example, the function f (x) = x2 where x is a positive integer, considered

as a function-in-extension, is the set of input/output pairs {(1, 1), (2, 4), (3, 9), . . .}. A

function-in-intension is a method for computing the set of input/output pairs. For example,

the function f (x) = x2 where x is a positive integer, considered as a function-in-intension
could be themethod ‘Multiply x by itself—take the result as f (x)’.3 Functions-in-extension
are easily individuated: two functions-in-extension are the same just in case the two sets

of I/O pairs are the same. �e individuation conditions of functions-in-intension, outside

a formalism like Church’s λ-calculus, are less clear. However, it is generally true that
functions-in-intension individuate more �nely than functions-in-extension.4

�e term ‘rule’ is similarly ambiguous. A rule could be a prescribed set of situation–action

pairs; a rule could prescribe: in this situation perform this action. For example, the rule

‘Always wash your hands before you eat’, could be understood as the prescribed set of

situation–action pairs: { (occasion1 of eating, wash hands before), (occasion2 of eating,

wash hands before), . . .}. Alternatively, the rule ‘Always wash your hands before you

eat’ could be understood as a way of achieving those situation–action pairs: for example,

‘Before eating, walk to the bathroom, turn on the tap, wet your hands, pick up the soap,

etc.’. �e equivalence claim above between functions and rules is intended as a dual

equivalence claim: an equivalence between functions-in-extension and rules understood

2. Ginet (1992) defends a similar equivalence of functions and rules.
3. In Church’s λ-notation: f (x) = λx .xx.
4. Church (1941), pp. 2–3.

5



3 �e computability assumption

extensionally, and an equivalence between functions-in-intension and rules understood

intensionally. I will distinguish the two senses by referring to functions-in-extension

and rules understood extensionally as ‘functions’, and functions-in-intension and rules

understood intensionally as ‘algorithms’ or ‘rules’.

In order for Kripke’s sceptic to raise her challenge, the application conditions of natural

language terms must be governed by rules. It is this assumption that enables the sceptic to

transfer her concerns from rules in general to the application of natural language terms. In

what follows, I take it for granted that the assumption that application of natural language

terms is rule-governed is agreed on by all sides. �e algorithm reply to the auxiliary

problem adds an extra requirement to this assumption: that those rules be, in the sense

de�ned below, computable.

�is requirement can be phrased inmanyways: as the requirement that the rules governing

the application of natural language terms be e�ective procedures, as the requirement that

the decision as to whether a natural language term correctly applies is determinable by

�nite means, as the requirement that a computer could, in principle, decide in �nite

time whether a given natural language term correctly applies in a certain case, or as the

requirement that a computer could, in principle, reproduce human linguistic ability. Four

things should be made clear about the computability assumption.

First, the computability assumption does not beg the question against the sceptic. Even if

the computability assumption is correct, the sceptic is free to run her argument. �e com-

putability assumption entails that a rule for the correct application of a natural language

term can given in terms that a computer can execute, but it does not entail that those terms

themselves have determinate meaning. For example, the computability assumption entails

that a rule for the correct application of a natural language term can be given in terms

of the basic operations of a Turing machine, such as ‘scan symbol’, ‘write symbol’, ‘erase

symbol’, and so on. But the computability assumption does not entail that these operations

themselves have determinate meaning, i.e. that ‘scan symbol’ means scan symbol and not

squan symbol (where to squan a symbol is the same as to scan a symbol unless that symbol

is ‘57’ in which case the answer is ‘5’). If one wishes to argue that ‘scan symbol’ means scan
symbol, one needs a separate argument to that e�ect.

Second, many respondents to Kripke’s sceptic are either sympathetic or already committed

to the computability assumption. For instance, nearly all advocates of the computational

theory of mind (CTM) are committed to it. �e computability assumption cuts across

the main disagreements within the CTM, such as whether the mind has a classical or a

connectionist architecture. Nomatter what kind of computer the mind is, if that computer

is responsible for our linguistic abilities, then the rules that govern those abilities must, in

the sense above, be computable.

