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Abstract  

 

More philosophical effort is spent articulating evolutionary rationales for the development of belief-

like capacities than for precursors of desires or preferences. Nobody, though, seriously expects 

naturally evolved minds to be disinterested epistemologists. We agree that world-representing states 

won’t pay their way without supporting capacities that prioritise from an organism’s available 

repertoire of activities in light of stored (and occurrent) information. Some concede that desire-like 

states would be one way of solving this problem. Taking preferences as my starting point instead of 

belief-like states, I defend two conclusions. First, psychologically real preference states, which 

approximately token expected utilities, have a quite general evolutionary rationale. They are a solution 

to the problem of efficiently allocating capacities with incompatible uses. This argument is a version of 

the Environmental Complexity Thesis. Second, preferences can plausibly function and naturally evolve 

without belief-like states, even though the converse claim is incredible. Preferences, that is, can mediate 

between discriminations of occurrent states (‘internal’ or ‘external’) and the processes selecting activity 

without mediation by stored indicative representations. By tokening expected utilities of actions 

conditional on discriminated state, they can increase the rate at which the ‘right thing’ is done at 

appropriate times, and they can do this without the support of belief-like, world-representing states. 

Preferences, even incomplete and noisy sets of them, are a fuel for success that will tend to be 

favoured when environments are complex in ways that matter to an organism, and when the organisms 

have complex behavioural repertoires with heterogenous returns and costs.  
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1) Introduction 

 

Among the questions arising when thinking about the evolution of minds are ones corresponding to 

the folk psychological kinds of belief (what an agent represents as being the case) and desire (what an 

agent wants). In this short paper I’ll take for granted that folk psychology provides a credible 

explanandum, so that it is worth trying to provide accounts of the origins and – possibly incremental – 

development of beliefs and desires. I’ll also adopt without defending a broadly naturalist orientation. In 

this first section I’ll sketch key features of some existing approaches to naturalistic explanation of folk-

psychological capacities, and how they tend to prioritise proto-beliefs over proto-desires. In the 

following section I’ll provide a compressed statement of an evolutionary rationale for preferences, 

where preferences are understood as a minimal desire, or significant kind of proto-desire. In sections 

(3) and (4) my focus moves to developing an argument that proto-desires could have evolved first, and 

so preceded proto-beliefs in the history of cognition. 

 

The argument that I will develop here takes as its starting point the general approach found in Godfrey 

Smith (1996) and Sterelny (2003). According to what Godfrey Smith called the ‘Environmental 

Complexity Thesis’ (the ECT) “…the function of cognition is to enable the agent to deal with 

environmental complexity” (1996, p3). The key idea of ‘environmental complexity’ does not refer to 

some agent-neutral property of reality, but rather to the fact that the world around an organism is 

sometimes heterogenous in ways that matter to that organism. When the local environment that matters to 

an organism is simple, it can be enough for the organism to respond in stereotyped ways to easily 

detectable features of it (for example by always approaching light). When the environment is 

significantly heterogenous, what it is appropriate for the organism to do won’t be reliably or simply 

related to what can be cheaply detected. Sterelny calls such environments opaque, and argues that some 

opacity will be caused by hostility – the active production of misleading signals by other organisms. In 

those cases simple cue-bound responses become less effective and may be maladaptive (candles were 

an evolutionary novelty, leading many moths astray). The idea of the ECT is that in some cases 

cognition can pay its evolutionary way by making the actions of organisms more appropriate in the 

face of significant environmental heterogeneity. The development of cognition in the face of 

complexity isn’t inevitable, and depends among other things on whether the behavioural returns more 

than cover the costs of cognition, and what cognitive mechanisms are evolvable from what starting 

points. The general sort of reasoning here can be applied to any cognitive capacity, but my focus here 

is on the folk-psychological kinds of belief and desire. 

