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Abstract

Scientific and statistical inferences build heavily on explicit, paramet-
ric models, and often with good reasons. However, the limited scope of
parametric models and the increasing complexity of the studied systems
in modern science raise the risk of model misspecification. Therefore, I
examine alternative, data-based inference techniques, such as bootstrap
resampling. I argue that their neglect in the philosophical literature is un-
justified: they suit some contexts of inquiry much better and use a more
direct approach to scientific inference. Moreover, they make more par-
simonious assumptions and often replace theoretical understanding and
knowledge about mechanisms by careful experimental design. Thus, it is
worthwhile to study in detail how nonparametric models serve as inferen-
tial engines in science.

Keywords: models, data, inductive inference, nonparametric statistics, boot-
strap resampling

1 Probabilistic Modeling

Modeling plays a key role in empirical science, especially when overarching theo-
ries cannot be applied. Many efforts in science focus on constructing, comparing
and revising models of physical entities, phenomena and processes. Bohr’s model
of the atom, Volterra’s model of predator-prey populations and the random walk
model for the motion of molecules in a fluid are among the most popular ones.
Models enable us to recognize fundamental relations between physical quanti-
ties, to understand the effects of causal interventions and to generalize observed
effects to more complex and realistic cases. Often, their construction is triggered
by concrete puzzles: For instance, Volterra (1926) developed his mathematical
model of predator-prey population dynamics in response to the surprising short-
age of adriatic fish after World War I. Volterra’s model started from abstract
considerations, but its predictions were found to be in stunning agreement with
reality (see Weisberg’s (2007) case study for more details). The way the Volterra
model has been developed, refined and transferred to other scientific inquiries
exemplifies a general strategy: to set up mathematically tractable models which
capture fundamental mechanisms of the underlying system, and to gradually
amend and refine them in order to account for the complexity of large-scale
systems in the real world. In other words, models allow us to discover charac-
teristic regularities (e.g. cycles in the population dynamics) as well as to explain
concrete phenomena, such as “why does a disruption in fishing activity increase
the predator/prey ratio?”.

Hence, it is not surprising that philosophers of science have been spending a
lot of paper on the various features of model-building. In particular, they studied
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the function of models as explanatory engines and the differences to straightfor-
ward descriptions and empirical generalizations. Here, it has been pointed out
that modelers make indirect inferences about the target system: they study a
(mathematical) model and hope that the results, when transferred to the target
system, remain approximately valid (cf. Weisberg 2007, 2009). Moreover, con-
structing definite models presupposes knowledge about mechanisms and causal
interactions within a system, but on the other hand, the technique of indirect
inference also improves our structural understanding, and leads to more reliable
predictions (cf. Godfrey-Smith 2006). Volterra’s predator-prey model exempli-
fies both of these features, as shown above.

This mechanistic ideal of modeling ceases to apply whenever data obey ap-
parently random patterns or when observations are disturbed by noise. In
such cases we replace deterministic relationships by probabilistic models that
are tailor-made to reasoning under uncertainty. The remainder of my paper
focuses on probabilistic models that have invaded almost all natural and social
sciences, but I see no obstacles to generalize my conclusions to deterministic
models.

Definition 1 A parametric statistical model1 is an ordered triple (X ,A, (Pϑ)ϑ∈Θ)
where (X ,A) is a measurable space (usually called the sample space) and (Pϑ)ϑ∈Θ

is a family of probability measures on (X ,A).2

In this definition, the sample space X corresponds to the set of possible ob-
servations whereas the σ-field A has only technical meaning, defining the set
of ‘measurable’ subsets of the sample space. Crucially, (Pϑ)ϑ∈Θ gives a family
of probability distributions on (X ,A), which describe one and the same sam-
pling mechanism (i.e. the mechanism that generates the data). The parameter
ϑ that calibrates the sampling mechanism is, however, unknown. By restrict-
ing the set of sampling distributions to a parametric family, the uncertainty
about the structure of the underlying sampling mechanism is removed. Instead,
all uncertainty attaches now to the value of the unknown parameter ϑ which
we can try to infer from the observations we make: “this restriction and [...]
parametrization should aid one in understanding and efficiently estimating the
[true] distribution.”3

But how do those mathematical constructions that we call statistical models
connect to real systems? To what extent do they serve inferential tasks and
indirect inference? Well, in the same way that deterministic models do. Morgan
and Morrison state that formalizing a sampling process by means of a statistical
model

“[. . . ] provides a model for a certain type of situations thought to
exist in the real world and for which statisticians have well worked-
out theories.”4

In other words, statistical models are the crucial link between stochastic theory
and the real world. One of the best-known illustration for Morgan and Morri-
son’s claim is the coin flip model. A coin is either fair or biased towards one of

1Often, the terms ‘parametric (statistical) model’ and ‘statistical model’ are used inter-
changeably.

