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Abstract

By and large, the conditional connective in three-valued logic has two
different functions. First, by means of a deduction theorem, it can ex-
press a specific relation of logical consequence in the logical language
itself. Second, it can represent natural language structures such as
“if/then” or “implies”. This chapter surveys both approaches, shows
why none of them will typically end up with a three-valued material
conditional, and elaborates on connections to probabilistic reasoning.

1 Introduction

I open this chapter with a catchy quote by the relevance logicians Alan Ross
Anderson and Nuel D. Belnap:

Although there are many candidates for logical connectives, such as
conjunction, disjunction, negation, quantifiers, and for some writers
even identity of individuals, we take the heart of logic to lie in the
notion “if . . . then . . . ” [. . . ]. (Anderson and Belnap 1975, p. 3)

In this quote, Anderson and Belnap reverse the traditional relationship be-
tween logical connectives. Most logic textbooks consider the Boolean con-
nectives ¬, ∧ and ∨ to be fundamental. The conditional connective A → B
appears later and is typically identified with the logical disjunction ¬A ∨ B,
i.e., the material conditional. In other words, it has secondary importance.
Anderson and Belnap, however, take the conditional connective to be the pri-
mary connective, thanks to its privileged relationship to logical consequence:
it expresses what follows from what, and how we make suppositions and
conditional inferences. This is indispensable for our understanding of valid
reasoning.
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Let me give two examples. First, both Hilbert-style calculi and (Fitch-
style) natural deduction are based on Modus Ponens as the main inference
rule: A → B, A ` B. If there is a specific type of connection between A
and B, we can infer B from A. The conditional connective is essential for
making these inferences work. Second, useful meta-inference rules such
as Conditional Proof are based on the logical properties of the conditional
connective. For example, to show that Transitivity holds in a given logic
(i.e., A → B, B → C ` A → C), we typically assume that A is true, and
then derive from the premises that C must be true, too. But this suffices as
a proof only if we have a rule for introducing the conditional. Conditional
Proof, i.e., the meta-theorem that Γ, A ` B implies Γ ` A→ B, does the job.

Both Modus Ponens and Conditional Proof enjoy strong support among
logicians and they have an important role in our reasoning and proof prac-
tices. When we take them together, we obtain the

Deduction Theorem For any set of formulas Γ and formulas A, B: Γ, A |= B
if and only if Γ |= A→ B.

(I am switching back to the semantic formulation here.) When a conditional
connective → satisfies the deduction theorem, the notion of valid inference
is mirrored on the level of the logical connectives. That is, the connective→
“internalizes” the relation of logical consequence |= into the language itself.

These introductory paragraphs were supposed to counter a prejudice
that philosophy freshmen (including my past self) may have after following
Logic 101. In simple propositional and predicate logic, the standard condi-
tional A → B is simply the disjunction ¬A ∨ B. The truth conditions of the
conditional connective therefore seem to be subordinate to the truth condi-
tions of the Boolean connectives and to not have independent significance.
This view is mistaken: logicians have, at all times, identified the behavior of
the conditional connective as a central question of logic.

This chapter tries to explore the role of the conditional in three-valued
logics, i.e., logics which are characterized by having a third semantic values
in addition to the classical values of “true” and “false”. The interpretation
of this third value differs according to the intended application: it can be
“still possible” (e.g., in quantum mechanics, or in evaluation of future con-
tingent sentences), “unknown” (in epistemic interpretations), “undecidable”
(in intuitionistic interpretations), “nonassertive” or “void” (when evaluating
conditional assertions), “both true and false” (in dialethical interpretations),
or “inconsistent” (in computer science applications). It can also be defined
negatively as “neither true nor false” or as a “truth-value gap”. In this chap-
ter, I will denote the classical values with the numbers of 1 and 0 and the
third value with 1/2. The chapters by Graham Priest on interpretations of
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the third value, and by John Cantwell on metaphysical indeterminacy, sur-
vey these options in greater detail.

Simplifying a bit, the conditional connective can have two basic functions
in the numerous applications of three-valued logic. First, there is the external
function of modeling natural language discourse, or a specific structure in
reasoning with a conditional component, such as “if A, then B”, “A implies
B”, or restricted quantification. I call this the external function because the
adequacy of the truth conditions of the conditional is mainly evaluated as a
function of how well it describes the target system it is supposed to model.

Many three-valued logics that wish to have such a conditional connective
without the paradoxes of material implication (especially without the infer-
ence ¬A |= A → B) go paraconsistent. This means that they will typically
not have a single designated value, i.e., D 6= {1}. Moreover, the conditional
connective, denoted by ‘→’, will differ from A ⊃ B := ¬A ∨ B. Specific
three-valued systems aiming at the natural language indicative conditional
are de Finetti (1936), Cooper (1968), Belnap (1970, 1973), McDermott (1996),
Cantwell (2008), and Égré, Rossi, and Sprenger (2021a, 2023b, forthcoming).
Some of these logics satisfy a deduction theorem, but not all of them do.

Second, there is the internal function of the conditional connective: its
truth conditions should mirror the valid inferences of a particular (three-
valued) logic by means of a deduction theorem. Often, the essential features
of the logic are determined by considerations not pertaining to the condi-
tional, but to the intended application. The question is then how we should
choose a conditional connective that mirrors logical consequence, and for the
rest validates desirable and blocks undesirable inference patterns involving
the conditional (e.g., Modus Ponens: A, A → B |= B, or the Law of Iden-
tity: |= A → A). In classical logic with bivalent valuations, the conditional
that internalizes truth preservation is the material conditional. This changes
when we move to non-classical logic and three-valued valuations. A classical
representative of this approach is Asenjo and Tamburino’s (1975) “Logic of
Antinomies”, but we may also cite Łukasiewicz’s logic L3 (1920; 1930; 1951).

This second approach, which relates a conditional connective closely to
logical consequence, is of particular interest for proof-theoretic systems. It is
quite common in mathematics and computer science, while it is less popular
among philosophers. In practice, both types of considerations can also be
mixed: the adequacy of a conditional connective can be evaluated both by
means of its faithfulness to the modeling target and by its formal properties
related to the consequence relation. The three-valued relevance logic RM3,
for example, is motivated by explicating what we mean by the predicate
“implies”, but in doing so, it needs to be connected tightly to the notion of

3



(relevant) logical consequence. In other words, it has both “internal” and
“external” traits. I will therefore devote a separate section to this logic.

The chapter is structured as follows: In Section 2, I compare the con-
ditional in classical and three-valued logic. Section 3 surveys the interac-
tion between the conditional and logical consequence in some well-known
three-valued logics. Section 4 describes three-valued semantics for the natu-
ral language indicative conditional. Section 5 elaborates on that theme and
studies the relationship between the indicative and the material conditional
in three-valued logic. Section 6 surveys three-valued semantics for proba-
bilistic reasoning with a non-monotonic conditional, and Section 7 studies
three-valued semantics for relevance logics. Section 8 concludes.

2 Classical and Three-Valued Logic

In the remainder, I work with a simple propositional language L whose
sentential variables are denoted by uppercase Roman letters. Let us get back
for a moment to classical logic: its conditional connective is the material
conditional ⊃ although it is not obvious that A ⊃ B is a good explication
of “A implies B”. Indeed, the famous paradoxes of material implication,
¬A |= A ⊃ B and B |= A ⊃ B, show that its truth conditions do not square
well with our intuitive use of “A implies B” or “if A, then B”. Indeed, why
should the falsity of the antecedent suffice for the truth of “A implies B”?
First-year logic instructors know how difficult it is to convince students that
the material conditional should be the conditional connective that we use in
ordinary reasoning! Psychological experiments such as the Wason Selection
Task demonstrate that this is not only anecdotal evidence, but represents a
persistent phenomenon in conditional reasoning.1

Unfortunately, freshmen have not followed enough logic classes in or-
der to appreciate the many virtues of the material conditional: it satisfies
Modus Ponens and is the only truth-functional connective that represents
truth preservation in the propositional language of classical logic. That is,
whenever Γ, A |= B, we also have Γ |= A ⊃ B and vice versa. This is ex-
tremely useful since it allows us to reduce any proof of a logical implication
to the proof of a logical theorem, and to “introduce” the conditional in proofs
of conditionals. Such connectives are therefore called proper implications by
Arieli, Avron, and Zamansky (2011a,b).

1In the Wason Selection Task, participants are faced with a set of cards with a number
on one side, and a letter printed on the other side. Then they are asked (e.g.) “which cards
do you have to turn in order to test the hypothesis that every card with a vowel has an odd
number on the other side?” While participants usually respond correctly that cards with a
vowel need to be turned, they rarely respond that also cards with an even number need to
be turned in order to rule out counterexamples to the hypothesis.
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In classical propositional logic, the choice of the consequence relation is
simple since there is no ambiguity about valid inference: true premises must
yield true conclusions, or in other words, the semantic value 1 should be
preserved. Since both the consequence relation and the truth tables for the
Boolean connectives are canonical, it is clear that the conditional must adapt
itself to what the logic requires (i.e., an internalization of logical consequence
into the language). The paradoxes of material implication in classical logic,
such as ¬A |= (A ⊃ B), B |= (A ⊃ B) and A |= (B ⊃ B) are, on that
view, not really paradoxical: the only way A ⊃ B (“if A, then B”) can be
false is if A is true and B is false. Hence the above inferences just assert
that if A is false or B is true, A ⊃ B cannot be false. Moreover, B ⊃ B
can never be false, regardless of the premises. Once we fully understand
that valid inference is about truth preservation, the paradoxes cease to be a
problem. This “official view” (Anderson and Belnap 1975) sounds eminently
reasonable, even if it is not that successful at convincing people who want
a conditional connective with more demanding truth conditions—such as
most freshmen in logic courses.