 

Sterelny (2003) provides an instructive illustration of the approach applied to belief. In his treatment 

the paradigmatic simple cognitive solution is called a ‘detection system’, which triggers a behaviour 

when a single external cue is detected. Sterelny calls an environment informationally transparent if it is 
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“characterized by simple and reliable correspondences between sensory cues and functional 

properties” (Sterelny 2003, p20). Such an environment is low in environmental complexity. In it a 

relatively cheap and simple detection system can be a satisfactory control system, by mediating “a 

specific adaptive response to some feature (or features) of [an organism’s] environment by registering a 

specific environmental signal” (Sterelny 2003, p. 14). One of Sterelny’s key illustrations is the cockroach 

flight response. Hair cells on the heads of cockroaches respond to onward gusts of air, and trigger 

running away (Sterelny 2003, p14). Since enough of the gusts close to the heads of cockroaches are 

caused by predators, this is adaptive. Sterelny goes on to argue that cognitive elaborations of detection 

systems in response to increased complexity include ‘robust tracking’ – that is, sensitivity to multiple 

integrated factors instead of a single cue – and ‘response breadth’ – that is, having more than one 

possible response to a contingency. He also argues that ‘belief like states’ or ‘decoupled 

representations’ can evolve when response breadth and robust tracking are combined. When they are 

so combined there are relatively enduring cognitive states sensitive to multiple detected sources of 

information, and available as co-determinants of more than one behaviour. 

 

Calling these ‘belief-like’ states isn’t idle. Decoupled representations needn’t be ‘personal’ states, or 

introspectively available, or have various other paradigmatic properties of beliefs when we’re thinking 

about language-using humans. The evolutionary processes being contemplated here mostly involve 

non-human agents, and the cognitive capacities of interest include intermediate steps on the way to 

something a philosopher might count as ‘full’ belief. A ‘belief like state’ is a to some degree decoupled 

world-representing state that may be only shallowly conceptual, i.e. classifying as labelling, or as 

describing with modest inferential and no compositional capacity (Brandom 2009). Similarly proto-

desires aren’t the personal goal-representing states that can (with beliefs) feature in rationalisation of 

intentional action. In the argument that follows I’ll use preferences as my default proto-desire, indicating 

a motivational state that prioritises among (some of) the available actions of an agent (see §2 below). 

Preferences also don’t need to be person states, or available to higher cognitive processes. 

 

It is striking that philosophers working in this general area tend to prioritse providing accounts of 

belief-like states over addressing preferences or motivation. The relevant parts of Godfrey Smith’s 

(1996) Mind and its Place in Nature are mostly about true beliefs as a ‘fuel for success’. He says himself 

that “the bulk” of the book is “focused on explaining the content of belief-like states in particular, as 

opposed to desire-like states” (1996, p. 175). The first part of Sterelny’s (2003) concerns the 

development of folk-psychological kinds, but three quarters of it is about belief-like states, and his 

treatment of preference is not only shorter, but rather deflationary (for a critical treatment see Spurrett 

(2015)). As a final exhibit, Millikan’s (2017) Beyond Concepts is an extended articulation and defence of 

speculative theoretical psychology replacements for non-psychologistic ‘concepts’, called unitrackers 

and unicepts. She allocates much more attention to ‘factic’ than ‘affording’ unitrackers and unicepts, 
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where affording ones are more clearly related to motivation. I draw attention to this pattern not with a 

view to criticising it, or offering an objection to it, but in order to signal the fact that in this paper I’ll 

invert the standard approach and prioritise preferences in the sense of giving them more attention than 

belief-like states. 

 

2) The efficiency rationale for preferences 

 

The tendency to devote more attention to the evolution of belief-like states has some exceptions. 

Spurrett (2021a) develops a fairly general ECT case for the evolution of preferences, which I’ll adopt 

here. In that argument preferences are cognitive states that rank available actions conditional on 

detected states of the world, and the organism itself. They are explicitly intended to be candidates for 

minimal desires, or proto-desires, for at least some accounts of desire. With preferences thus 

understood, the paper argues for the ‘efficiency rationale for preferences’ (or ERP) according to which 

“Preferences enable efficient action selection.” This is the basic formulation of the ERP, and although 

the paper goes on to develop a more qualified and hedged statement, the simple version is all we’ll 

need here. 