�ird, the computability assumption entails that a rule that a computer is capable of

following can be given for the application of each natural language term, but it does not

entail that there must only be one such rule for each term. �e same function can be

computed in many di�erent ways. A natural language term may therefore have more than

one algorithm associated with its conditions of correct application.

Finally, over and above the commitments of philosophers to the computability assumption,

there seem to be good reasons for taking that assumption on board, at least pending good

6



4 �e pay-o�

reasons otherwise. First, computable methods have massive expressive power. �ere

is so much that can be done with computable functions that it seems strange to lose

hope before one starts. Many cases of apparent incomputable behaviour can be dealt

with without violating the core of the computability assumption.5 Second, one has to opt

out of mainstream intuitions if one denies the computability assumption. Denying the

computability assumption entails that a computer, even in the form of a humanoid robot,

could never master natural language. �is seems like a controversial a priori commitment

to make.6

None of these reasons is conclusive. I do not know of any argument strong enough to

show that the rules governing natural language must be computable. All that I wish to

claim is that the computability assumption is prima facie plausible: it should be accepted

pending good reasons otherwise. Given the magnitude of assumptions that get made in

solutions to Kripke’s sceptic, the computability assumption is a fairly mild addition that

yields a healthy pay-o�.

4 �e pay-o�

Let us return to the reasons why the algorithm reply was suspected to be unsatisfactory,

and consider those reasons in reverse order.

First, there was a worry that providing an algorithm for how to apply a term is tantamount

to providing a de�nition of that term. �is is false. Algorithms are not intended to be

de�nitions, they are intended to provide extensional equivalence. Extensional equivalence

is a much weaker condition than synonymy. �ere is no reason to think that doubts about

the existence of de�nitions should carry over to doubts about the existence of algorithms

for applying terms. Indeed, the computability assumption entails that they do not. If the

computability assumption is true, then there must be computable rules governing the

correct application of natural language terms. Hence, there must exist algorithms for

applying those terms. �ese algorithms �x the correct application conditions of those

terms, and this is exactly what Kripke’s sceptic questions.

5. For example, consider terms such as ‘. . . is a non-halting Turing machine’, whose correct application
is in principle not decidable by a computer. �ere are at least three ways of dealing with such cases. One
is to treat them as non-computable composites made up of components, such as negation, ‘halting’, and
‘Turing machine’, that are governed by computable rules. Another is to treat them as promissory notes
on which we cannot actually deliver over the full in�nite domain, but to which we can provide a �nite
approximation. Finally, one could treat such expressions as having a di�erent semantic content from the
descriptive role that they appear to have, e.g. give them an expressivist treatment.

6. Some philosophers claim to demonstrate a priori that a computer cannot understand natural language
(e.g. Searle (1980), Dreyfus (1992), Haugeland (1981)). However, the computability assumption is strictly
speaking weaker than the claims that these philosophers attack. First, as discussed in Section 5, the
computability assumption does not entail that computations take place inside individual human heads.
Second, the computability assumption is true provided a simulation of a human (Searle), a connectionist
architecture (Dreyfus), or a suitably human-like robot (Haugeland) can correctly apply natural language
terms. �ird, the computability assumption only concerns correctness conditions, it does not concern all
aspects of language understanding, or indeed any other mental process. �e computability assumption
may be false, but it is not obviously incompatible with the principal arguments against the computational
view of the mind.

7



4 �e pay-o�

�e second worry was that natural language may be holistic rather than reducible. If

natural language is holistic, then the algorithm reply cannot solve the auxiliary problem:

no matter which set of terms one takes as basic, there is no small subset from which the

application conditions of all other terms can be de�ned. However, if the computability

assumption is true and the Church–Turing thesis is accepted, then natural language can

be shown to be reducible.

�e computability assumption entails that, for each term, there are �nite means in terms

of which its correct application can be speci�ed. However, the computability assumption

does not entail that the same �nite means—the same set of basic terms—work in each case.

For example, it may be that a term ⌜a⌝ has an algorithm governing its correct application

that uses the set of basic terms {⌜x⌝, ⌜y⌝, ⌜z⌝}, and that another term ⌜b⌝ has an algorithm

governing its correct application that uses a di�erent set of basic terms {⌜u⌝, ⌜v⌝, ⌜w⌝}.

