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1 Introduction

From a philosophical viewpoint, mathematics has traditionally been dis-
tinguished from the natural sciences by its formal nature and emphasis on
deductive reasoning. Experiments—one of the corner stones of most modern
natural science—have had no role to play in mathematics. However, in the
past two to three decades, a mathematical subdiscipline has been forming
that describes itself as “experimental mathematics”, and it is the purpose
of this paper to investigate and discuss the ways in which experimental
mathematics is experimental.

Since the 1990s, many domains of knowledge production have witnessed
a “computational turn” during which the wide use of computers has in-
fluenced established ways of thinking.1 In mathematics, computers have
been utilized since their first construction, but in the 1990s, their use led
to a new subdiscipline of experimental mathematics in which computers
were central to most—if not all—the experiments that give the subdisci-
pline its name. Using high speed computers and software packages such
as Maple and Mathematica, mathematicians can now manipulate data and
structures of immense complexity through real-time interaction with com-
puters, and these practices are at the heart of experimental mathematics,
I will argue. Thus, computers—and the “experiments” that they seem to
carry with them—have entered into wide areas of traditional mathematics
ranging from combinatorics to partial differential equations.

It is no coincidence that the name of the subdiscipline under considera-
tion is often given as experimental mathematics or sometimes as computer-
based or computer-assisted mathematics. Thus, it does not refer to a partic-
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ular subject matter within mathematics, but rather to a specific technology
(namely that of computers) and a specific, yet largely unspecified, method-
ology, namely that of experimental mathematics. The subdiscipline has
consolidated itself around these two central notions with a set of key re-
search questions and tools, a considerable infrastructure including journals
and institutional embeddings,2 and a philosophical legitimization brought
about in articles and introductions to books such as Mathematics by Ex-
periment: Plausible Reasoning in the 21st Century written by Borwein and
Bailey (2004), two of the leading figures in experimental mathematics.

The philosophical literature on experimental mathematics and the dis-
cussions of computer-assisted mathematics have often revolved around a
number of cardinal examples starting with the proof of the Four Color
Theorem by Appel and Haken in 1976.3 This prototypical example of
a computer-based proof of a mathematical theorem involved computer-
assisted ‘number crunching’ of a finite, but large, number of configurations
to verify the claim. The admittance of such examples of ‘number crunch-
ing’ is discussed in the philosophical literature because they are perceived
to involve a loss of surveyability that could challenge the apriority of math-
ematics.4 Although these examples of ‘number crunching’ succeed in test-
ing all the instances that fall under a general hypothesis, criticism can be
levelled against them for not providing any explanation for the results ob-
tained.5 Another use of computers has been to perform searches within
infinite domains in order to lend inductive support for a general hypothesis.
An example of a distributed ‘number crunching’ of this sort is the search for
huge Mersenne primes.6 Similarly, the Goldbach Conjecture serves as a typ-
ical unsolved problem in number theory that has been subjected to immense
‘number crunching’ to establish that every even number less than 1018 can
be written as the sum of two primes.7 Hales’ computer-assisted proof of

2Cf. (Gallian and Pearson, 2007, p. 14).
3Cf., e.g., (Tymoczko, 1979; Wilson, 2002; Bassler, 2006).
4Cf. (Bassler, 2006; McEvoy, 2008).
5Cf. also (Baker, 2007, 2008; Van Kerkhove and Van Bendegem, 2008; Van Kerkhove,

2005, pp. 287–307) and references in these for some of the themes of the discussion.
The fact that ‘number crunching’ has an interesting history going back at least to the
nineteenth century has been documented for the famous cases of the Prime Number
Theorem (Echeverŕıa, 1992), the Goldbach Conjecture (Echeverŕıa, 1996), and Fermat’s
Last Theorem (Corry, 2008); cf. also (Goldstein, 2008).

6Mersenne primes are primes of the form 2p − 1. In September 2008, the distributed
Great Internet Mersenne Prime Search (GIMPS) reported finding the 45th and 46th
Mersenne prime each of which has more than 107 decimal digits.