 

The applicable notion of efficiency, this being an evolutionary argument, is biological, and could be 

understood in terms of fitness. The argument for the ERP, in compressed outline, has two main 

moving parts. One is an argument that achieving efficient action selection can itself be demanding 

because of the complexity of the problem. The other is an argument that preferences can be a 

cognitive solution to that problem. Making action selection efficient can be difficult for an organism 

because “actions generally have varying (and multi-modal) costs and returns” (Spurrett 2021a, p. 491), 

where the costs include metabolic factors, time, risk and of course opportunity costs, and the returns 

include various kinds of nutritional intake, hydration, mating opportunities, shelter, rest and so forth. 

Action selection is a task of making allocations from an action repertoire that delivers decent returns 

given these varied and heterogenous bundles of consequences. Problems involving these kinds of 

many-many mappings are paradigmatically ‘complex’ in the sense relevant to the Environmental 

Complexity Thesis. A system of preferences could solve this problem if the preferences attached 

values to actions conditional on detected states in ways that were sufficiently efficient. They would 

provide “situation-specific rankings of available actions” (Spurrett 2021a, p. 494), in the sense that 

actions leading to water intake would be up-ranked in a dehydrated organism. In order to deal with 

trade-offs between many reward modalities, the preferences would have to be in a general or common 

currency, for which the existing term ‘utility’ is well-suited. Such a solution would not, of course, be 

without cost. A collection of cognitive adaptations would be needed to attach expected values to 

available actions, and update those values as the needs of the organism and state of the world around it 
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changed. If such a set of adaptations returned more than it cost, though, the argument would work. 

And empirical discoveries in neuroeconomics and cognitive neuroscience suggest that circuits that 

engage in tracking the expected returns from actions across many modalities of reward are found in 

many taxa, and have deep evolutionary roots. 

 

The ‘Evolutionary Rationale for Preferences’ has the same general structure as Sterelny’s case for the 

evolution of belief-like states. Both characterise a class of problems which relatively simple cognitive 

don’t solve very well, and go on to argue that a certain kind of cognitive investment could solve it 

better. In one case the cognitive capacity is the world-modelling of decoupled representation, in the 

other it is mechanisms of tracking expected returns across many modalities. 

 

3) Chickens and Eggs 

 

It is reasonable to wonder how proposals about the evolution of proto-beliefs, such as Sterelny’s 

account of decoupled representation, and ones about proto-desires, such as the Evolutionary Rationale 

for Preferences, relate to one another. Suppose, to narrow the question somewhat, a case where we 

have one prima facie satisfactory version of an evolutionary rationale for proto belief and one for 

proto desire, and that the relationship of interest is temporal ordering. Which, if either, came first? 

 

In the standard ‘full folk psychology’ case, belief and desire are both required to explain (or cause) 

action. This is part of Hume’s point that “reason is, and ought only to be, the slave of the passions” 

(1975, p. 415). While Hume’s concern was to argue that reason couldn’t motivate by itself, the 

converse point holds: my strong desire for a snack won’t send me to the pantry unless I believe there 

are cookies in the jar. That neither gets anything done on its own at least suggests that they may have 

had to evolve together if they evolved at all. But we should not be too hasty. The order of invention 

can be surprising in technology – a process for storing food in tin cans was patented over four decades 

before a general purpose can opening tool. Some inventions can be beneficial enough to get 

maintained on their own, and by being in use make gains from further complementary innovations 

possible. This can be so even when we’ve become used to having both at once (see, e.g. Hejnol & 

Martindale 2008). 

 

In the case of the evolution of belief-like states and preferences or proto-desires, it seems as though 

three options regarding the order of development should be taken seriously. One is that they 

developed together, which might have involved the two being incrementally differentiated from an 

earlier capacity that combined elements of both (as, for example, Millikan’s “pushmi-pullyu 

representations” combine indicative and imperative aspects – Millikan (1995)). The remaining two 
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options are that one of the two developed first and, at least initially, conferred sufficient advantage on 

its own to be maintained before the other came along. 

 

In the following section I argue that preferences could have come first, and conferred benefits without 

decoupled representations. So I’m not just prioritising preferences by focusing on them, I’m arguing 

that they could have preceded belief-like states in the evolution of minds. 