2Cf. Cox 2006.
3Spirtes, Glymour and Scheines 1993, 4.
4Morgan and Morrison 1999, 33.
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the two sides, and we represent the probability that it comes up ‘heads’ by a
parameter ϑ. When the coin is tossed repeatedly (a sequential Bernoulli trial),
this is supposed to tell us something about the model parameter ϑ. And if
we represent the number of heads by, let’s say, the Binomial distribution, this
codes our causal knowledge that there are just two possible outcomes in each
trial, that the trials are independent from each other, etc. As we will soon see,
extensions of that very simple model can represent a wide number of complex
processes in science.

A extension of the coin flip model is the random walk – a discrete stochastic
process that describes ‘random’ wandering on a rectangular grid. In genetics,
those random walks are used to describe the variation of allele frequencies on
a gene in a given population, e.g. for simulating genetic drift. But actually,
random walks also serve as simplified models of the Brownian motion in hydro-
dynamics that describes a molecule’s motion in a fluid. The Brownian motion
is one of the most important diffusion processes in physics and has numerous
(mathematically) beautiful attributes: It is a martingale with quadratic vari-
ation, has Normally distributed increments, the Markov property, etc. The
abundance of mathematical tools and analytical results that can be used in
working with the Brownian motion underlines the power of this model and ex-
plains why it is often applied outside hydrodynamics, too, e.g. for modeling
financial markets.

Now, it is crucial to note that the scale limit of the random walk (if steps
are made infinitely small) is just the Brownian motion. So parametric models
do not only facilitate our analysis of real systems: there are also beautiful
connections between different parametric models (e.g. extended coin flip models
and Brownian motions) that enhance our understanding of physical phenomena
and helps us to see how they are related. So it does not come as a surprise
that statistics textbooks in empirical sciences as well as philosophers of science
stress “the explicit need of a [parametric] model in analyzing the significance of
empirical data”5.

In particular, sophisticated testing procedures such as the F - and t-test have
been designed for specific parametric models (here: the Normal distribution)
and are widely used for testing scientifically relevant hypotheses. Intuitive and
conceptually sound measures of evidence, such as the likelihood ratio and Bayes
factors, are motivated by parametric assumptions (cf. Hacking 1965, Royall
1997). Hence, parametric models play a distinguished role in inductive inference.

In spite of all these virtues, I believe that the significance and indispens-
ability of explicit parametric models in science has been overestimated. True,
parametric modeling facilitates structural understanding as well as closed form
computations and quantifying statistical evidence, but I argue that in scientific
practice, valid conclusions can often be attained by means of nonparametric,
data-based inference. Those methods do not require understanding of some
fundamental mechanisms in the system and are therefore immune to pitfalls
of parametric modeling. Bootstrap resampling gives a convincing case study.
Finally, I discuss to what extent nonparametric techniques can serve as inferen-
tial engines, contrast them to traditional, parametric approaches in statistical
modeling and argue that the former deserve more attention in the philosophical
debate.

5Suppes [1962] 1969, 33. Cf. Mayo 1996 and Cox 2006.
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Survival times 1 2 3 4 5 6 7 8 9 Median
Treatment group 94 197 16 141 38 99 23 — — 94

Control group 46 30 52 146 40 10 104 27 52 51

Table 1: Survival times (in days) in the treatment and the control group after
the test surgery.

2 Problems of Parametric Modeling

There is a central problem for a parametric modeler: to specify the right family
of models for the studied system. A parametric inference that is based on an
inadequate family of distributions will easily go astray. This is the problem of
model misspecification. To specify the right model, Ian Hacking (1965) gives
three guidelines: analogy to other, relevantly similar questions of inquiry, sci-
entific theory, i.e. the implications of our physical, biological, etc. background
knowledge – in particular knowledge about causal mechanisms – and finally,
simplicity : the mathematical analysis must be feasible.6 When model specifi-
cation fails, the entire inference is usually worthless, and this is the reason why
so much literature has addressed model misspecification, even within the philo-
sophical community. For instance, Mayo and Spanos (2004) extensively discuss
techniques for detecting misspecification.7

In general, correct model specification requires a lot of insights into the tar-
get system. The more complex the processes we deal with and the scarcer our
theoretical understanding, the less we can be certain to have chosen the right
model. When we analyze complex systems, model specification is often not suf-
ficiently guided by theoretical understanding. Causal relations between model
variables may be unclear, the entire system may be too complex to model, no
mathematically tractable distribution fits the specific values which the obser-
vations take, etc. Time series in econometrics and meteorology provide salient
examples. We have to account for the uncertainty about the nature of the true
distribution, and we cannot expect – as parametric models often do – nature
to behave according to our wishes for mathematical convenience and structural
simplicity. An example illustrates the point.