7As of July 14, 2008, all even numbers less than 12 × 1017 have been verified to be
expressible as the sum of two primes by the Goldbach conjecture verification project
coordinated by Oliveira e Silva. The philosophical implications to be drawn from this
form of inductive support for a mathematical statement has been discussed in, e.g.,
(Baker, 2007; Van Kerkhove and Van Bendegem, 2008).
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the Kepler Sphere Packing Problem can be seen as a modern combination
of these techniques, and it embodies most of the philosophical challenges
posed by them.8

In the present paper, I go beyond these examples by bringing into play
an example that I find more experimental in nature, namely that of the use
of the so-called PSLQ algorithm in researching integer relations between
numerical constants. It is the purpose of this paper to combine a historical
presentation with a preliminary exploration of some philosophical aspects
of the notion of experiment in experimental mathematics. This dual goal
will be sought by analysing these aspects as they are presented by some
of the protagonists of the field and discussing them using notions from
contemporary philosophy of science.

Thus, in the following, I will introduce some of the most important
philosophical discussions pertaining to experimental mathematics. I will
then go on to illustrate how another feature of experiment may come into
play in mathematics: namely that of exploration. In so doing, I describe a
recent approach to experiments in science that focuses on their exploratory
aspects and their importance in concept formation. Then, by combining
this with a presentation of the PSLQ algorithm, I suggest to incorporate
experiments in the informal portion of mathematics in a way that is loyal to
mathematical practice while seeking to integrate the contexts of discovery
and justification that are customarily separated.

2 Central themes: Induction and the role of
computers

In 1998, when experimental mathematics was still in its infancy, Van Ben-
degem argued that mathematicians were using the term “experiment” in
two essentially different ways, either as referring to computations or to real-
world experiments. He found, that “it seems that it is very difficult to make
any sense out of the idea of considering a computation (whether aiming for
a numerical result or a visual image) as a form of mathematical experiment”
(Van Bendegem, 1998, p. 178). A decade later, philosophical interest in ex-
perimental mathematics has only increased, and the impact of computers on
traditional questions within the philosophy of mathematics is beginning to
be investigated more. When Van Bendegem took up the philosophical anal-
ysis from (Van Bendegem, 1998) again together with Van Kerkhove, they
noticed that experimental mathematics had “become established in [the]
philosophical literature as an epistemic concept,” (Van Kerkhove and Van
Bendegem, 2008, p. 423) although the confusion over its precise meaning
had still not been resolved. Consequently, they took up examples—some

8Cf., e.g., (Hales, 1994; Aste and Weaire, 2008).
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of them exemplary ones—to discuss an “irreducible role in mathematics
for genuine [as opposed to mathematical] induction (whether it be consid-
ered truly experimental or not)” (Van Kerkhove and Van Bendegem, 2008,
p. 424).

In another recent paper, Baker continues the philosophical task of clar-
ifying the meaning of experimental mathematics. First, he argues that “a
literal reading of ‘experiment,’ in the context of clarifying the nature of ex-
perimental mathematics, is unfruitful” (Baker, 2008, p. 339). In particular,
he questions whether computers are really essential to experimental mathe-
matics and whether experimental mathematics is essentially about gathering
inductive support for hypotheses. He finds flaws with both suppositions and
instead suggests that the central feature of experimental mathematics is the
calculation of instances of general hypotheses. However, Baker observes,

[c]onfusingly, both computer use and inductive reasoning also have
links to aspects of experimentation in science. What I [i.e., Baker]
have argued, however, is that neither is an essential feature of experi-
mental mathematics. There is experimental mathematics that makes
no use of computers, and there is experimental mathematics that in-
volves no inductive relations—claimed or actual—between evidence
and hypothesis. (Baker, 2008, p. 343)

Surveying the field of computers in mathematical inquiry for an impor-
tant recent volume on the philosophy of mathematical practice, Avigad also
takes up the philosophical discussion of the role of computers in mathemat-
ics. Avigad’s conclusion is that

issues regarding the use of computers in mathematics are best under-
stood in a broader epistemological context. [. . .] What we need now
is not a philosophy of computers in mathematics; what we need is
simply a better philosophy of mathematics. (Avigad, 2008, p. 315)

In particular, the use of the computer in mathematics and the impact it
may have on so-called experimental mathematics needs to be described and
understood within a framework sensitive to mathematical practice and to
broader epistemological discussions.