 

4) Putting preferences first 

 

My main argument for the claim that preferences could have evolved before decoupled representations 

starts from the fact that model-free reinforcement learning (RL) in computer science can solve some 

efficient action selection problems (see Sutton & Barto 1998, 2018). In doing so, model free 

reinforcement learning both involves or relies upon preferences, and operates without world-modelling 

or anything like decoupled representation. Consequently, it provides a kind of existence proof of 

preferences paying their way without decoupled representation, that is of proto-desire without, and 

hence potentially before, proto-belief. The following few paragraphs spell out the workings of this 

argument in a little more detail. 

 

Reinforcement Learning is a large and rapidly moving interdisciplinary field. That doesn’t matter here 

because I’m not trying to assert anything about the whole field. The claims I need are core results, 

subject to standard restrictions. In much reinforcement learning an agent is confronted with a finite 

Markov Decision Process (MDP) and learns a ‘policy’ relating states to actions, where the 

consequences of actions can include reward or reinforcement. (The policy, whether in the form or a 

lookup table or some kind of function or algorithm, is broadly analogous to a set of stimulus-response 

associations in behaviourist psychology, or to a control law in control theory.) Markov Decision 

Processes were extensively studied in optimal control theory, which provides rigorous criteria for 

optimality. Some techniques for solving MDPs – such as dynamic programming – require models of 

the dynamics of the MDP. But some don’t. In ‘temporal difference’ (TD) learning a policy (which can 

initially be random) is followed, and the reward consequences of following it compared to the expected 

reward associated with it. Any mis-match results in an error signal (the difference between actual and 

expected reward at a time) which is used to drive incrementally updating the policy. Model-free TD 

learning can approach optimal solutions to some reinforcement learning problems. Solving them 

amounts to achieving efficient allocation of an action repertoire contingent on a changing 

environment, and so is equivalent to the explanandum in the ERP. 
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There are two main ways in which the implementation of TD learning, including model-free TD, 

involve preferences. First, the policy organises actions conditional on states into determinate relations 

of being better than, or as good as, one another. That is precisely what preferences do in the ERP 

argument: value the elements in an action repertoire conditional on the detected state of world and 

agent. Second, the driver of learning is an error signal based on the magnitude of reward. While it is 

possible to have preferences without the capacity for individual learning, the converse is not the case 

when the learning is by reinforcement. Reinforcement is evaluative. (The relation between 

reinforcement learning and Thorndike’s ‘law of effect’ is outlined in Sutton & Barto 2018, pp. 13-21.) 

Reinforcement learning in general is glossed as “learning what to do […] so as to maximize a 

numerical reward signal” (Sutton & Barto 1998, p. 3). 

 

Finally, what it means to be ‘model free’ is to lack an independent world representation (in this case a 

model of the finite MDP, which represents how states follow states, or how states follow actions, 

allowing evaluation of downstream states). Such systems lack decoupled representations, or proto-

beliefs. Putting the pieces in play here together, model free reinforcement learning can solve efficient 

allocation problems, in ways that do require the functionality of preferences, but without decoupled 

representations. That is why I say that model free reinforcement learning provides a kind of existence 

proof of preferences without, and hence potentially before, decoupled representation. 

 

This isn’t a party trick argument based on a biologically fanciful toy model, because (as noted above) 

the reinforcement learning problem is quite general, and solving it is equivalent to other optimality 

concepts in good standing (e.g. from control theory), and the notion of a ‘policy’ relevantly analogous 

to other significant theoretical constructs. It is also increasingly clear that the brains of many real 

organisms engage in some kind of temporal difference learning.  Schultz, Dayan and Montagu (1997) 

for example reported empirical work showing that activity of midbrain dopamine neurons did not 

make sense if dopamine was thought of as related to pleasure or reward, but did if it was regarded as a 

reward prediction error. (Crucially dopamine activity did not vary when expected rewards were 

delivered, but did spike in response to unexpected predictors of later rewards.) On the other hand, 

desktop reinforcement learning systems aren’t generally neurally plausible. In addition, some successes 

of ‘model free’ reinforcement learning are reliant on implicit epistemic resources in ways that 