Example 1 (Efron and Tibshirani 1993): A group of seven mice is assigned
medical treatment after a test surgery. We would like to study whether this
treatment is able to prolong the survival time of the mice, compared to mice
which are operated without being assigned the treatment. To this end, we set up
a control group of nine mice. The incoming data are displayed in table 1.

Although the example is very simple, it is not clear how model specification
could proceed. Certainly, simplicity might speak for choosing a Normal distri-
bution, but how do we defend that claim? The asymmetry of the data in the
control group speaks against the assumption of Normality. Note further that
the data points are noted as integer values which speaks for a discrete distribu-
tion, instead of a continuous one like the Normal distribution. Hacking’s other
guidelines also fail: If the medical treatment is a novel one, and we choose a

6Cf. Hacking 1965, 83-85.
7Cf. Burnham and Anderson 1998 for a practitioner’s perspectives.

4



parametric model by analogy to an old drug, we implicitly impose constraints on
our interpretation of the observations, instead of taking an unbiased perspective.
Finally, in such a complex process as the effect of chemical drugs on biological
organisms, there is no overarching theory which directly links chemical proper-
ties of the drug to the survival time of the mice. Thus, model specification is
quite difficult and risky. Furthermore, having a specific model of drug efficacy is
arguably less important than knowing that the drug is effective at all and that
we should administer it in future cases. (Especially if not mice, but humans are
assigned medical treatment after a serious surgery.)

The latter goal – predicting future performance – has become especially
important in modern science. Geophysical and meteorological models provide
paradigmatic examples. The availability of loads of data on the actual weather
together with our geophysical theory gives us a sensible idea of the local weather
in the next 24 hours. But it would be presumptuous to capture the essential
structure of complex systems, such as the Earth’s climate, through explicit,
parametric models, even if the underlying physics are roughly understood. First,
the scale of the model is simply too large to warrant that a model parameter
can still be meaningfully mapped to a real physical quantity (such as moist con-
vection or surface pressure at particular spot). Second, the number of physical
interactions in a system that is as complex as Earth’s climate are so numerous
and messy that

“we know a priori that there is no combination of parametriza-
tions, parameter values and initial conditions which would accurately
mimic all relevant aspects of the climate system.”8

In light of these limitations of parametric statistical modeling, modern science
has to make recourse to more parsimonious assumptions. In particular, fore-
casting techniques that are guided by data (such as mathematical extrapolation
techniques) often replace predictions that have been gained by a top-down ap-
proach and stipulating an explicit model.

Of course, the statistical techniques for detecting model misspecification
become more and more refined. But their power does not keep up with the
increasing model complexity in modern science. Thus, shouldn’t we better seek
for alternative inference techniques? In scientific practice, that conclusion is
often drawn and exemplifies a trend away from explicit models and closed form
solutions (cf. Humphreys 2004). This trend has even reached statistical physics,
one of the most theoretical branches of empirical science. I mentioned the great
number of analytic results proven for the Brownian motion. Still, simulation-
based methods such as Monte Carlo methods are nowadays omnipresent in
studying Brownian motion and related stochastic processes (cf. Sharma and
Patankar 2004). While the pioneer work in simulating hydrodynamic processes
goes back to the 1950s (e.g. the Metropolis algorithm), it was the advent of fast
and efficient computing resources that made simulation-based analyses widely
available and practicable. So even branches of physics where parametric model-
ing achieved its greatest unifying successes have been infiltrated by numerical,
simulation-based methods.