Of course, there are alternatives to the material conditional in bivalent
logic, for example the Stalnaker-Lewis conditionals with their modal seman-
tics (Stalnaker 1968; Lewis 1973). But there is a crucial advantage in going
three-valued: truth-functional conditional connectives are not exhausted by
the material conditional. Specifically, we can define conditional connectives
that are proper implications without validating the paradoxes of material
implication. Moreover, defining a conditional connective in a three-valued
setting offers more choices than generalizing the usual Boolean connectives
to three truth values. Let me elaborate.

The truth tables of the Boolean connectives are often determined by ade-
quacy conditions mirroring the truth conditions of “and”, “not”, and “false”
in natural language. For example, for negation and conjunction it is natural
to assume:

• ¬A is true if and only if A is false; and it is false if and only if A is
true;

• A ∧ B is true if and only if A is true and B is true;

• A ∧ B is false if and only if A is false or B is false.

For a rigorous definition of conjunction in the context of three-valued logic,
see Ciucci and Dubois (2013). Analogously, we have for disjunction:

• A ∨ B is true if and only if A is true or B is true;

• A ∨ B is false if and only if A and B are false;
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When we identify “true” with semantic value 1, and “false” with semantic
value 0, these requirements imply in the context of three-valued logic the
so-called Strong Kleene truth tables for the Boolean connectives:

¬
1 0

1/2
1/2

0 1

∧ 1 1/2 0

1 1 1/2 0

1/2
1/2

1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1

1/2 1 1/2
1/2

0 1 1/2 0

⊃ 1 1/2 0

1 1 1/2 0

1/2 1 1/2
1/2

0 1 1 1

Table 1: Strong Kleene truth tables for negation, conjunction, disjunction, and
material implication.

Alternative proposals, such as the Weak Kleene truth tables (Bochvar
1937; Halldén 1949), which assign value 1/2 to any formula where a com-
ponent is valued 1/2, violate the above constraints. For example, in the case
of Weak Kleene, 0 ∧ 1/2 = 1/2 and 1 ∨ 1/2 = 1/2. For this reason, the Strong
Kleene truth tables are perhaps the most widespread truth tables for the
Boolean connectives in three-valued logic. They can also be represented as
the functions A ∧ B = min(A, B) and A ∨ B = max(A, B) and therefore they
naturally match the meet and join operators in algebraic representation of
three-valued logics (i.e., as Kleene algebras, a subclass of de Morgan alge-
bras).

There is much less agreement on the conditional connective →. This is
because its semantics can be determined on the basis of two types of criteria:
(1) by adequacy conditions relating to our use of “if A, then B” or “A implies
B”; (2) by motivating, on independent grounds, a logical consequence rela-
tion, and by choosing the semantics in a way that the connective represents
logical consequence in the language itself. This means in particular that A→ B
should be a theorem if and only if A logically implies B, as mentioned in the
introduction.

We now consider the behavior of the material conditional ⊃ defined by
the Strong Kleene tables according to criterion (2). (The relationship between
material and natural language conditionals will be discussed in Section 5.)

Fact 1. The material conditional ⊃ of the Strong Kleene Truth tables is no proper
implication for a relation of logical consequence defined as preservation of semantic
values D = {1} or D = {1, 1/2}. Specifically:

• For D = {1}, Modus Ponens holds, but Conditional Proof fails.

• For D = {1, 1/2}, Modus Ponens fails, but Conditional Proof holds.
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On the other hand, the Strong Kleene material conditional satisfies the
deduction theorem for mixed consequence relations where we apply different
standards of truth to the premises and the conclusions. One of them is the
“strict-to-tolerant” (ST) consequence investigated in detail by Frankowski
(2004) and Cobreros et al. (2012): Γ |=ST B if and only if for all Strong Kleene
valuations such that v(A) = 1 ∀A ∈ Γ, we have v(B) ≥ 1/2. In other words,
strictly true premises must yield at least tolerantly true conclusions. This
consequence relation may seem unintuitive, but Cobreros et al. (2012) show
that it is useful for analyzing paradoxes of semantic vagueness and soritical
reasoning.

The counterpart of strict-to-tolerant implication is tolerant-to-strict (TS)
implication, called q-consequence by Malinowski (1990). Here tolerantly true
(=non-false) premises must yield a strictly true conclusion: if v(A) ≥ 1/2

∀A ∈ Γ, we have v(B) = 1. Both mixed consequence relations yield a
deduction theorem for the Strong Kleene material conditional:

Fact 2. The Strong Kleene material conditional ⊃ is a proper implication for |=ST

and |=TS.

Chemla and Égré (2021) show another interesting fact about these conse-
quence relations. Consider the constraint

Γ, A→ B |= ∆ if and only if (Γ |= A, ∆ and Γ, B |= ∆) . (G)

This can be read as expressing that A→ B is not designated if the antecedent
is designated and the consequent not designated. Both constraints, the de-
duction theorem and (G), have first been proposed by Gentzen (1935) and so,
Chemla and Égré (2021) call a conditional that satisfies both of them Gentzen-
regular. They then show that the Strong Kleene material conditional is the
only Gentzen-regular conditional connective with respect to |=ST and |=TS,
while there are many more Gentzen-regular conditional operators for the
strict-to-strict and tolerant-to-tolerant consequence relations |=SS (D = {1})
and |=TT (D = {1, 1/2}). The available options are shown below in Table 3.

It should be remarked that the mixed consequence relations |=ST and
|=TS are not Tarskian: they fail either reflexivity or transitivity. |=TS fails re-
flexivity (A |= A) while |=ST fails transitivity (from Γ, A |= B and Γ, B |= C it
follows that Γ, A |= C). This is not necessarily an argument against them: for
example, Cobreros et al. (2012) argue that the failure of transitivity is impor-
tant for understanding what goes on in soritical reasoning. But since most
logicians and philosophers are primarily interested in Tarskian consequence
relations, this chapter will mainly focus on |=SS, |=TT and their intersection,
which are all Tarskian. By Fact 1, we know that the Strong Kleene material
conditional is not Gentzen-regular for these logics. Hence, logicians have
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looked for alternative conditional connectives that could internalize these
consequence relations. The next section surveys some of these attempts.2

3 Some Three-Valued Logics and Their Conditionals

A classic three-valued logic is the Strong Kleene logic K3, developed by
Stephen Cole Kleene (1938) in a paper on computability theory. Kleene was
interested in a logic for combining the truth values of relations and func-
tions which are not defined everywhere. Take, for example, the relation “is
a more authentic Neapolitan pizzeria than” in the domain of all New York
restaurants. The third truth value is therefore interpreted as “undefined”.
When we combine partial relations by means of Boolean operators, plau-
sibly they respect the Strong Kleene tables (e.g., the conjunction of a true
sentence and “the Bratwurststube is a more authentic Neapolitan pizzeria
than the Dragon Palace” is undefined, see also Spector, this volume). The
natural generalization of valid deductive inference to such three-valued val-
uations is to preserve only the semantic value 1 (i.e., D = {1}), i.e., strict
three-valued consequence, and this logic is called K3. When interpreting the
third value as “undefined”, as Kleene does, there is indeed no reason why
valid reasoning should preserve undefinedness. Kleene also takes the ma-
terial conditional A ⊃ B = ¬A ∨ B, defined according to the Strong Kleene
truth tables, to be the intended conditional of his logic (Kleene 1952, §64).

Kleene’s logic K3 has a large number of valid inferences, and Modus Po-
nens is among them. However, unless one adds logical constants such as >
and ⊥, it has no theorems at all: when we assign value 1/2 to all proposi-
tional atoms, any formula takes value 1/2, too, and so it fails to be a theorem.
In particular, the Law of Identity |= A → A—usually seen as an adequacy
criterion for a conditional—does not hold for the material conditional of
Strong Kleene logic. For the same reason, the deduction theorem fails: we
cannot derive Γ |=K3 A ⊃ B from Γ, A |=K3 B, simply because K3 has no theo-
rems. (Assume Γ = ∅.) The conditional of K3 is thus not a conditional which
“internalizes” the logical consequence relation in any interesting sense.