undermine the inference I’m drawing to the possibility of preferences without proto-belief. What I 

mean by this is that in much reinforcement learning research problems of perception and classification 

are solved by fiat in order to focus on one specific learning problem. So, for example, a reinforcement 

learning system learning a policy to play chess won’t be expected to solve the problem of 

disambiguating bishops from pawns in an optic array but will occupy a world in which the complete 

state of the board is the current state of the MDP it faces. This isn’t an objection to anything about 

reinforcement learning research. The point is that sometimes what gets called a ‘model-free’ 
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reinforcement learning system – and is indeed model-free in the relevant technical sense – has 

significant implicit epistemic resources. This doesn’t defeat the general point of my appeal to what 

model free reinforcement learning can do, it simply recommends caution about what counts as ‘model 

free’. A further reason for caution here is that many reinforcement learning models tend to be rather 

disembodied. Unless the learning problem is itself a motor control one (like driving a walking robot) 

reinforcement learning systems are no more likely to be expected to deal with the physical world than 

AI chess systems are expected to tell where the pawns are by visual inspection. The actual evolution of 

cognition was, though, undoubtedly a very embodied affair, and in ways that matter to what kinds of 

embodied, non-representational and in other ways minimal cognition were possible. A research 

programme that so often abstracts away from bodies might easily lead us astray. In sum, there is some 

good news about neural plausibility, and some cautionary notes about being ‘model free’ and 

disembodied, so this ‘existence proof’ should be handled carefully. 

 

The worries reviewed in the preceding paragraph can, I suggest, be addressed by a complementary 

argument that doesn’t start from premises related to either preferences or proto-beliefs, but with 

considerations about the architecture of embodied control systems. 

 

To begin imagine, or at least try to imagine, a medium sized multi-cellular creature that has a separate 

body part for each distinct physical behaviour or activity. The creature would be something like a living 

‘Swiss Army Knife’, with a part or appendage for drinking liquid, and another one for putting food in 

its mouth, and another still for scratching its head and so on. It gets hard to imagine this quite quickly, 

because the accumulation of perfectly realistic functions (things you can see a real pigeon or dog do) 

leads to architectural problems. Where can all the appendages go? It should also be clear that if we 

assume that such a design is possible at all, it would have to be very inefficient compared to real 

animals in two ways. First, the ‘Swiss Army Critter’ would have to be much larger to achieve the same 

effect, and second it would carry around a large number of very rarely used parts. 

 

The point of the fanciful exercise in the previous paragraph is to make vivid something so familiar that 

we can take it for granted, which is the fact that the real evolved multicellular bodies typically have 

hierarchically organised, multi-use organs. The most obvious cases of this are provided by jointed 

limbs which are variously used for walking, scratching, climbing, hitting, manipulating, and so forth. 

This overall efficient design solution isn’t an unalloyed benefit, because the opportunity cost of some 

uses of the organs will be forgoing others. (A quadruped like a dog or cat can’t walk and scratch at the 

same time.) And getting the benefit of such a body means having some way of solving the scheduling 

and control problem of timing switching between deployments of multiple-use capacities, and blocking 

attempts at incompatible uses. This is also, it is worth noting, an exemplary economic problem, involving 

allocating scarce means with alternative uses. 
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Sherrington’s (1906) notion of a ‘final common path’ helps understand some of how real evolved 

nervous systems deal with this problem. He introduced the notion to refer to the last neural stage at 

which competition between incompatible deployments of combinations of muscles can be resolved, 

and recognised the need for this resolution because some different movements made conflicting 

demands on the same muscles. He characterised a final common path, relative to a pair of ‘reflexes’ 

(bodily movements at various scales or levels of co-ordination) that couldn’t be active at the same time, 

as the last outbound location in the nervous system that was able to switch between them.1 We can 

separate that idea from Sherrington’s specific notion of reflexes and recognise, as Gallistel (1980) puts 

it, that arbitration relationships for control of the body must take the form of a ‘lattice hierarchy’ in 

which the level at or before which competition over deployment of degrees of freedom must be 

resolved is highly variable. We contract our biceps more easily if we relax our triceps at the same time, 

and simple and highly automatic relations of reciprocal inhibition typically facilitate this. Higher level 

and more sophisticated co-ordination, not to mention learning, is required to arrange our body so that 

we can tie a shoelace without falling over. 