Before I take up the discussion of these issues by extending and reshap-
ing the notion of experiment, it is time to analyse the formation of the
subdiscipline of experimental mathematics in the 1990s.

3 Experimental mathematics in the late twentieth
century

Within the mathematical community, experimental mathematics became
a debated topic in the 1990s, when the American Mathematical Society
(AMS) and its journals devoted resources to discussing the implications of
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computers for mathematics. In retrospect, a column on “Computers and
Mathematics” run in the Notices of the AMS from the summer of 1988
to the end of 1994 may be seen as the immediate context of experimental
mathematics in the form discussed here (Devlin and Wilson, 1995, p. 248).
Among reviews of software packages and technical results, some discussions
evolved around visions of the impact of the computer (and digital storage
and correspondence) for the communication of mathematical results—and
conjectures. In connection with this, a perceived loosening of the standards
of rigour was also discussed in the context of the enormous potential of the
computer. In 1993, this discussion hit the mathematical community with
force when Jaffe and Quinn published their suggestion for a separation be-
tween two branches of mathematicians, one that was speculative and one
that was rigorous.9 Among the debaters, it was argued that the mathe-
matical community should be inclusive when it came to computers. From
a variety of points, mathematicians argued that mathematics ought to em-
brace computers, even if this would lead to changes in the means of doing
and communicating mathematics, although any loosening of epistemic stan-
dards was hard to accept for most. These issues since became important
for discussions of experimental mathematics.

In the mainstream views, experiments could be useful as heuristics, but
according to these deductivist and formalist conceptions of mathematics
that Lakatos has identified as the Euclidean myth, such heuristics were con-
fined to the informal spheres of discovery and teaching. Most certainly,
they could not be allowed to aspire to anything like the status of proof.
To these mathematicians, deductive proof is the exclusive mode of knowl-
edge production in mathematics. However, in the 1990s, a new wave of
“experimental” mathematicians was about to challenge these views.

The number of mathematicians actively identifying themselves with the
new experimental programme in the early 1990s was rather limited, as would
be expected. But soon, it came to associate also with prominent mathe-
maticians such as Fields-medalists Thurston, who has a strong interest in
the impact of computers on mathematics.10 Despite its size, the group of
experimental mathematicians was a heterogeneous one. Individuals com-
mitted to experimental mathematics held differing conceptions of the scope
of experiment, and in particular of the kind of use that computers could

9(Jaffe and Quinn, 1993); cf. also (Atiyah et al., 1994; Jaffe and Quinn, 1994). Taking
their lead from the division of labour within physics, Jaffe and Quinn used the terms
“theoretical” and “rigorous”. However, as used, I find that what they called “theoretical”
is better captured under the heading “speculative”; cf. also (Thurston, 1994, p. 163).

10(Bown, 1991). Thurston had received the Fields medal in 1980 and was recognized
as a leading figure within the mathematical community in the 1990s. Cf. also (Thurston,
1994) for Thurston’s reactions to Jaffe and Quinn and (Horgan, 1993) for some of the
controversy involved in the issue at the time.



346 H. K. Sørensen

be put to in experimenting with mathematics. One cluster formed around
the journal Experimental Mathematics when it was founded in 1991 and
began appearing the following year with Epstein and Levy as editors (Ep-
stein and Levy, 1992). A different cluster formed in Canada at Simon
Fraser University around a group of individuals including J. M. Borwein,
P. Borwein, and Bailey. In geographical proximity and sharing a common
research agenda and a powerful set of computer routines and algorithms,
this group institutionalised as Centre for Experimental and Constructive
Mathematics (CECM) in November 1993. A third group to be mentioned
here centers around Zeilberger whose research programme is related to that
of the CECM-group but exhibits some remarkable philosophical differences.