Note that K3 can also be applied to the logical analysis of liar sentences
such as “This sentence is false” or “Every Cretan is a liar” (uttered by a
Cretan). This is because the Law of Excluded Middle fails in K3 and so
we can consider the liar sentence and its negation—or more precisely, the
truth predicate as applied to the liar sentence—as yielding the third truth
value. This is the road taken by Kripke (1975) and numerous successor pa-
pers. But the best-known attempt to analyze liar sentences with three-valued

2For a more detailed characterization of logical consequence in three-valued logic, I rec-
ommend, in addition to the cited papers, Chemla, Égré, and Spector (2017).
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logic does not give up on the Law of Excluded Middle, but on the Law of
Non-Contradiction. This is the road taken by Priest (1979) and his Logic
of Paradox LP, which was introduced some years earlier by Asenjo (1954,
1966) as a “logic of antinomies”, but with less philosophical discussion and
elaboration. Priest notes that when we assume that a liar sentence such as
“This sentence is false” is true, we can establish by means of valid arguments
that it is false, and vice versa. For Priest, such sentences are simply true and
false at the same time. Indeed, “both true and false” appears to be a much
more natural interpretation for liar sentences than “undefined”, “unknown”
or “neither true nor false”. Giving up the Law of Non-Contradiction, ad-
vocated by Priest, is known as dialetheism. The position can be motivated
by well-known problems of modern logic (e.g., how to model a naive truth
predicate, Russell’s antinomies which are the set-theoretic version of Liar
sentences), but also by the occurrence of dialethical views in ancient and
medieval Western philosophy (e.g., the pre-socratics, Chrysippus, and Jean
Buridan) as well as in Chinese and Indian schools of philosophy. Specifically,
LP tries to model how one can give up the Law of Non-Contradiction and
still obtain an interesting and insightful theory of truth values and reasoning
(for further information, see Priest, Berto, and Weber 2022).

Consequently, the third value, still denoted as 1/2, is on this approach
not a truth-value gap, like “neither true nor false”, but a truth-value glut:
“both true and false”. This means that the concept of truth preservation
is translated as preservation of two designated values D = {1, 1/2}. The
Boolean connectives are interpreted according to the Strong Kleene tables
since there is no reason to deviate from the reasoning that motivated them
(e.g., the conjunction of a sentence that is true and a sentence that is both true
and false should plausibly be both true and false). The logic generated from
these premises is the paraconsistent logic LP, which satisfies Disjunction
Introduction (A |= A ∨ B), but not Disjunctive Syllogism (¬A, A ∨ B |= B).

L3 1 1/2 0

1 1 1/2 0

1/2 1 1 1/2

0 1 1 1

K→3 1 1/2 0

1 1 1/2 0

1/2 1 1 1

0 1 1 1

LP→ 1 1/2 0

1 1 1/2 0

1/2 1 1/2 0

0 1 1 1

Table 2: The truth tables for the conditionals of Łukasiewicz’s logic L3, and for
the logics K→3 and LP→ that satisfy a deduction theorem with respect to the conse-
quence relations of K3 and LP. See Asenjo and Tamburino (1975) and Middelburg
(2020).

Priest then chooses the Strong Kleene material conditional from Table
1 as the conditional connective of his logic. This choice implies that LP
fails Modus Ponens, but it satisfies Conditional Proof. Priest’s choice may
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look surprising since there is an alternative that satisfies the full deduction
theorem with respect to D = {1, 1/2}, given in Table 2 and discussed below.
Such a conditional would internalize implication of LP.

However, Priest has specific reasons for not wanting a deduction the-
orem and for preferring the Strong Kleene material conditional. Suppose
we have a conditional connective → that satisfies both Modus Ponens and
Contraction (i.e., A → (A → B) |=LP A → B). For motivating LP as a log-
ical analysis of Liar sentences, it is crucial that the language is semantically
closed, i.e., that we have the expressive resources to make statements about
sentences of the language within the language itself, in particular with the
truh predicate. But in such a language, a conditional that satisfies Modus
Ponens and Contraction leads to absurd results (Priest 1979, pp. 232-233).
Take the Curry sentence

T(Curry)→ A (Curry)

where T denotes the truth predicate. We can then derive from the Tarski
truth scheme, Modus Ponens and Contraction:

1: T(Curry)↔ (T(Curry)→ A) Tarski truth scheme for (Curry)
2: T(Curry)→ A Contraction (1)
3: T(Curry) Modus Ponens (1, 2)
4: A Modus Ponens (2, 3)

and so any sentence A is a theorem of the language. Something has to
go. For Priest, a restriction to the object language is not an option since a
satisfactory analysis of self-referential sentences is a primary philosophical
motivation for developing LP. Giving up Modus Ponens and the deduction
theorem is therefore not unwelcome, but in line with the philosophical mo-
tivations of his logical project. And so Priest retains the material conditional
of the Strong Kleene truth tables as the conditional of LP. While this condi-
tional does not satisfy Modus Ponens, it satisfies Conditional Proof, i.e., the
meta-theorem that allows us to pass from A |=LP B to |=LP A → B. That is,
while LP does not have a full deduction theorem, it internalizes the logical
consequence relation at least partially.

Regardless of the philosophical benefits and drawbacks, from a purely
logical point of view it is interesting to ask the following question. Is it
possible to add a conditional connective to K3 and LP that satisfies the de-
duction theorem and internalizes the relation of logical consequence? The
answer is yes. In the case of K3 it is necessary that valuations of sentential
variables with 1/2 do not “propagate” to the implication relation, i.e., that
v(1/2→ 1/2) = 1 for any valuation v—and more specifically that one adopts
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the truth table in the middle of Table 2. The logic one obtains, let us call
it K→3 to point out the newly introduced conditional, is the propositional
fragment of the Logic of Partial Functions studied by Barringer, Cheng, and
Jones (1984). See also the survey articles of Middelburg (2020) and Chemla
and Égré (2021).

The same move is possible for LP with a slightly modified conditional
of K→3 , shown in the right part of Table 2: the truth table of the middle row
is now aligned with the upper rather than the lower row. This conditional
has been proposed by Asenjo and Tamburino (1975) as an enhancement of
their “logic of antinomies”. The resulting logic, denoted by LP→, satisfies a
deduction theorem with respect to the conditional→, and has thus like K→3
a “proper” implication.

While these logics may, especially in the case of LP→, not be suitable
for all of the original philosophical purposes, they have several desirable
properties with an eye to algebraization and extended formal analysis:

(a) They are contained in classical logic; i.e., each inference is classically
valid: |=⊆ |=CL.

(b) They have proper connectives, i.e., conjunction, disjunction and implica-
tion behave as expected with respect to logical consequence:

(∧) Γ |= A ∧ B if and only if Γ |= A and Γ |= B;

(∨) Γ, A ∨ B |= C if and only if Γ, A |= C and Γ, B |= C;

(→) Γ, A |= B if and only if Γ |= A→ B.

Specifically, for LP→:

(c) LP→ is a paraconsistent logic that is weakly maximal relative to classical
logic: for any classical theorem A that is not a theorem of LP→, if there
is a consequence relation |=′⊇|=LP→ such that |=′ A, then |=′ has the
same theorems as classical logic.

(d) LP→ is a strongly maximal absolute paraconsistent logic, i.e., there is no
paraconsistent propositional logic with the same logical constants and
connectives as LP→ and a stronger notion of logical consequence than
LP→ (in other words, if there were such a logic, it would cease to be
paraconsistent).

Logics which satisfy (a), (b), (c) and (d) are defined as “ideal paraconsistent
logics” by Arieli, Avron, and Zamansky (2011a). They also show that a
paraconsistent logic L is ideal if and only if it has a proper implication and
is negation-contained in classical logic, i.e., there is a two-valued interpretation
F of the connectives of L such that F(¬) is classical negation, and all valid
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inferences of L are also classically valid with respect to the models given
by F. An analogous characterization can be given for K→3 , when we replace
“paraconsistent” by “paracomplete”, i.e., the property that there is a formula
A such that 6|= A ∨ ¬A. However, it is not known whether K→3 satisfies the
analogue of condition (d) (Middelburg 2020).

We can systematize these observations beyond K3, LP and their versions
with a proper implication, and make some general observations on when
a three-valued conditional connective internalizes a consequence relation. I
focus on paraconsistent logics, i.e., logics which do not satisfy the explosion
principle A ∧ ¬A |= B. Three-valued logics with two designated values are
typically paraconsistent as long as ¬1/2 = 1/2 and 1/2 ∧ 1/2 = 1/2—natural
conditions that most three-valued logics satisfy. The reason for focusing on
paraconsistent logics is that with just one designated value, such as in para-
complete logics like K3, the choice of a proper conditional is very restricted:
the conditional must take a designated value (i.e., semantic value 1) almost
everywhere apart from the combinations. See the left part of Table 3.

Fact 3. If D = {1}, a three-valued conditional connective f→ validates the deduc-
tion theorem if and only if f→(1, 1/2) = f→(1, 0) ≤ 1/2 and f→ ≡ 1 for all other
arguments.

→{1} 1 1/2 0

1 1 ≤ 1/2 ≤ 1/2

1/2 1 1 1

0 1 1 1

→{1,1/2} 1 1/2 0

1 ≥ 1/2 ≥ 1/2 0

1/2 ≥ 1/2 ≥ 1/2 0

0 ≥ 1/2 ≥ 1/2 ≥ 1/2

Table 3: Restrictions on truth tables for conditional connectives → that are proper
implications (i.e., satisfy a deduction theorem) with respect to preservation of the
designated values D = {1}, and with respect to preserving D = {1, 1/2}.

There are thus only four options for conditionals with a deduction the-
orem, limiting one’s choice considerably. A famous logic which is not in
that class is Łukasiewicz’s logic L3, intended as a logic for the evaluation of
future contingent sentences, such as “Tomorrow there will be a sea-battle”.
The classic discussion of this sentence is found in Aristotle’s On Interpreta-
tion: shall we evaluate it as true, as false, or as neither of them? After all,
it seems that today, the truth value of this sentence is not yet settled. The
question has generated a large amount of philosophical literature over the
centuries, but Łukasiewicz (1920, 1930, 1951) was the first to formalize it rig-
orously using three-valued logic, interpreting the third value as “possibility”
or “indeterminacy” (see also Malinowski 1993, ch. 2). He takes the condi-
tional and the negation operator as primitive, uses Strong Kleene negation
and adopts the truth table at the left of Table 2 for the conditional. The other
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Boolean operators are then introduced as

A ∨ B := (A→ B)→ B A ∧ B := ¬(¬A ∨ ¬B).