Moreover, statistics that are particularly easy to analyze in parametric mod-
els, such as the population mean, are notoriously vulnerable to measurement

8Stainforth et al. 2007, 2148. Italics in the original. Cf. Sprenger 2009 for a philosophically
minded discussion of statistical inference in the face of model uncertainty.
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errors, biases and outliers in the data. On the other hand, more robust statistics
of interest as the median are hard to analyze in a parametric framework. All
these concerns show that working with parametric models does not only have
benefits, but also severe drawbacks and that we need alternative techniques for
addressing classical questions of statistical inference, such as causal inference
and estimating standard errors. In the next section, I illustrate how modeling
assumptions can be kept to a bare minimum by means of computer-intensive re-
sampling methods. There, the actual sample is taken as a nonparametric model
of the population. The bootstrap strategy provides a particularly nice illustra-
tion of the resampling principle and a template for investigating the inferential
virtues of non-parametric models.

3 Resampling Methods: A Bootstrap Case Study

One of the most common statistical activities consists in comparing two samples
of different populations with respect to a specific characteristic. This is called
the two-sample problem and it is exemplified in example 1: we would like to test
the hypothesis that the medical treatment is not effective at all, i.e. that the two
samples (the treatment and the control group) are actually drawn from the same
distribution. As argued in the previous section, we have to test that hypothesis
in the face of strong model uncertainty and little structural understanding.

A parametric statistical approach would assign a specific family of distribu-
tions to the treatment and the control group, for instance a Normal distribution
with means µ1, µ2 and variances σ2

1 , σ
2
2 . Then, we could apply the t-test for

testing equality of the means (of Normally distributed populations) and the F -
test for testing equality of the variances. Since the t- and F -distributions are
well studied, such a procedure would be easy to handle. But we have already
argued that the assumption of Normality would be highly contentious in the
mice example – neither underlying scientific theory nor simplicity nor analogy
recommend the choice of a specific model. I show how bootstrap resampling
transforms the sample into a nonparametric model of the population. Hence,
it can be used to make inferences about the underlying population in the ab-
sence of explicit model assumptions, so the modeler ‘pulls herself up by her own
bootstraps’.9

Let (x1, . . . , xm) denote the survival times in the treatment group and let
(y1, . . . , yn) denote the survival times in the control group. Let us pool all
those data into a single sample (x1, . . . , xm, y1, . . . , yn) and let F̂ denote the
empirical distribution function (EDF) of the pooled sample. The EDF gives
equal probability weight 1/(m + n) to any element of the sample and zero to
all other points. Under the null hypothesis H0 that the treatment has no effect,
all the xi and yj are drawn from the same population. Given H0, the EDF
becomes a non-parametric estimate of the joint distribution of the xi and yj .10

11 Now, the resampling mechanism evaluates the actual observations under the
9In spite of the terminology, there is no analogy to Clark Glymour’s (1980) theory of

“bootstrap confirmation”.
10The EDF assigns probability zero to all points which are not in the actual sample. Espe-

cially in quite small samples, this assumption is often ruled out by our background knowledge.
In such cases, the EDF can be smoothed using adequate techniques, e.g. kernel-dressing.

11By estimating the unknown population distribution with the EDF of the sample, the
bootstrap generalizes the principle of maximum likelihood estimation to the nonparametric
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assumption that H0 is true:12

1. Let b = 1.

2. Draw with replacement m+ n ‘bootstrap resamples’ from the distribution
F̂ . Randomly assign them to an orderedm+n-tuple (xb

1, . . . , x
b
m, y

b
1, . . . , y

b
n).

(So an xb
i can also be assigned the value of a yj in the original sample,

and vice versa.)

3. Calculate the group means x̄b and ȳb for the bootstrap resamples. Then,
calculate the value of the discrepancy-measuring statistic

t(x̄b, ȳb) :=
x̄b − ȳb

σ̄
√

1
n + 1

m

(1)

where

σ̄ :=

√∑m
i=1(xb

i − x̄b)2 +
∑n

j=1(yb
j − ȳb)2

(n− 1) + (m− 1)
. (2)

The denominator in (1) and the complicated expressions in (2) may trou-
ble the reader, but they have merely technical significance: The distance
statistic x̄b− ȳb is adjusted by dividing it through an estimate of its stan-
dard deviation (‘studentization’).