It may be that each non-basic term in natural language requires a di�erent set of basic

terms. Even if computable algorithms determine the conditions of correct application

of terms, that does not mean that the total number of terms used by those algorithms is

any fewer than the total number of terms in natural language. It is compatible with the

computability assumption that language be holistic. Fortunately, there is another result

that shows that language is reducible under these conditions: the Church–Turing thesis.

�e Church–Turing thesis holds that if a function—an input/output pattern—is comput-

able at all, then it is computable using algorithms that use only a small number of basic
terms. Computers can produce an incredible variety of I/O behaviour, including, if the

computability assumption is true, the linguistic I/O behaviour of humans. One might

think that such a variety of I/O behaviour has to be re�ected in a corresponding variety of

basic predicates. �e Church–Turing thesis says that this is not the case. If a rule can be

speci�ed using some �nite means or other (which the computability assumption asserts),

then it can be speci�ed using one of any number of small sets of basic predicates. A small

set of basic terms is enough to specify algorithms for producing any computable behaviour.

�erefore, if the Church–Turing thesis is true, language is reducible a small set of basic

terms.

�e �nal worry was whether one’s set of basic terms is up to the job of de�ning the

conditions of correct application for all other terms. Depending on which response to the

sceptic one favours—Maddy’s and McGinn’s, Millikan’s, or Fodor’s—one will end up with

a di�erent set of basic terms. How can one be sure that one’s set of basic terms is adequate

to de�ne the conditions of correct application of all other terms? If the computability

assumption and the Church–Turing thesis are correct, then this question can be given at

least a provisional answer: a set of basic terms is adequate just in case that set de�nes the

architecture of a universal computing machine.

A universal computing machine is a machine that can, in principle, compute any comput-

able function. If natural language is computable at all (which it is by the computability

assumption), then it is computable by any universal computing machine. �e best known

universal computing machine is the universal Turing machine, but there are plenty of

other examples: universal register machines, universal Post machines, universal automata

in Conway’s game of life, and electronic PCs with unbounded memory. �ese machines

di�er in the algorithms that they run, but they share the characteristic of being capable

of reproducing the input/output pattern of any other computer. �e algorithms that a

8



4 �e pay-o�

universal machine runs consist in �nite combinations of a �nite number of basic instruc-

tions. For a Turing machine, the basic instructions are ‘scan symbol’, ‘erase symbol’, ‘move

head le�’, and so on; for a register machine the basic instructions are ‘increment register’,

‘decrement register’, ‘branch if zero’, and so on. �e basic instructions of a machine are

the basic terms of that machine’s algorithms. If those basic instructions have a �xed

meaning—a meaning immune to sceptical reinterpretation—then the algorithm followed

by the machine is immune to sceptical reinterpretation too.

�e worry that we faced was whether a particular set of basic terms is up to the job of

de�ning the conditions of correct application for all other terms. �e current claim is that

if one’s set of basic terms is up to the job of de�ning the basic instructions of a universal

machine, then it is up to the job of de�ning the application conditions of all other terms.

�e justi�cation for this claim is as follows. If natural language is computable, then it is

computable by any universal computer. �e algorithms that such a universal computer

follows consist of basic instructions. If those basic instructions are immune to sceptical

reinterpretation, then the algorithms are immune to sceptical reinterpretation too. �e

basic instructions of the universal computer are immune to sceptical reinterpretation if

those basic instructions coincide with our set of basic terms—the set of terms for which the

sceptic’s question has already been answered. �erefore, if one’s set of basic terms de�ne

the basic operations of a universal machine, then that set of basic terms is up to the job of

de�ning the application conditions of every term in natural language.

�is is only half of an answer to our worry. How do we know that the antecedent of this

conditional is true? Howdowe know that our set of basic terms does de�ne the architecture
of a universal computing machine? �ere are no guarantees, but some encouraging

results here. It is well known that the requirements for creating a universal computing

machine are minimal. With only a handful of predicates one can specify a universal

computing architecture (there is a small industry creating universal computers out of

simple and unexpected resources). Existing universal machines include not only those

listed above, but also recurrent neural networks (�nite-precision inputs/outputs/weights,

in�nite-precision signals initialized to zero), �nite state machines with two stacks, and

nearly all programming languages (including URISC, which has only one instruction).