Łukasiewicz pairs these truth tables with a notion of logical consequence as
preservation of the designated value D = {1} and obtains Modus Ponens,
but not Conditional Proof (and therefore, no deduction theorem).

The paraconsistent case, by contrast, is more interesting (see the right
part of Table 3). In a short note, Jeffrey (1963) showed that if D = {1, 1/2},
any conditional with non-false antecedent and false consequent must be
false if it is supposed to validate Modus Ponens.

Fact 4. If D = {1, 1/2}, a three-valued conditional connective f→ validates Modus
Ponens only if f→(1, 0) = f→(1/2, 0) = 0.

More generally, the deduction theorem requires that the conditional
takes designated value everywhere apart from v(1 → 0) = v(1/2 → 0) = 0,
but it says nothing on which designated value it should take, thus leaving a
large set of options to philosophical applications. In other words, there is a
large number of proper conditional connectives, since the values 1 and 1/2

are interchangeable from the point of view of logical implication. See the
right part of Table 3.

Fact 5. If D = {1, 1/2}, a three-valued conditional connective f→ validates the
deduction theorem if and only if f→(1/2, 0) = f→(1, 0) /∈ D and f→ ∈ D for all
other arguments of f→.

→{1,1/2}+CL 1 1/2 0

1 1 ≥ 1/2 0

1/2 ≥ 1/2 ≥ 1/2 0

0 1 ≥ 1/2 1

Table 4: Restrictions on truth tables for a conditional connective → that (i) is
a proper implication with respect to preservation of the designated values D =
{1, 1/2}; (ii) generalizes the material conditional of classical logic.

Arieli, Avron, and Zamansky (2011a) show that if we want a normal para-
consistent logic, i.e., a logic with a proper implication that is contained in
classical logic, and this conditional generalizes the classical material condi-
tional to three-valued logic, we have not more than 16 possible truth tables,
shown in Table 4. It is, however, questionable whether a three-valued condi-
tional should by necessity generalize the material conditional. For example,
we will see in Section 4 that all three-valued truth tables for a conditional
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connectives modeling natural language “if/then” consider conditional as-
sertions with false antecedents as “void” and neither true nor false (com-
pare also Belnap 1970). We will also see that some of these conditionals
are logically stronger than the material conditional while others are weaker;
also the deduction theorem may or may not be satisfied (Égré, Rossi, and
Sprenger 2021a). Comprehensive surveys and analyses of three-valued log-
ics with respect to the behavior of the conditional are given in Avron (1991),
Middelburg (2020), and Chemla and Égré (2021), while Arieli, Avron, and
Zamansky (2011a,b) investigate which paraconsistent logics are “ideal” and
show that ideality and normality are co-extensive notions.

4 The Natural Language Conditional

One of the most important varieties of the natural language conditional is
the indicative conditional, as in “if Mary passed the exam, she went for
drinks”. It is controversial whether such conditionals have factual truth con-
ditions and can be treated as expressing propositions (e.g., see the dialogue
in Jeffrey and Edgington 1991). Theorists such as Ernest W. Adams (1965,
1975), Dorothy Edgington (1986, 1995, 2009) and David Over and Baratgin
(2017) claim that indicative conditionals do not express propositions; at most
they have partial truth conditions.

[...] the term ‘true’ has no clear ordinary sense as applied to condition-
als, particularly to those whose antecedents prove to be false [...]. In
view of the foregoing remarks, it seems to us to be a mistake to ana-
lyze the logical properties of conditional statements in terms of their
truth conditions. (Adams 1965, pp. 169-170)

Zooming in on truth-functional truth conditions, the situation seems to be
even worse. The only sensible candidate for a truth-functional analysis of an
indicative conditional A → B in bivalent propositional logic is the material
conditional A ⊃ B. This has the unwelcome consequence that the falsity
of the antecedent suffices for the truth of the conditional: ¬A |= A ⊃ B
(=one of the paradoxes of material implication). But on which basis could
our conditional “if Mary passed the exam, she went for drinks” be called
true if Mary failed the exam? The inference from ¬A to A → B seems
plain invalid—not because the proposition expressed by Mary’s failure at
the exam is irrelevant for the conditional, but because it does not provide the
right kind of justification for asserting or accepting the conditional.

On the other hand, giving up on truth conditions altogether throws out
the baby with the bathwater. It seems that a conditional “if A, then B” has
been verified if we observe both A and B, and falsified if we observe A and ¬B.
If Mary passed the exam and went for drinks, the conditional seems true,

14



whereas it seems false if she did not go for drinks after passing the exam.
Indeed, what else could be required for determining the truth or falsity of
the sentence?

If you want to treat conditionals as propositions and assign them truth
conditions, there have three principled strategies:

(1) to retain truth-functionality and bivalent valuations, i.e., to defend the
material conditional analysis against the above objections (e.g., Lewis
1976; Jackson 1979; Grice 1989);

(2) to give up truth-functionality while

(2a) retaining bivalent valuations and classical consequence, e.g., in
the possible world semantics by Stalnaker (1968) or Lewis (1973);

(2b) giving up bivalent valuations and adopting a non-classical con-
sequence relation, such as in informational state semantics (e.g.,
Gillies 2009; Ciardelli 2021; Santorio 2022)

(3) to retain truth-functionality, but to give up bivalent valuations, i.e.,
to develop truth conditions for the conditional in many-valued logic
(typically three-valued logic).

A variant of (3) is to claim that the conditional has only partial truth con-
ditions and no truth value, or an ersatz truth value such as the conditional
probability, when the antecedent is false. See the chapter on conditional
probability (Cruz and Over, this volume) for more details.

Strategy (1) is motivated by the claim that perceived differences between
the indicative and the material conditional are due to pragmatic, not to se-
mantic factors. However, it has never gained widespread acceptance, neither
in the logic nor in the philosophy community—the shortcomings of the ma-
terial conditional are simply too obvious to be accounted for by pragmatics
alone. In addition to the aforementioned paradox of material implication,
the probability of the material conditional exceeds the corresponding condi-
tional probability: p(C|A) ≤ p(A ⊃ C), with equality only in very special
cases. Since the conditional probability is a good measure of the plausi-
bility of an indicative conditional (for theoretical and empirical arguments,
see Adams 1965, 1975; Evans and Over 2004), this account does not explain
why we find the indicative conditional often more demanding to assert than
the material conditional. Indeed, “if Mary passed the exam, she went for
drinks” seems less probable than “Mary did not pass the exam or she went
for drinks”. This is hard or impossible to explain away if their truth con-
ditions are identical. Conversely, an account that links the probability of
the conditional to the conditional probability of the consequent given the
antecedent can explain this phenomenon.
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Strategy (2) comes with a variety of logical tools, such as possible world
semantics, premise semantics, information state semantics, dynamic seman-
tics, and falls outside the scope of this volume. Strategy (3) is the research
program that I will describe in this section. Note that I only cover indica-
tive conditionals in this section since it is consensus that counterfactuals,
with their irreducibly modal content, require a richer semantics than truth-
functional accounts in three-valued logic can provide.

The main idea of (3) is to represent the truth value of conditionals with
false antecedents by a third truth value. “If A, then B” is interpreted as a
conditional assertion—i.e., as an assertion about B upon the supposition that
A is true. Similar to the Adams quote shown above, this view interprets
a conditional with a false antecedent as having a non-classical truth value.
The first articulation of this view is from the 1930s, by Bruno de Finetti in
his essay “La logique de la probabilité”:

C’est ici qu’il paraît indiqué d’introduire une logique spéciale à
trois valeurs, comme nous l’avions déjà annoncé : B et A étant deux
événements (propositions) quelconques, nous dirons triévénement B/A
(B subordonné à A), l’entité logique qui est considérée

1. vraie si B et A sont vrais;

2. fausse si B est faux et A est vrai;

3. nulle si A est faux

(on n’a pas de distinction entre “non A et B” et “non A et non B”, le
triévénement ne devant être fonction que de A et C ∧ A).3 (de Finetti
1936, 568, emphasis in original)

The French “nulle” for the value 1/2 can be interpreted as “nonassertive”,
“void”, or “indeterminate”, depending on the reader’s taste. De Finetti’s
proposal is represented graphically in Table 5, but it neither evaluates nested
conditionals, nor does it specify how the conditional interacts with the
Boolean connectives. A central question in three-valued analyses of con-
ditionals is therefore how Table 5 should be completed, and how it should
be paired with truth tables for the Boolean connectives, and a logical conse-
quence relation. All proposals, in sharp contrast to relevance logics, assign

3In the English translation of R. Angell, the quote goes: “It is here that introduction of a
special logic of three values seems indicated, as we have already announced: B and A being
any two events (propositions) whatever, we will speak of the tri-event B/A (B given A), the
logical entity which is considered:

1. true if B and A are true;

2. false if B is false and A true;

3. null if A is false

(one does not distinguish between ‘not A and B’ and ‘not A and not B’, the tri-event being
only a function of A and A ∧ B).”
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the third truth value to a conditional with false antecedent, and moreover,
they treat a conditional with true antecedent as taking the value of the conse-
quent. Opinions diverge, however, on “void” antecedents (e.g., antecedents
containing a conditional). The two main options have been proposed by
Bruno de Finetti (1936) and William Cooper (1968), and have been redis-
covered several times later (e.g., Belnap 1973; Cantwell 2008). See Table 6.4

A→ B 1 0

1 1 0

0 1/2
1/2

Table 5: De Finetti’s (restricted) truth table for a conditional A → B, with truth
values of A at the left and truth values of B on top of the table.