 

There are various possible ways of implementing the switching at final common paths. It could just be 

more reflexes in some ‘hard-wired’ hierarchy. Or a creature might switch between broad modes 

(resting, foraging, fleeing) associated with different patterns of using the body. Although biologically 

plausible, we can imagine a robot that used a set of lookup tables to resolve competing allocations at 

its final common paths. Another possibility, of course, is that the resolution of the competitions could 

be sensitive to the value of the options. While final common paths don’t have to involve preferences, 

they provide a functional ‘place’ for them to be exercised. And important early research in 

neuroeconomics proceeded by studying some relatively localised neural circuits know to serve final 

common path functions. Saccadic eye movements have several advantages for neuroscientific study. 

Eye movements relative to the skull have a simple geometric organisation, and a simple topographic 

representation. Movements depend on only six specialised muscles per eye, and movements to 

different targets are strictly mutually exclusive. Known neural circuits represent possible saccade 

targets with nearby targets associated with adjacent cells in a folded up dartboard arrangement. The 

research found that activity in neural maps of saccade targets upstream of final common paths both 

predicted actual saccades, and was correlated with the learned expected value of the saccade targets 

(Glimcher & Sparks 1992, Platt & Glimcher 1999, Glimcher 2003, see also Glimcher 2011). 

Preferences, that is, are in fact neurally expressed in some final common paths. 

 

 
1 It is important that a final common path is relative to specific combinations of alternative movements. See 
(Spurrett 2021b). 
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Here's how this complements the argument from model-free reinforcement learning. First, a nearly 

universal solution to a body design problem is multiple-use moving and flexible (including jointed) organs 

with a hierarchical control system providing a convenient location for preferences, even if the organism has 

no investment in world-modelling (decoupled representation). Second, In the actual evolution of brains, it 

appears plausible that the difference between motor arbitration and reward learning is one of degree. Neural 

reinforcement learning began as, and still bears traces of being, an elaboration of motor gating (see, e.g. 

Barron, Søvik & Cornish 2010). The ‘existence proof’ argument complements the actual history of life. 

These considerations directly address the top two concerns about how much weight the inference from 

model-free reinforcement learning could bear: neural plausibility, and tendency to be disembodied. 

 

An objection might arise at this point, going something like this: The argument above doesn’t describe 

a scenario without belief-like states. The architectures being described don’t actually lack proto-beliefs 

because the preferences rank actions conditional on discriminated world states, and the current needs 

of the organism. These external and internal factors are represented in the cognitive processes of the 

agents. And in representing possible matters of fact about the world or the agent itself, they should be 

counted as proto-beliefs. Perhaps they could count as perceptual proto-beliefs, in being closely related to 

perceptual relationships with the environment, and self-perception. One reason to take this worry 

seriously is provided by the point I made above, that care needs to be taken in assuming that every 

case of ‘model free’ reinforcement learning suggests anything about plausible embodied natural agents. 

But I urged taking care because I think that the inference is good in a large enough class of cases. So, 

unsurprisingly, I don’t think the objection is decisive here. If we impose reasonable and standard demands 

for counting something as a proto-belief, then the objection doesn’t work because the various 

discriminations and even classifications involved in the model free reinforcement learning scenarios don’t 

involve proto-beliefs. They needn’t be significantly decoupled, or flexibly deployable in our cognitive 

processes, and certainly don’t need to be able to sustain inferences or exhibit any kind of compositionality. 

Sterelny argues that the kinds of discrimination involved in his simple ‘detection systems’ (which are 

articulated in order to be paradigmatic cognitive solutions lacking key features of proto-beliefs) require some 

level of generalisation, consistent with them being simple classifiers. That’s enough to get model-free 

reinforcement learning into play, and well short of even the minimal test of a proto-belief that it be 

decoupled enough to be involved in cognitive processes in the absence of what cues it. If, on the other 

hand, we do count these discriminations as cases of proto-belief we intolerably trivialise the notion of 

proto-belief by applying it to purely occurrent states with no cognitive depth. 