4. Let b := b+ 1 and go back to step 2 until b = B, the number of bootstrap
resamples, is attained.

5. Calculate the fraction of times where the actually observed discrepancy
exceeds the discrepancy in the bootstrap replications:

pobs :=
1
B

#{t(x̄b, ȳb) ≤ t(x̄, ȳ), b ≤ B} (3)

The rationale of bootstrapping is quickly explained. We would like to test (and
possibly to reject) the null hypothesis that the medical treatment does not have
any effect, i.e. that treatment and control sample are drawn from the same
population. To this end, we pool both samples into a single sample and draw
simulated resamples out of this pooled sample (step 2). For each of these re-
samples, we check whether the discrepancy between the two resampled groups
exceeds the discrepancy in the original data (step 3). Under quite mild con-
ditions, the bootstrap is asymptotically consistent (see Efron 1979, Bickel and
Freedman 1981), i.e. for increasing sample size (m,n → ∞) and an increasing
number of resamples (B → ∞), the bootstrapped distribution of the distance
statistic t will mimic the real distribution of t. Thus, we repeat the process a
large number of times in order to get a reasonably high number of resamples
(step 4). At the end, we count the fraction of times where the actual discrepancy
between the group means exceeds the discrepancy in the resamples (step 5). If
that happens very often, it is unlikely to be a result of pure chance, and the

case. The Glivenko-Cantelli theorem guarantees that in the limit, the EDF of the sample
converges uniformly against the population distribution.

12Cf. Efron and Tibshirani 1993.
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result (i.e. a large value of pobs) will significantly speak against the null hypoth-
esis that the two populations are equally distributed.13 In the actual example
of table 1, we obtain a p-value (or actual significance level) of pobs = .866 for a
value of B = 1000. This is clearly not enough to reject the hypothesis that the
medical treatment is just a placebo since in 13% of all cases, such a high result
would have been obtained by chance.

Note that the consistency results for the bootstrap crucially turn on the as-
sumption that the single data points are independent and identically distributed.
Thus, the bootstrap is not free of modeling assumptions (cf. Rubin 1981). But
the assumptions are of a quite different type – they are qualitative and can be
warranted with the help of a careful experimental setup, controlling that the
trials were really screened off from each other, etc.. Thus, such assumptions
are much easier to defend than specific parametric assumptions, and they re-
place theory- and parameter-based inference by design-based inference. In other
words, the responsibility for model adequacy lies with the experimenter’s prac-
tical skills rather than with his theoretical understanding. This allows a more
direct approach to testing scientifically relevant claims, without setting up a
refined (and possibly misspecified) parametric model.

Actually, the two-sample problem is characteristic of any situation where
two samples are compared with respect to some characteristic, as the mean, the
variance, etc. For instance, we could ask whether the average height of 10-year-
old boys equals the average height of 10-year-old girls. Or we could ask whether
a simulation-based model of a physical process is indeed a faithful model of the
target process and compare the two data sets to this end. It is a distinctive
feature of the bootstrap that it does not only apply to the two-sample problem
discussed above (equality of two distributions) – it can be applied to almost all
statistical inference problems.

For instance, in the above example, we have tested a causal hypothesis (does
the treatment have effect?), but Demiralp, Hoover and Perez (2009) use the
bootstrap as well for assessing the confidence in the result of a search for causal
dependencies. Equally, the bootstrap provides a nice means of quantifying the
confidence that we put into a statistical estimate, as measured by the standard
error of an estimate. Analytic formulas for estimating standard errors are in
general only available for specific statistics, such as the sample mean. In the
example of table 1, we might be more interested in the median (‘the treatment
effect for the average mouse’) than in the mean since outliers in the data eas-
ily bias the sample mean. Thus, we estimate the population medians for the
treatment and the control group by the respective sample medians, leading to
estimates of x̃ = 94 and ỹ = 51. This is apparently a large effect. However, we
should accompany that estimate by an estimation of the standard error in order
to quantify how much of that difference may be due to random sampling. To
this end, we draw bootstrap resamples (xb

1, . . . , x
b
m) from the treatment group

and estimate the standard error of the sample median by the standard deviation
13The use of p-values in testing point null hypotheses has been subject to severe criticism

(Berger and Sellke 1987), but it is not necessary to rehearse the Bayesians vs. frequentists
debate since the bootstrap can be equally applied in a Bayesian framework (Rubin 1981).
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B 50 100 250 500 1000 ∞
Median 32.21 36.35 34.46 36.72 36.48 37.83

Table 2: Bootstrap estimates of the standard error of the sample median for the
treatment group in table 1, as a function of the number of replications B.

of the median in the bootstrap replications:14

ŝe :=

√√√√√ 1
B − 1

B∑
b=1

x̃b − 1
B

B∑
j=1

x̃b

2

. (4)

Here, x̃b denotes the median in the b-th bootstrap resample. In other words, we
draw a large number of resamples from the original sample and look to what
extent the replicated medians diverge from each other under the assumption of
independent sampling. Then, ŝe is supposed to give a reasonable approximation
of the standard error of the sample median. Note that bootstrap resampling
squeezes out all available information from the sample (by stipulating the sample
as a nonparametric model) whereas parametric estimation focuses on selected
aspects of the data.