→DF 1 1/2 0

1 1 1/2 0

1/2
1/2

1/2
1/2

0 1/2
1/2

1/2

→CC 1 1/2 0

1 1 1/2 0

1/2 1 1/2 0

0 1/2
1/2

1/2

Table 6: Truth tables for the de Finetti conditional (left) and the Cooper(-Cantwell)
conditional (right).

It is hard to determine on purely axiomatic grounds which of the two
truth tables is a more adequate representation of the indicative conditional.
It depends a lot on the interaction of the conditional with the other connec-
tives, and the consequence relation we choose. We will be able to appreciate
their respective advantages and drawbacks later on. Pairing the de Finetti
and the Cooper conditional with Strong Kleene negation is uncontroversial
because this choice yields for both conditionals the following schemes usu-
ally seen as desirable (Williams 2010; Santorio 2022):

Commutation with Negation ¬(A → B) and A → ¬B have the same truth
and falsity conditions.

Conditional Excluded Middle (CEM) (A→ B)∨ (A→ ¬B) cannot be false
(in particular, it is a logical validity when D = {1, 1/2}).

Both principles square well with the use of the indicative conditional in
hypothetical reasoning. Take Ramsey’s famous observation about how we
argue about the truth value of a conditional A → B: both sides presuppose
the antecedent A, but disagree on whether this implies commitment to B

4A third option, proposed by Farrell (1986), assumes that the middle row reads
(1/2, 1/2, 0). For discussion and evaluation of that option, I refer to Égré, Rossi, and Sprenger
(2021a).
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or rather to ¬B (Ramsey 1929/1990, p. 247). To the degree that we agree
with Ramsey’s analysis, both Commutation with Negation and Conditional
Excluded Middle (which is an immediate consequence) look eminently sen-
sible.

The Strong Kleene connectives for disjunction and conjunction are more
controversial. On an abstract level, when we interpret the third truth value as
“void”, it seems that a conjunction of assertive and void sentences may still
assert something, and the Strong Kleene tables do not mirror this intuition
(because 1 ∧ 1/2 = 1/2). Specifically, “partitioning sentences” such as (A →
B) ∧ (¬A → C) will always be void or false (Belnap 1973; Bradley 2002,
pp. 368-370). However, a sentence such as:

If the sun shines tomorrow, John goes to the beach; and if it rains,
he goes to the museum.

seems to be true (with hindsight) if the sun shines tomorrow and John goes
to the beach. This intuition is completely lost in Strong Kleene semantics,
regardless of whether we use the de Finetti or the Cooper table for the con-
ditional. Even worse, “obvious truths” such as (A → A) ∧ (¬A → ¬A) are
always classified as void.

f¬
1 0

1/2
1/2

0 1

∧ 1 1/2 0

1 1 1 0

1/2 1 1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1

1/2 1 1/2 0

0 1 0 0

Table 7: Truth tables for negation, quasi-conjunction and quasi-disjunction as de-
fined by Cooper (1968).

For this reason, various theorists such as Cooper (1968), Belnap (1970),
Dubois and Prade (1994), McDermott (1996) and Égré, Rossi, and Sprenger
(forthcoming, 2023b) adopt an alternative to Strong Kleene connectives
for conjunction and disjunction, represented in Table 7 and called quasi-
conjunction and quasi-disjunction.5 Indeed, the truth tables of Table 7 eval-
uate partitioning sentences according to our intuitions, i.e., as capable of
being true. Moreover, quasi-disjunction avoids the Linearity principle that
(A → B) ∨ (B → A) cannot be false. This schema was famously criticized
by MacColl (1908), who pointed out that neither “if John is red-haired, then
John is a doctor”, nor “if John is a doctor, then he is red-haired”, nor their
disjunction seems acceptable in ordinary reasoning. Also Dubois and Prade
(1994) and McDermott (1996) point out the advantages of this choice, but do

5The truth tables for the material conditional implied by quasi-disjunction has already
been proposed by Sobociński (1952), but not in the context of the natural language condi-
tional.
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not commit to it without reservation (e.g., McDermott believes that we need
both Strong Kleene conjunction and quasi-conjunction to account for the
behavior of the natural language conditional). The quasi-connectives do not
have the favorable algebraic properties of the Strong Kleene connectives (i.e.,
they do not behave like the meet and join operators in de Morgan algebras),
but in the context of developing a three-valued logic for studying natural
language conditionals, these considerations may be secondary to how well
the connectives behave with respect to truth conditions and inference. All of
the possible combinations of truth tables for the conditional and conjunction
satisfy, however, the Law of Import Export in its strongest possible semantic
form

Import-Export (semantic version) A→ (B→ C) and (A ∧ B)→ C take the
same semantic values, i.e., they have the same truth conditions.

That is, the two formulas are not only logically or materially equivalent, but
they really have the same meaning. Although the general validity of Import-
Export is debated in the philosophical literature (e.g., Khoo and Mandelkern
2019), it enjoys substantial support both from an empirical and a theoretical
perspective (e.g., McGee 1989, p. 489; van Wijnbergen-Huitink, Elqayam,
and Over 2015).

The biggest choice regards the logical consequence relation. The two
main options are preservation of “strict truth” (i.e., D = {1}) and preser-
vation of “tolerant truth” (i.e., D = {1, 1/2}, Cobreros et al. 2012). As it is
often the case in three-valued logic, this choice corresponds to a choice be-
tween a paracomplete logic (i.e., 6|= A ∨ ¬A) and a paraconsistent logic (i.e.,
A ∨ ¬A 6|= B). The other relevant choices concern the conditional connec-
tive (Cooper vs. de Finetti) and the truth tables for the Boolean operators
(Strong Kleene vs. quasi-connectives). In total, we obtain eight options,
which I write as (Q)DF/SS, (Q)DF/TT, (Q)CC/SS, and (Q)CC/TT (com-
pare Égré, Rossi, and Sprenger 2023a). Q denotes quasi-connectives, DF
or CC determines the conditional connective, and SS or TT fixes the logi-
cal consequence relation. For example, CC/TT denotes the paraconsistent
logic where D = {1, 1/2} is preserved, with the Cooper conditional and
Strong Kleene Boolean connectives, whereas QCC/TT—the preferred logic
of the author of this chapter—differs from CC/TT by interpreting ∧ and ∨
as quasi-conjunction and -disjunction.

The choice between these options can be made in various ways. Égré,
Rossi, and Sprenger (forthcoming) define a probability function based on
three-valued valuations and show an equivalence between probabilisitic and
three-valued semantics for logics that preserve certainties (i.e., sentences
held with maximal probability). Taking a credence or weight function c on
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possible worlds that represent different states of affairs. We can then define
the probability of a sentence A as the ratio of the weight of possible worlds
where A is true, written c(AT), divided by the weight of possible worlds
where A receives classical truth value, i.e., c(AT) + c(AF):

p(A) :=
c(AT)

c(AT) + c(AF)
if max(c(AT), c(AF)) > 0. (Probability)

This approach is the standard generalization of probability to semantics non-
classical truth values (for a survey, see Williams 2016). Using the Cooper
conditional and the quasi-connectives, Égré, Rossi, and Sprenger then con-
sider the certainty-preserving logic C on such probability functions:

Logic C of Certain Inference Γ |=C B if and only if for all probability func-
tions p : L→ 7−→ [0, 1] based on QCC-valuations: if p(A) = 1 for all
A ∈ Γ, then also p(B) = 1.

They then show that C is equivalent to QCC/TT, or in other words, they give
a three-valued semantics for C, greatly simplifying the analysis of valid and
invalid inferences.

Trivalent Characterization of C Γ |=C B if and only if Γ |=QCC/TT B, i.e.,
for all QCC-valuations v : L 7−→ {0, 1/2, 1}: v(A) ≥ 1/2 ∀ A ∈ Γ ⇒
v(B) ≥ 1/2.

Similarly, if one adopted Strong Kleene connectives instead of the quasi-
connectives, one would obtain CC/TT as the logic corresponding to certainty
preservation, and if one adopted the De Finetti conditional, one would ob-
tain DF/TT or QDF/TT as the logic of certainty-preserving inference.

These correspondence results suggest that the family of TT-logics has
some substantial advantages over the family of SS-logics. Indeed, while the
TT-logics preserve certainties, the SS-logics esssentially preserve possibilities
(e.g., in single-premise inference, if a premise has probability greater than
zero, so has the conclusion). Since preserving certainties is arguably more
important in reasoning than preserving possibilities, we have a principled
argument for working with TT-logics rather than SS-logics.