4 Experimental mathematicians philosophizing

The protagonists of experimental mathematics have been quite explicit
about the philosophical problems involved in their line of mathematical
research. In a central article in the early history of experimental mathe-
matics, “Making Sense of Experimental Math” (published in the Mathe-
matical Intelligencer in 1996), the brothers J. M. Borwein and P. Borwein
and two collaborators describe the new field, its possibilities, and its chal-
lenges (Borwein et al., 1996). They offer the following definition of the field
drawn from a characterization of four roles of scientific experiments given
by the philosophizing immunologist Medawar (1979):

Experimental Mathematics is that branch of mathematics that con-
cerns itself ultimately with the codification and transmission of in-
sights within the mathematical community through the use of ex-
perimental (in either the Galilean, Baconian, Aristotelian or Kantian
sense) exploration of conjectures and more informal beliefs and a care-
ful analysis of the data acquired in this pursuit. (Borwein et al., 1996,
p. 17)

This definition emphasises the changes in infrastructure required for a shift
towards more experimental methods in mathematics. In other (later) pub-
lications, the same authors expand on the particular roles for the use of
computers in mathematics (Borwein and Bailey, 2004, pp. 2–3), as they
see the “utilization of modern computer technology as an active tool in
mathematical research” in the style of experimental mathematics (Bailey
and Borwein, 2005, p. 502). The role of computers in mathematical ex-
perimentation will include (cf. Figure 1) heuristics [1–3] (gaining insight
and intution and discovering new patterns using symbolic or graphical ex-
periments), refining and evaluating conjectures [4–5] (testing and falsifying
conjectures and exploring the conjecture to see if it is worth attempting
a formal proof), and aiding in the procedure of proving conjectures [6–8],
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either by suggesting strategies for formal proof or by allowing computer-
based derivations or confirmations of, e.g., intricate identities (Borwein and
Bailey, 2004, pp. 2–3).

1. Gaining insight and intuition.

2. Discovering new patterns and relationships.

3. Using graphical displays to suggest underlying mathemat-
ical principles.

4. Testing and, especially, falsifying conjectures.

5. Exploring a possible result to see if it is worth formal
proof.

6. Suggesting approaches for formal proof.

7. Replacing lengthy hand derivations with computer-based
derivations.

8. Confirming analytically derived results.

Figure 1. Roles for computers in mathematics, according to (Borwein and
Bailey, 2004, pp. 2–3).

Among the types of experiments extracted from Medawar’s classifica-
tion, “Baconian experimentation” includes “trying things out” and observ-
ing “things as they really are” (Medawar, 1979, pp. 69–70). This type of
experimentation could seem to come close to the use of computers in vi-
sualizing and exploring mathematical structures and problems. However,
compared to Medawar’s four types of scientific experiments, the authors
argue, experimental mathematics is only a “serious enterprise” insofar it
resembles the critical (or even crucial) experiments that Medawar calls
“Galilean” which “discriminate between possibilities and, in doing so, ei-
ther gives us confidence in the view we are taking or makes us think it in
need of correction” (Borwein and Bailey 2004, p. 6; cf. also Medawar 1979,
p. 71). Although superficial, Medawar’s presentation of Baconian exper-
iments highlights their ideal characteristic as unbiased recordings of con-
trived facts of nature that can subsequently be subjected to inductive argu-
ments. Thus, the authors contrast the inductive Baconian experiments with
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the crucial, and thereby essentially deductive, experiment that Medawar as-
cribes to Galilei. By their emphasis on the latter, these authors therefore
also argue for a deductive and justificatory role for experiments in mathe-
matics that goes beyond the heuristics of fact (number) gathering.

However, as I will discuss below, I find that the discussions of so-called
“new experimentalism” and the notion of “exploratory experimentation”
bring a new and refined meaning to Baconian experimentation that has
consequences for the understanding of mathematical experiments (Steinle,
1997).

5 Contexts of experiments in the sciences and in
mathematics

In the second half of the twentieth century, a standard view of the role of
experiments in the sciences has been to test hypotheses or theories. Such
theory-driven experimentation resembles Medawar’s Galilean experiments
and serves to justify theories. In mathematics, on the other hand, experi-
mentation has been accepted as a (powerful) heuristic that can aid in the
discovery of plausible conjectures. But, in mathematics, experiments have
been confined to the realm of discovery while deductive proofs remained the
exclusive means for justifying claims in mathematics.

What has happened in the past decades has been that these opposite
confinements for experimentation have begun to be loosened in the philo-
sophical literature. In the sciences, “exploratory experimentation” has been
analysed as an important means of concept formation. Thus, experiments
in the sciences have found a place in the context of discovery together with
the heuristic of gathering data. In mathematics, where experiments were
typically confined to the context of discovery, experiments have started to
blur the distinction in the other direction. Some proponents of experimen-
tal mathematics—in particular Zeilberger—have claimed that experiments
possess powers of justification that are not those of proofs, but could and
should be allowed into mathematics. Thus, the notion of experiment is
changing both in the sciences and in mathematics, but because the tradi-
tional views differ in science and mathematics, the new roles for exploratory
experimentation also differ.