Only a modest selection of predicates is needed to create a universal computing machine.

It is likely that if an existing response to the sceptic—e.g. Maddy’s andMcGinn’s, Millikan’s,

or Fodor’s—works, then the set of terms for which it works will be adequate to de�ne the

architecture of a universal computing machine. If this condition is met, then that set will

be able to specify the application conditions of all other terms in natural language.7

7. Note that the claim is not that the number of basic terms of a universal computermust be small, only
that it can be small (one could design a universal computer with a labyrinthine architecture that has a huge
number of basic operations). How is the number of basic terms counted? �e number of basic terms is the
minimum number whose meaning needs to be �xed in order to specify the architecture of the computing
machine in question. (Suppose you are asked to write out a full speci�cation of the architecture, what is
the minimum number of terms you need to use to do so?)

9



5 Commitment to the CTM

5 Commitment to the CTM

�ere is a close connection between the basic terms of the algorithm reply and the basic

instructions of a universal computing machine. �e basic terms of the algorithm reply

specify the instructions of a universal computing machine that is able to decide, by

following appropriate algorithms, whether a given natural language term correctly applies

in a given case. Correspondingly, if whether a natural language term correctly applies in a

given case is decidable by a computer, and the basic instructions of that computer are not

susceptible to sceptical reinterpretation, then the correct application conditions of natural

language are not susceptible to sceptical reinterpretation either. A consequence is that,

if one sees the decision as to whether a given term correctly applies as lying within the

human mind, a factor in�uencing the choice of basic terms will be if, and in what sense,

one sees the human mind as a computer. If one sees the human mind as computer of a

particular sort (classical, connectionist, etc.), then it will be natural to try to specify the

rules for applying natural language terms in terms of the basic operations of that machine.

�is suggests one apparent problem with the computability assumption: it presupposes

that the human mind is a computer, and this is far from uncontroversial.

�is problem is not as serious as it may seem. �e issue need only arise to the extent

that one takes Kripke’s sceptic as presenting a challenge about individual meaning or

mental content. �is is one way to read the sceptic’s challenge, but not the only way. One

could take the sceptic as presenting a challenge about the meaning of terms in public

language. On this understanding, an advocate of the computability assumption need

not assume that individuals perform computations. �e computations that �x non-basic

terms could be computations performed by groups. �e idea that computations can

be performed by groups rather than individuals is not unusual. Hutchins (1995) and

Clark (1997) give examples in which groups of humans cooperate and, in conjunction

with artefacts, perform a computation that does not take place inside the head of any

single individual.8 If the computations that �x the meaning of non-basic terms are of

this public kind, then they need not involve any commitment to individuals performing

computations or privately following rules.

By the same reasoning, the computability assumption is compatible with Putnam (1975)’s

claim about the division of linguistic labour. �e algorithms for correctly applying ‘elm’

could be computational without lying inside the head of every competent language user;

the algorithms could be distributed among experts.9

It is worth noting that if one does accept a version of the CTM, then the algorithm reply

suggests a possibility that is usually ignored in discussions of Kripke’s paradox. �is

possibility is that the basic terms may themselves not be terms of natural language: they

may be basic operations of the human mind. If the human mind is computer, then like

any computer, it will have certain basic operations. If the correct application of natural

8. Hutchins (1995) gives the example of computing the position of a US Navy battle group.
9. Putnam (1975)’s point about indexical nature of natural kind terms requires a di�erent treatment.

One strategy would be to follow Maddy and McGinn and treat natural kind terms as basic, and hence
not requiring algorithms to specify their conditions of application. Another would be to reject Putnam’s
treatment of natural kinds terms in favour of a descriptivist view; see Mellor (1977), Zymach (1976) for
defence of such a view.