It is possible to make the same point in favor of TT-logics by means of
considering adequacy conditions on the interaction of a conditional with
a logical consequence relation. All of the three following conditions seem
to be plausible constraints on how “if/then” should interact with logical
consequence (compare Égré, Rossi, and Sprenger 2021a):

Law of Identity The conditional “if A, then A”, should be a validity of the
logic: |= A→ A.
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|= A→ A Modus Ponens → 6|=←
DF/SS and QDF/SS × X ×
DF/TT and QDF/TT X × X
CC/SS and QCC/SS × X X
CC/TT and QCC/TT X X X

Ideal case X X X

Table 8: The behavior of the various three-valued logics for the indicative
conditional with respect to the Law of Identity, Modus Ponens and implica-
tion to the converse conditional.

Modus Ponens From A → B and A we should be able to infer B, that is:
A→ B, A |= B.

No Inference to the Converse From the conditional “if A, then B”, we
should not be able to infer the converse, that is: A→ B 6|= B→ A.

The Law of Identity is invalid in all SS-logics, while the TT-logics validate it.
Modus Ponens is valid in DF/SS, CC/SS and CC/TT (and their variants with
the quasi-connectives), but invalid in DF/TT. Finally, all SS-logics validate
the (undesirable) implication to the converse conditional, while the TT-logics
avoid it. See Table 8.

Taken together, these observations make a strong case that a three-valued
connective aiming at the natural language indicative conditional should be
paired with a TT- rather than an SS-consequence relation—also because the
author is aware of no substantive drawbacks to this choice. (The mixed case
of a SS∩TT-consequence relation will be discussed in Section 6.) If we accept
this argument, then it is also compelling to prefer the Cooper truth table
for the conditional to the de Finetti truth table, because TT-logics validate
Modus Ponens only if paired with the Cooper conditional.6

In fact, CC/TT and QCC/TT are the only logics that satisfy all three
conditions, i.e., they validate Modus Ponens and the Law of Identity with-
out licensing the implication to the converse. In particular, the CC-logics
satisfy the deduction theorem with respect to the Cooper conditional, or in
other words, the Cooper conditional is a proper implication with respect to
|=TT. I close this section by surveying some of its properties in the variant
QCC/TT, i.e., the logic C that we have encountered above. C is a paraconsis-
tent logic almost equivalent to Cooper’s—his propositional logic of Ordinary

6Of course, since the paper by McGee (1985), there is a substantial debate about whether
Modus Ponens should hold in conditional inference. But McGee’s argument relies essentially
on the uncertainty of the premise; there is as of now no argument why Modus Ponens should
fail when we take the premises to be true. For a three-valued analysis of why Modus Ponens
holds in certain and fails in uncertain inference, see Égré, Rossi, and Sprenger (forthcoming).
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Discourse OL—except that Égré, Rossi, and Sprenger (forthcoming) do not
restrict C to atom-classical valuations.

As we should expect from an adequate logic for the indicative condi-
tional, the inference from ¬A to A→ B is blocked in C. However, the condi-
tional behaves monotonically, i.e., both the meta-inference from Γ |= A→ B
to Γ, C |= A → B and the inference B |= A → B are valid. This is in agree-
ment with the interpretation of C as a certainty-preserving logic. (“If Bob is
coming to the party, then he will come (in particular) if Alice comes.”) The
laws of classical logic in the conditional-free language L (=the Boolean frag-
ment of L→) are also theorems of C, if we restrict ourselves to atom-classical
valuations. It retains Disjunctive Syllogism (A ∨ B,¬A |= B), but gives up
Disjunction Introduction (A |= A ∨ B). However, the counterexample neces-
sarily involves the semantic value 1/2: when we restrict ourselves to bivalent
valuations of sentential variables, the only invalid instances of A |= A ∨ B
occur when A is itself a conditional with a false antecedent. This shows
that exceptions to the otherwise intuitive rule of Disjunction Introduction
addition are quite modest.

Historically, it is interesting that such a well-behaved three-valued con-
ditional logic has been developed in the 1960s, but has had little echo in the
philosophical discussion on conditionals. Specifically, Cooper’s logic OL an-
ticipates important elements of Belnap’s (1970; 1973) three-valued account
of restricted quantification, but Belnap neither cites Cooper, nor seems to
be aware of his work.7 Neither did Adams, Cooper’s PhD supervisor, de-
velop the ideas of his student further. Only very recently, Égré, Rossi, and
Sprenger (2021a,b, forthcoming, 2023b) have highlighted the groundbreak-
ing nature of Cooper’s ideas on analyzing conditionals with three-valued
logic.

5 Relation to the Material Conditional

The previous section proposed to treat conditionals as conditional assertions,
with a truth table that differed from the material conditional A ⊃ B := ¬A∨
B. This does not mean, however, that the material conditional has no role in
conditional reasoning. Some three-valued logics we have seen before, such
as K→3 , L3, and LP→, dismiss the material conditional in favor of a proper
implication, and basically “forget” about the former. However, an account

7It is worth mentioning Belnap’s argument for quasi-conjunction as opposed to Strong
Kleene conjunction: “a paragraph should not be thrown out as nonassertive on the basis of
a single nonassertive sentence. [...] Nor should a book be consigned to the flames because
containing a single “if-then” with a false antecedent” (Belnap 1973, p. 61). In general, the
interaction of Belnap-style restricted quantification with three-valued conditionals needs to
be studied more systematically.
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of natural language conditionals needs to explain how the indicative relates
to the material conditional. This is for two reasons. First, the paradoxes of
material implication (in particular, ¬A |= A ⊃ B) require that an indicative
conditional→ be stronger, i.e., have more demanding truth conditions, than
the material conditional ⊃:

Stronger-than-Material A→ B |= A ⊃ B.

This condition is quoted as an adequacy condition in various philosophical
analyses of indicative conditionals: it is shared by accounts as diverse as
the possible world semantics of Stalnaker (1968), the probabilistic logics of
Adams (1975) and McGee (1989), the dynamic semantics of Gillies (2009)
and the restrictor semantics of Kratzer (2012), to name a few.

On the other hand, the scheme Or-to-If seems to be extremely com-
pelling: if we know that ¬A or B is the case, then we can infer to “if A,
then B”. Writing the disjunction as a material conditional, we obtain

Or-to-If ¬A ∨ B |= A→ B

and thus, the indicative conditional seems to collapse to the material condi-
tional since intuitions push us into accepting both implications in Stronger-
Than-Material and in Or-To-If.8 Any sensible account of conditionals that
does not identify the material and the indicative conditional should there-
fore explain which of the two principles is invalid, and how the intuitions
for its validity can be accounted for.

The orthodox solution is to give up Or-To-If and to retain Stronger-Than-
Material. The idea is that Or-To-If is invalid as soon as we introduce uncer-
tainty. A good illustration is given by Edgington (1986, p. 191): if I am 90%
confident that it is 8 o’clock, then I am at least as confident that it is 8 or 11

o’clock, but that does not give me the same confidence that if it is not 8 then
it is 11 o’clock.

However, this strategy comes at a price: one needs to protect such an
analysis of conditionals against Gibbard’s famous triviality result. Gibbard
(1981) shows in his paper “Two recent theories of conditionals” that any bi-
nary conditional connective → collapses to the material conditional of clas-
sical logic ⊃ if the following conditions hold: (i) the conditional connective
satisfies Import-Export, (ii) it validates Stronger-Than-Material, (iii) it repro-
duces the valid inferences of classical logic as theorems of the logic of the
conditional, i.e., |= A → B whenever A |=CL B. From (i)–(iii) and some
natural background assumptions, Gibbard infers A ⊃ B |= A→ B.

8Or-to-If is in C equivalent to Disjunctive Syllogism: since → satisfies the deduction
theorem, we can freely move from A ⊃ B |= A→ B to ¬A ∨ B, A |= B and back.
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The most common reaction is to give up (i), i.e., Import-Export, either
by restricting the language to simple conditionals, as in Adams’s logic of
p-valid inference, or by invalidating it, as in Stalnaker-Lewis conditional
logics. Paraconsistent logics of the conditional avoid the collapse result be-
cause a valid inference of classical logic such as A ∨ ¬A |=CL B is usually
no theorem of the target logic, i.e., 6|= (A ∨ ¬A) → B (take v(A) = 1/2,
v(B) = 0). This is also why DF/TT and CC/TT do not fall prey to Gib-
bard’s theorem, although they satisfy Import-Export and have a conditional
connective that is logically stronger than the (Strong Kleene) material con-
ditional of three-valued logic. For their paracomplete counterparts DF/SS
and DF/CC, the same reasoning can be made using an example of the form
|=CL A∨¬A but 6|= A∨¬A. The other strategy, to retain Or-to-If and to give

⊃ 1 1/2 0

1 1 0 0

1/2 1 1/2 0

0 1 1 1

→ 1 1/2 0

1 1 1/2 0

1/2 1 1/2 0

0 1/2
1/2

1/2

Table 9: Truth tables of the material and the indicative conditional in the logic C =
QCC/TT.

up Stronger-Than Material, is less explored.9 It corresponds to the diagnosis
given by C, i.e., QCC/TT. The material conditional of C is logically stronger
than the indicative conditional since it is based on the truth tables for quasi-
disjunction: see Table 9. This sounds paradoxical, but makes a lot of sense
given that C is a theory of certainty-preserving inference. When there is no
uncertainty about the premises, i.e., we know that ¬A ∨ B, the inference to
A→ B is iron-cast. This means that we need a separate logic for conditional
reasoning with uncertain premises—a topic that we will elaborate on in the
next section—in order to account for the fact that the indicative conditional
often appears to be stronger and more demanding than the material condi-
tional. p(B|A) ≤ p(A ⊃ B) is a well-known theorem of probability theory,
and it also holds in the three-valued generalization of probability (in the
form p(A → B) ≤ p(A ⊃ B), for conditional-free A and B). When we iden-
tify assertability and probability, this means that the indicative conditional
is, in the fragment of L→ containing at most simple conditionals, indeed
less assertable than the material conditional. The next section studies these
questions in more detail.