Thus, when the concept of experimental mathematics made its dramatic
entry onto the scene of the mathematical community in the first half of the
1990s, the image of experimentation, itself, was undergoing refinement in
the philosophical literature.11 In the following, I suggest that “exploratory
experimentation” offers a framework for understanding some of the episte-
mological claims of experimental mathematics.

11Cf., e.g., (Steinle, 2002, 1997; Franklin, 2005).
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Context of Discovery
Heuristics, Baconian experiment, etc.

Context of Justification
Galilean experiment, ‘proof’, etc.

experimentPhysics etc. Mathematics

Figure 2. The uses of experimentation is changing both in the sciences
and in mathematics. The thick arrows indicate traditional embeddings of
experiments in science (justification) and mathematics (discovery). The
dashed arrows indicate new roles for experiments, and the vertical arrows are
meant to indicate that changes in the notion of experiment are blurring the
distinctions between the contexts of discovery and justification. Importantly
because the traditional views of the two types of science are different, the
new roles for exploratory experiments also differ.

6 Exploratory experimentation and wide
instrumentation

The philosopher of (physical) science Steinle describes the differences be-
tween theory-driven and exploratory experimentation in terms of the pos-
sible empirical outcomes:

Theory-driven experiments are typically done with quite specific ex-
pectations of the various possible outcomes in mind. [. . .] Exploratory
experimentation, in contrast, is driven by the elementary desire to ob-
tain empirical regularities and to find out proper concepts and clas-
sifications by means of which those regularities can be formulated.
(Steinle, 1997, p. S70)

Steinle goes on to explain that exploratory experimentation typically takes
place in phases of scientific development in which no well-formed conceptual
framework is available (Steinle, 1997, p. S70). Thus, Steinle’s exploratory
experiments in science are open-ended and highly important and influential
in the processes of concept formation.
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Drawing on examples from research in molecular biology during the last
decades, the philosopher Franklin adds an interesting dimension to the no-
tion of “exploratory experimentation”, namely that of wide instrumenta-
tion. The availability of high-throughput instruments that can simultane-
ously measure many features or repeat measurements very quickly has, so
Franklin argues, made it feasible (again) to address the enquiry of nature
without local theories to guide the experiments. In the process, experiments
have gained another quality to be measured by, namely efficiency in bringing
about new results (Franklin, 2005, p. 895).

These aspects of exploratory experimentation and wide instrumenta-
tion originate from the philosophy of (natural) science and have not been
much developed in the context of experimental mathematics. However, I
claim that, e.g., the importance of wide instrumentation for an exploratory
approach to experiments that includes concept formation also pertain to
mathematics. However, it could seem that experimental situations with no
well-formed conceptual framework do not occur in mathematics. Therefore,
I first give a short outline of an example to illustrate that this can and does
occur. I then go on to discuss the idea of exploratory experimentation based
on another example from experimental mathematics, namely the so-called
PSLQ algorithm.

7 In the absence of a well-formed conceptual
framework

Experimental mathematicians have taken an interest in studying polynomi-
als with coefficients from a finite set. For instance, a group at the CECM
has studied zeroes of polynomials with coefficients 1 or −1 and degree up
to 18.12 Extensive data mining was used to produce graphical illustrations
of the sensitivities of the zeroes of these polynomials. From these images,
two observations can be made that are important in relation to Steinle’s
notion of exploratory experimentation. One point is that the images were
found to exhibit a remarkable behaviour near roots of unity, and indeed,
that behaviour has now been rigorously proved (Borwein et al., 2008). The
other point is that the images were capable of interactive experimentation
such as measuring sensitivities relative to one of the coefficients. Figure 3
illustrates the sensitivities of zeroes relative to the x9 term. These new
figures, and in particular the banded features that appear, are not yet fully
understood. However, it is widely believed among the experimental experts
that the features are stable and not merely programmatic artifacts. To un-
derstand these new phenomena, it is most likely that some new conceptual