In the mice example, we obtain the numbers shown in table 2. For B ≥
500, the asymptotics work fine, and in terms of computation time, the effort
for the resampling analysis is negligible. The observed difference between the
sample medians is greater than the estimated standard error (to be precise, 1.14
estimated standard errors), but again, a difference of that magnitude may still
be due to chance alone.

Again, we see the simplicity and efficiency of the bootstrap at work. And
even on a theoretical level, the bootstrap may fare better than a classical, para-
metric approach. Under a large set of conditions, the bootstrap approximation
of the standardized sample mean outperforms an asymptotic analysis based on
the central limit theorem.15 So the bootstrap does not only replace parametric
approaches whenever their application would be problematic or too cumber-
some, as in the case of median estimation – it actually has theoretical virtues
on its own. Given all these successes, it is now time that the philosophy of sta-
tistical inference acknowledges those developments and integrates resampling
methods into a unified scheme of data analysis and inductive inference.

4 Summary and Discussion

For a long time, parametric modeling has been the unchallenged paradigm for in-
ductive inference in the sciences. As explained in section 1, parametric modeling
requires some theoretical understanding or knowledge about causal mechanism,
but it often yields high explanatory power and mathematical convenience. The
coin flip model and one of its extensions, the random walk, provide a salient
example. Hence, a parametric framework is also the natural context for de-
bating principal issues in statistical methodology (cf. Mayo 1996, Royall 1997).

14See Chapter 2 in Efron and Tibshirani 1993.
15Cf. Singh 1981.
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However, the increasing complexity of statistical analysis requires us to focus on
nonparametric techniques: The less we know about a target system, the greater
the scale of the model, or the more opaque the interactions between the modeled
quantities, the less can parametric assumptions be justified and the more likely
is our inference to be led astray. Under such circumstances, guidelines for cor-
rect model specification, such as background theory and analogical reasoning,
cease to apply and the goal of adequate modeling may be hard or impossible to
achieve.

These criticisms, made explicit in section 2, triggered the question how clas-
sical statistical inquiries may be addressed without contentious modeling as-
sumptions. Section 3 drew attention to a particular non-parametric technique:
bootstrap resampling. Due to its parsimonious presuppositions and its versatile
applicability, it deserves special attention. Bootstrap methods draw simulated
resamples from the actual data and work under much milder conditions, replac-
ing the choice of a particular family of distributions by the assumption that the
observed random variables are independent and identically distributed. This
constraint can be satisfied by means of qualitative understanding or careful ex-
perimentation. In other words, the bootstrap uses the sample as a model of
the population and exemplifies design-based data analysis, instead of theory- or
mechanism-based data analysis that is typical of explicit parametric modeling.
This has general implications for theory testing in science: If a model is re-
jected in a parametric hypothesis test, does this negative result transfer from
the statistical model to the scientific thesis which we wanted to test? Actually,
scientists often avoid that conclusion (cf. Keuzenkamp and Magnus 1995). One
reason for this reluctancy is certainly model uncertainty. This worry might,
however, be addressed by resampling techniques which offer a more direct way
to address scientifically relevant questions of inquiry.

Traditional parametric modeling starts with an easily understandable model,
such as the coin flip model. The properties of such a model are studied and we
hope that some of the insights we gain transfer to the target system. This is
an indirect top-down approach – we study a stipulated model before we make
inferences about the real system. Nonparametric models, however, work bottom-
up and combine strategies of direct and indirect inference: On the one hand, the
model is directly constructed from the visible elements of the target population,
namely the actual sample. No mediation via a toy model or an imagined system
is required. On the other hand, we can simulate further experiments within our
sparse data model, and by drawing on the results of those simulations, we can
make reliable scientific inferences. In other words, we derive our inferences
about real-world phenomena from studying simulated resamples that have been
generated by a mathematical model. Thus, resampling inferences are neither
straightforward descriptions nor mere generalizations of observed data – they
combine direct and indirect inference techniques (cf. Weisberg 2007).

To some extent, the dichotomy between design-based, bottom-up resampling
methods and theory-based, top-down parametric methods is blurred in practice.
For the debate about models in science, it seems to be a fruitful project to
explore if the two approaches can complement each other. In particular, I would
like to investigate how the virtues of both approaches – structural understanding
in one case; parsimonious, design-based inference in the other case – can be
combined without being exposed to the drawbacks of either strategy. This is,
however, a project for future research.
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