9Defenders of the material conditional analysis such as Lewis (1976), Jackson (1979), and
Grice (1989) retain both principles and just accept Gibbard’s collapse result: it is what they
have argued for all the way.
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6 Reasoning with Non-Monotonic Conditionals

There is a strong research tradition that models the behavior of conditionals
as non-monotonic, invalidating the inference from A → C to (A ∧ B) → C.
“If Alice goes to the party, then Carol goes” does not imply that “If Alice
and Bob go to the party, then Carol goes”: imagine that Carol cannot stand
Bob, even if she likes being in Alice’s company (compare Adams 1965; Lewis
1973, for examples of this type).

The suppositional account of conditionals is especially natural for model-
ing this feature. The basic idea of that tradition goes back to Ramsey
(1929/1990). but its modern form has mainly been developed by Ernest
W. Adams (1965, 1975) and Dorothy Edgington (1986, 1995). On their view,
simple conditionals A → B do not express standard propositions, but we
can express their probability as the conditional probability p(B|A):

p(A→ B) = p(B|A) (Adams’s Thesis)

While Adams’s Thesis is a theorem of the three-valued semantics of proba-
bility, Adams uses this equality as a definition of the probability of condi-
tionals. Arguably, our intuitive judgments of the probability of conditionals
agree at least in many paradigmatic cases with the conditional probability
(for empirical defenses of Adams’s Thesis, see Evans and Over 2004; Evans,
Handley, et al. 2007; for critical discussions, see Douven and Verbrugge 2010;
Skovgaard-Olsen, Singmann, and Klauer 2016).

The relation of logical consequence in this probabilistic semantics is
given by the probability order of the sentences of the language. For single-
premise inferences, A |= B if and only if for all probability distributions,
p(A) ≤ p(B). This criterion captures the above aspect of non-monotonicity
of the conditional since p(C|A, B) and p(C|A) are not ordered in general. In
particular, B 6|= A→ B because it is not a theorem that p(B) ≤ p(B|A).

Let U(A) := 1 − p(A) denote the uncertainty of a sentence A. Then
the above criterion can be generalized as follows to multi-premise inference
(Suppes 1966; Adams 1975):

Adams’s Criterion for p-valid inference Γ |=p B if and only if for all proba-
bility functions p : L→1 [0, 1], the uncertainty of the conclusion does not
exceed the cumulative uncertainty of the premises:

U(B) ≤ ∑
Ai∈Γ

U(Ai) (p-valid inference)

Here the language L→
1

denotes the flat fragment of a propositional language
L→ with a conditional connective, i.e., conditionals have at most one level
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of embedding. For conditional-free sentences in L, p-valid inference, preser-
vation of certainty and truth preservation all agree. But when we move to
L→

1
, they fall apart: “truth preservation” has no more a canonical defini-

tion since it depends on the truth conditions, while p-valid inference and
certainty preservation single out different logics.

Specifically, compared to C, the logic of certainty preservation in L→,
p-valid inference takes a different stance on Stronger-Than-Material and Or-
To-If. Stronger-Than-Material is a theorem for p-valid inference in L→

1
since

p(B|A) ≤ p(A ⊃ B) for conditional-free A and B. Or-To-If fails, on the other
hand, because p-valid inference is essentially a theory of uncertain reasoning.
Recall Edgington’s example from the previous section: if I am 90% confident
that it is 8 o’clock, then I am at least as confident that it is 8 or 11 o’clock,
but that does not give me the same confidence that if it is not 8 then it is 11

o’clock. Since p-valid inference demands more than preservation of certainty
in passing from premises to the conclusion, Adams and his followers can say
that Or-To-If is invalid: we just mistake the logic of certainty preservation,
where Or-To-If is valid, for the logic of uncertain inference with conditionals.

Recently, p-valid inference has been represented and generalized to arbi-
trary compounds and nestings of conditionals within a three-valued seman-
tics by Égré, Rossi, and Sprenger (forthcoming, 2023b). They use the same
semantics for the connectives as in C and define a the logic U as probability
preservation according to the non-classical probability function presented in
Section 4.

Logic U of Uncertain Inference Γ |=U B if and only if:
there is a finite subset of the premises ∆ ⊆ Γ such that for all
probability functions p : L→ 7−→ [0, 1] based on QCC-valuations,
p(

∧
A∈∆ A) ≤ p(B).

(The quantification over subsets is required to preserve the structural mono-
tonicity of the logic.) They then show that this logic does not only generalize
Adams’s logic to nested conditionals and their Boolean compounds, but has
an equivalent three-valued characterization:

Three-Valued Characterization of U For a consistent set of formulas10 Γ ⊆
L→ and B ∈ L→ with 6|=C B, Γ |=U B holds if and only if there is
a finite subset of premises ∆ ⊆ Γ such that ∆ |=QCC/SS∩TT B: for all
QCC-valuations v, v(

∧
Ai∈∆ Ai) ≤ v(B).

In other words, they show that three-valued logic offers an efficient deci-
sion criterion for validating probability-preserving inferences in conditional
logic.

10This means that there is no set ∆ ⊆ Γ such that p(
∧

A∈∆ A) = 0 for all probability
functions.
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The reader may have noticed that this definition of three-valued conse-
quence is very similar to Adams’s yielding condition, developed in a frame-
work where “neither true nor false” is no truth value in its own right (e.g.,
interpreted as “void”), but simply seen as a truth-value gap. Conditionals
with a false antecedent, on this account, simply do not take a semantic value
and valuations are partial. Adams (1966, Theorem 8) then shows that p-valid
inference Γ |=p B coincides with the existence of a subset ∆ ⊂ Γ such that ∆
“strongly entails” B. This is defined as follows:

∆ strongly entails B if and only if for all [classical] truth assignments f
[to sentences] of L:

(i) if no A ∈ S is falsified under f [=taking semantic value 0], then B
is not falsified under f , and

(ii) if no A ∈ S is falsified under f , and at least one A is verified
[=taking semantic value 1], then B is verified under f . (Adams
1966, 297, notation adapted)

It is easy to check that these conditions coincide with TT- and SS-validity
using the quasi-connectives defined in Section 4. While the yielding con-
dition generates the same decision procedures for checking the validity of
inferences, it is arguably more limited because Adams does not provide a
semantics for nestings and compounds of conditionals. Moreover, the defini-
tion in terms of three-valued semantics is much more elegant and accessible.

The above result by Égré, Rossi, and Sprenger (forthcoming) seems to be
in tension with a well-known result by McGee (1981) that Adams’s logic of
p-valid inference cannot be given a full characterization by a finitely valued
logical matrix, and thus, in particular, not by a three-valued logic. How is it
then possible that U generalizes p-valid inference? Schulz (2009) generalizes
McGee’s impossibility result and shows that it depends on the assumption
that the many-valued logic has a proper conjunction connective, i.e., that

Γ |= φ ∧ ψ if and only if Γ |= φ and Γ |= ψ.

Since U is based on quasi-connectives for disjunction and conjunction,
this equivalence fails (in particular the right-to-left direction). The
McGee/Schulz result should therefore interpreted as saying that something
has to go: we cannot have a proper conjunction connective and a three-valued
logic that generalizes p-valid inference. In fact, neither the conjunction, nor
disjunction nor the conditional are proper connectives in U: Modus Ponens
fails because the conditions on logical implication A |= B (i.e., combined
SS- and TT-implication) are stronger than the conditions on the theoremhood
of A → B. While we have Conditional Proof, we have no full deduction
theorem. The failure of Modus Ponens occurs, by the way, only for nested
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conditionals, in line with the counterexamples that McGee (1985) presented
against its validity in uncertain reasoning with conditionals.

U is not the only three-valued logic that aims at modeling non-monotonic
behavior of the conditional. The accounts developed by Dubois and Prade
(1994) and McDermott (1996) are similar both in spirit and content. They
propose the same relation of logical consequence (i.e., the combination of
SS- and TT-validity), but stick to de Finetti’s truth table for the conditional.
Moreover, McDermott uses Strong Kleene truth tables for conjunction and
disjunction in the definition of valid consequence, which is for the rest iden-
tical to the second part of the definition of U (i.e., SS∩TT-consequence). On
the level of inferences, many features are similar, but McDermott’s logic val-
idates Transitivity (A → B, B → C, therefore A → C). While this is accept-
able and even desirable in the framework of certain inference, it is arguably
problematic when reasoning from uncertain premises since the probability
of p(C|A) is in no way controlled by p(C|B) and p(B|A); in fact, it can be
arbitrarily low. Suppose that you live in a very sunny, dry place. Consider
the sentences A = “it will rain tomorrow”, B = “I will work from home”,
C = “I will work on the balcony”. Clearly, both A → B and B → C are
highly plausible, but A → C isn’t. Dubois and Prade avoid that feature be-
cause their definition of logical consequence is identical to Égré, Rossi and
Sprenger’s, but like Adams and Cooper, they restrict their account to the flat
fragment of L→, i.e., allowing only simple, non-nested conditionals. In any
case, all these accounts show that uncertain reasoning with non-monotonic
conditionals can be fruitfully captured in three-valued logic.