10



References

language terms is decided within the humanmind, then the rules for applying those terms

must ultimately be �xed in terms of the basic operations of that computer. �erefore, if

one �xes determinacy for those basic operations, then one will thereby �x determinacy

for all terms in natural language. Since the basic operations of the human mind are likely

to be simple and evolutionarily salient, the task of �xing their determinacy might be easier

than that of �xing the determinacy of many natural language terms.

6 Conclusion

Respondents to Kripke’s sceptic ought to worry about whether their solutions generalise

to the whole of natural language. �e algorithm reply provides a way of answering this

worry. One might have three concerns about whether the algorithm reply is possible.

If the computability assumption and the Church–Turing thesis are correct, then these

concerns can be answered. Two further questions remain. �e �rst is whether we, as

language users, in fact follow the rules given by a particular algorithm reply. For example,

in the case of ‘plus’ it is unlikely that we decide correct application by counting marbles.

A full solution would depend on identifying our actual linguistic rules, and this is an

empirical matter. �e second question is whether a set of basic terms is adequate to de�ne

a universal computing machine. �e requirements for creating a universal computing

machine are minimal, so it is likely that this condition can be met. However, a de�nitive

answer to this question has to wait until particular solutions specify the set of terms for

which they work. �is is something that remains to be done for many particular solutions.

Until these two questions are answered, the algorithm reply remains a promissory note.

However, as things stand it is our best chance of solving the auxiliary problem.

Acknowledgements

I would like to thank Peter Lipton and Martin Kusch for comments on an earlier version

of this paper.

References

Church, A. 1941.�e Calculi of Lambda-Conversion. Princeton, NJ: Princeton University

Press.

Clark, A. 1997. Being �ere. Cambridge, MA: MIT Press.

Dreyfus, H. L. 1992.What Computers Still Can’t Do. Cambridge, MA: MIT Press.

Fodor, J. A. 1990. A�eory of Content and Other Essays. Cambridge, MA: MIT Press.

Ginet, C. 1992. ‘�e Dispositionalist Solution to Wittgenstein’s Problem About Under-

standing a Rule: Answering Kripke’s Objections’. InMidwest Studies in Philosophy,
edited by P. A. French, T. E. Jr. Uehling and H. K. Wettstein, 17:53–73. Notre Dame:

University of Notre Dame Press.

11



References

Haugeland, J. 1981. ‘Semantic Engines: An Introduction to Mind Design’. InMind Design,
edited by J. Haugeland, 1–34. Cambridge, MA: MIT Press.

Hutchins, E. 1995. Cognition in the Wild. Cambridge, MA: MIT Press.

Kripke, S. A. 1982. Wittgenstein on Rules and Private Language. Cambridge, MA: MIT

Press.

Maddy, P. 1984. ‘How the Causal �eorist Follows a Rule’.Midwest Studies in Philosophy
9:457–477.

McGinn, C. 1984.Wittgenstein on Meaning. Oxford: Blackwell.

Mellor, D. H. 1977. ‘Natural Kinds’.�e British Journal for the Philosophy of Science 28:299–
312.

Miller, A., and C. Wright, eds. 2002. Rule-Following and Meaning. Chesham: Acumen.

Millikan, R. G. 1990. ‘Truth rules, hover�ies, and the Kripke–Wittgenstein paradox’.

Philosophical Review 99:323–353.

Putnam,H. 1975. ‘�eMeaning of “Meaning”’. InMind, Language andReality, Philosophical
Papers, vol. 2, 215–271. Cambridge: Cambridge University Press.

Rosch, E. 1973. ‘On the Internal Structure of Perceptual and Semantic Categories’. In

Cognitive Development and the Acquisition of Language, edited by T. Moore. New

York, NY: Academic Press.

Searle, J. R. 1980. ‘Minds, brains, and programs’. Behavioral and Brain Sciences 3:417–424.

Zymach, E. 1976. ‘Putnam’s �eory of the Reference of Subject Terms’. �e Journal of
Philosophy 73:116–127.

12


	1 Introduction
	2 The algorithm reply
	3 The computability assumption
	4 The pay-off
	5 Commitment to the CTM
	6 Conclusion