 

There’s more, that is, to proto-belief (which involves decoupled representation) than discrimination. 

Counting discrimination as representation is too permissive, and dilutes the explanatory point of 

intermediate world-modelling cognitive states. Sea slugs are capable of some reinforcement learning 

(e.g. Perry, Barron & Cheng 2013) but have not been found to have abilities requiring hypothesis of 

decoupled representation in the sense of showing behaviour apparently conditional on non-occurent 
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stored representations. Giant sea slugs, for example, are carnivorous and eat animal matter they 

encounter in fairly indiscriminate ways, “including other sea-slugs and their eggs” (Manning and 

Dawkins 1998: 226). Despite this, they do not eat their own eggs during egg laying. This selective 

disposition is realised as follows: during egg laying, they release a hormone that inhibits movement of 

the mouth (Davis et al 1977). That does the required evolutionary job without (proto) beliefs about 

descendants or even (in this case) preferences that over-ride eating. 

 

In conclusion, the reinforcement learning argument supplemented by the final common path 

considerations encourages the thought that preferences could have preceded decoupled representation. It 

provides what some call a ‘how possibly’ scenario (e.g. O’Connor 2019) about the evolution of cognition 

that is relevant to the eventual evolution of folk-psychological capacities. Not only that, a type of agent that 

has preferences (which I have argued can be useful on their own) but lacks decoupled representations is 

poised to take advantage of decoupled representations, which enable its selections to be conditional on 

information that isn’t locally occurrent. Such representations may be constructed over time and integrating 

multiple cues. Decoupled representation could, that is, have started out as the ‘slave of the preferences’ 

(following Hume 1975, II.3.3, p 415). 

 

5) Conclusion 

 

I’ve defended the thesis that there is a scenario that is both conceptually coherent and consistent with 

neuroscience and recorded evolution in which preferences – a kind of desire-like state – evolved before 

belief-like states. That’s a significant thesis, but is also considerably weaker than the claim that they did in 

fact evolve first, let alone that they necessarily came first. The other relevant possibilities are, as noted above, 

that proto-beliefs evolved first, and that the two in some sense evolved together. 

 

Of those two, the proto-belief first scenario does not seem particularly promising. The environmental 

complexity thesis explains cognition as contributing to ‘dealing with’ (environmental) complexity, which is 

to say that cognition pays its way by making a difference to what an organism does in what circumstances. 

Any investment in world-modelling has to have some route to influencing behaviour. There aren’t 

computer science models of successful agents with world modelling capacities but whose action selections 

are insensitive to selection as there are of the opposite (model-free reinforcement learning). These aren’t 

decisive considerations, and any proposal in which proto-beliefs evolved first would have to be evaluated 

on its merits. 

 

What about scenarios in which the two evolved together? I referred above to Millikan’s notion of 

“pushmi-pullyu representations” that combine indicative (i.e. discrimination) and imperative (i.e. 

motivating action) functionality (Millikan 1995). Such a representation has elements of proto-belief and 
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simple motivation. But we need to be careful. An organism with a collection of ‘pushmi-pullyu’ 

representations will likely face the problem of what to do when more than one of these representations 

call for making use of the same bodily degrees of freedom, for example if one is calling for the limbs to 

be used to approach something, and another to sit down and scratch an itch. In that case some kind of 

selection will be needed, which needn’t inevitably involve preferences, but which will be more efficient 

if it does. And we’ve already seen how networks of final common paths (where ‘pushmi-pullyu’ 

representations compete for use of the body) are both a conceptually convenient place for the exercise 

of preferences, and connected with their actual evolution in the history of nervous systems. The case 

of multiple ‘pushmi-pullyu’ representations is broadly analogous to the situation of an agent whose 

psychology is organised according to Gibsonian ‘affordances’ (sensorimotor registrations of 

possibilities for action of a body in a situation). Multiple affordances also sometimes call for 

incompatible uses of the body, leading to a problem of affordance selection, to which preferences can 

also be a solution (Spurrett 2018). So scenarios in which they evolved together still encourage the 

thought that elaboration of preferences could drive the process. 
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