7 Relevant Implication and Three-Valued Logic

Can we also find a three-valued connective that describes the meaning of
“A implies B” or “A entails B”? Clearly, an explication of “implies” should
satisfy a deduction theorem, i.e., correspond to a notion of logical conse-
quence: what else should “implies” mean, if not “assures the truth of” or
“is deducible from”?

Before answering this question, let us have a short look at classical logic.
Anderson and Belnap (1975, §1–3) argue that the material conditional of
classical propositional logic, A ⊃ B, is no adequate explication of “A implies
B”. True, it satisfies the deduction theorem with respect to classical logical
consequence. But on the other hand, it validates the inferences A |= B ⊃ B,
that A |= B ⊃ A, and that ¬A |= A ⊃ B. Moreover, their conditional
counterparts A ⊃ (B ⊃ B), A ⊃ (B ⊃ A) and ¬A ⊃ (A ⊃ B) are theorems.
All of these results are in blatant violation of what we mean by “imply” or
“entail”. While B ⊃ B ought to be a theorem, but it is in no way entailed
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by A. The (contingent) truth of A should not be sufficient to make us infer
that B implies A, and the (contingent) falsity of A should not be sufficient to
make us infer that A implies B. All these results of classical logic do not take
seriously that implication is a proper two-place relation, and that when we
prove a conclusion entailed by the premises, we prove it from the premises.

If we buy these constraints on valid entailment, as relevance logicians do,
we have to revise the rules of our syntactic calculus, e.g., Natural Deduction.
Suppose we have a deduction theorem for a conditional connective → that
moreover satisfies the axiom A→ A. Then we can reason as follows:

1: A hypothesis
2: B→ B axiom
3: A→ (B→ B) deduction theorem (⇒)

leading to one of the paradoxes of classical implication. This is, of course,
also a problem for the three-valued explications of “if/then”: C blocks the
inference ¬A |= A → B, but it validates both A |= B → B and A |= B → A.
While C satisfies the most important principles of connexive logic, i.e., Aris-
totle’s Thesis ¬(¬A→ A) and Boethius’s Thesis (A→ B)→ ¬(A→ ¬B), it
fails to model relevant implication, and derivation from a set of premises.

Anderson and Belnap (1975, p. 18) suggest to solve this problem by
“keeping track of the steps used”, and to allow the introduction of a
conditional A → B only “when A is relevant to B in the sense that A is
used in arriving at B.” They restrict Modus Ponens—their main rule of
inference—to cases where at least one of the premises is a hypothesis of
the deduction, or has been derived using the hypothesis. Similarly, they
require that A → B can only be introduced when both A and B have been
proven from the hypothesis. Such a logic R→, restricted to the pure implica-
tion fragment of the language, can be characterized by the following axioms:

R1→: A→ A identity
R2→: (A→ B)→ (C → A→ (C → B)) transitivity
R3→: A→ (B→ C)→ (B→ (A→ C)) permutation
R4→: (A→ (A→ B))→ (A→ B) contraction

This logic, already developed by Church (1951), also satisfies a deduc-
tion theorem, which Anderson and Belnap give in its syntactic version: if
A1, . . . , An ` B, then A1, . . . , An−1 ` An → B, i.e., there is a proof of the
conditional An → B from the first n − 1 premises. However, it just cov-
ers the fragment of the language with a conditional connective. Its classical
(“canonical”) extension to a language that also contains the Boolean connec-
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tives ¬, ∧ and ∨ is known as R and was studied in great detail in Anderson
and Belnap (1975). It rejects all of the “irrelevant” inferences listed at the
beginning of the section, and is therefore a proper relevance logic.

It is characteristic of R→ and R that they have the variable-sharing property,
i.e., if |=R A → B or equivalently, A |=R B, then A and B share at least one
propositional variable. This is not the case for RM—the logic one gets from
R by adding the “mingle axiom” A → (A → A). Actually, while RM still
blocks the above paradoxes of implication, it has been dubbed at most a
“semi-relevant” logic because it validates inferences such as A |= (¬A→ A)

or ¬(A → A) |= (B → B) (Anderson and Belnap 1975, §29.5). Still, it is
advocated as a valid alternative to R in §29.3 of the same book because it
simplifies the calculus of R considerably, for its mathematical and algebraic
properties, and because it may be “good enough when some relevance is
desirable”. It has been studied extensively by Dunn (1976a,b) and Avron
(1986).

→RM3 1 1/2 0

1 1 0 0

1/2 1 1/2 0

0 1 1 1

Table 10: The three-valued truth tables for the conditional in the semi-relevant
logic RM3. The truth table corresponds to Sobocinki’s (1952) conditional and the
material conditional of C, i.e., Cooper’s logic OL.

For RM, one can obtain a three-valued semantics as soon as one adds the
further axiom A∨ (A→ B). The simplest interpretation of the semantic val-
ues is quasi-intuitionistic: 1 and 0 mean that a sentence is derivable from the
premises, or that its negation its derivable, while 1/2 means that neither the
sentence nor its negation is derivable. While negation, conjunction and dis-
junction are defined using the ordinary Strong Kleene tables, the conditional
follows the truth table of Table 10 where v(0 → 1/2) = v(1/2 → 0) = 0, like
for quasi-disjunction in the previous version. This three-valued logic was in-
troduced by Sobociński (1952) for the fragment containing only implication
and negation as connectives; its extension to all Boolean connectives and its
application to modeling relevant implication is due to Anderson and Belnap
(1975) and figures under the name of RM3. Note that the conditional of RM3

has the same truth table as the material conditional in C, i.e., Cooper’s logic
OL.

Obviously, a relevance logic should be paraconsistent; explosion is a
paradigmatic case of a non-relevant inference. So it is natural to define
logical consequence as preservation of designated values D = {1, 1/2}. Then
it is not hard to see that RM3 satisfies Modus Ponens for the conditional
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in Table 10, but not Conditional Proof (counterexample: 1 |=RM3
1/2, but

6 |=RM31→ 1/2). Hence it does not satisfy the deduction theorem. For further
analysis of RM3, see for example Robles (2016).11

While RM3 is certainly not the most popular of all relevant logics, it is
notable that a simple, truth-functional three-valued logic can validate a great
number of principles of relevant logics. The semantics is remarkably sim-
ple compared to other examples of relevant logics. If one wants more—for
example, if one wishes a full deduction theorem or to block further irrele-
vant inferences—three semantic values may not be enough. Adding a fourth
value, one obtains a semantics for the flat (single-implication) fragment of
the most famous of all relevance logics: Belnap and Dunn’s logic of first-
degree entailment E or FDE.

8 Conclusions

This article has surveyed the behavior of the conditional in three-valued
logic from two perspectives: (i) how to align it with a definition of logical
consequence; and (ii) how to explicate natural language structures such as
“if/then” and “implies” using three-valued logic.

Question (i) poses non-trivial challenges since the material conditional
of the Strong Kleene truth tables (which have independent plausibility as
generalizations of “and” and “or” to three-valued logic) does not align with
a standard definition of logical consequence. In particular, regardless of
whether we work with just one designated value (“strict truth”, D = {1})
or with two designated values (“tolerant truth” or non-falsity, D = {1, 1/2}),
we will not have a material conditional that aligns with the logical conse-
quence relation and yields a deduction theorem. What is more, even Modus
Ponens fails. This behavior of the material conditional shows a fundamental
difference between two-valued and three-valued logic.

Some three-valued logics based on the Strong Kleene tables, like Priest’s
logic of paradox LP, bite the bullet and argue on independent grounds that
Modus Ponens should be invalid, and that a deduction theorem is not de-
sirable at all. This is because the intended applications (e.g., in a seman-
tically closed language with a naive truth predicate) are such that Modus
Ponens would lead to disastrous consequences. Other theorists decide to
save Modus Ponens by introducing a new conditional connective that “in-
ternalizes” logical implication, such as the logics K→3 and LP→3 introduced
in Section 3.

In the second part of this chapter, I have focused on question (ii) and
shown that three-valued logic is a fruitful framework for analyzing the se-

11The Sobociński conditional is exactly the material conditional of the logic C.
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mantics and epistemology of the natural language indicative conditional.
The truth tables for the indicative conditional are based on de Finetti’s
idea to interpret a conditional as a conditional assertion which is void or
nonassertive when the antecedent is false. This basic idea has many advan-
tages, as it leads almost automatically to the validation of desirable prin-
ciples such as Import-Export and avoids Gibbard’s and Lewis’s triviality
results.

Choosing a (full) truth table for the conditional, and pairing it with truth
tables for the Boolean connectives and a relation of logical consequence, re-
quires further choices. I have argued that if one is seriously interested in
the behavior of the natural language conditional, one should (i) interpret
conjunction and disjunction according to Cooper’s quasi-connectives; and
(ii) go for a logical consequence relation that is either preservation of non-
falsity (for inference with certain premises) or preservation of strict truth
and non-falsity. This approach can also be applied to restricted quantifica-
tion, reasoning with non-monotonic conditionals, and generalizing Adams’s
theory of p-valid inference to arbitrary formulas of a propositional language
L→ with a conditional connective. The penultimate section briefly surveyed
three-valued semantics for the relevance logic R-Mingle. All in all, three-
valued logic emerges as a powerful framework for explicating natural lan-
guage structures such as “if/then” and “implies”.
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