12Polynomials with coefficients ±1 are called Littlewood polynomials. This example
and Figure 3 below is presented in (Borwein and Jörgenson, 2001) and briefly described
in various publications on experimental mathematics, such as (Borwein, 2008).
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Figure 3. Sensitivies of zeroes of Littlewood polynomials of degree up to
18 relative to the x9 term; image from Loki Jorgensen’s webpage.

developments are required. Thus, this is a case in which computer-assisted
methods—both in the form of data mining (or ‘number crunching’) and as
open-ended, exploratory and interactive experimentation—are at work in a
situation when no well-formed conceptual mathematical framework for ex-
plaining the phenomena has yet been devised. A variation on this situation
will appear below in the case of the PSLQ algorithm.

8 The PSLQ algorithm as an example

The group of experimental mathematicians centred around the CECM and
the brothers J. M. Borwein and P. Borwein have made use of an algorithm
developed by Ferguson, Bailey and others, known as the PSLQ algorithm.13

This algorithm is a good example of a powerful tool in experimental math-
ematics and therefore merits some attention and analysis in the present
context. First, the domain of the algorithm needs to be clarified. The
PSLQ algorithm is a so-called “integer relation detection algorithm” that
can be used to search for integer relations between given numerical con-
stants expressed in finite, but high-precision decimal representation. By
a special application, the PSLQ algorithm can also be used to investigate

13(Ferguson et al., 1999). The PSLQ algorithm has also been discussed in (Corfield,
2003, pp. 64–66).
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whether given numerical constants are algebraic numbers or not. Thus, the
algorithm has found its use, e.g., in summing various series in closed form
(Bailey et al., 1994). Second, the special nature of the PSLQ algorithm that
makes it experimental needs to be emphasized. The algorithm takes as its
input a vector of high-precision real (or complex) numbers (x1, . . . , xn) ∈ Rn
and after a bounded number of iterations either produces 1) a vector of in-
tegers (m1, . . . ,mn) ∈ Zn \ {0} such that the linear integer combination∑n
k=1mkxk is very close to zero with high precision, or 2) a lower bound

R such that for all vectors of integers bounded by R, the linear integer
combination

∑n
k=1mkxk is provably different from zero. The two potential

outcomes of the algorithm, therefore, represent an unproven suggestion or a
provable non-existence result: The result is either a suggestion for an inte-
ger relation or a lower bound showing that any such relation has to include
very large coefficients.

9 Consequences and applications of the PSLQ
algorithm

In case the PSLQ algorithm provides a lower bound for the size of any
possible integer relation between the specified real constants, the result is
exact (and provable). However, the community of experimental mathe-
maticians have come to hold different—some of them rather radical and
provocative—views on the need for making the proof explicit. The most
outspoken radicalist among them, Zeilberger, has suggested that when such
exact results are provided by an established algorithm, it suffices to anno-
tate the announcement with “QED” as a seal that the author has, indeed,
performed the computation and observed the result as indicated.14 In some
of his papers and preprints, of which his software package “Ekhad” is listed
as co-author, Zeilberger has even implemented this (cf. Figure 4).15 The
provocative nature of the views of the most radical experimentalists in math-
ematics is even clearer when it comes to the status of a result such as an
output of the first type from the PSLQ algorithm: a statement of a high-
precision verification of some relationship. Following up on a provocative
suggestion by Chaitin and in line with some of the arguments behind the
suggestions of a “theoretical mathematics” discussed above, Zeilberger has
suggested to affix statements of this kind with a (consistently derived) es-
timate of how difficult or time-consuming it would be to produce a formal
proof of a relationship that is verified to great numerical precision.16

What lies behind Zeilberger’s suggestion is that mathematics is presently
in a phase of wide expansion, cultivating ‘new lands’. During such a phase,

14Cf., e.g., (Zeilberger, 1993, p. 31).
15Cf., e.g., (Ekhad and Zeilberger, 1996).
16For Zeilberger’s elaboration, cf. (Zeilberger, 1994).
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Proof. While this is unlikely to be new, it is also irrelevant whether
or not it is new, since such things are now routine, thanks to the pack-
age qEKHAD, accompanying [PWZ]. Let’s call the left side divided by
qm(m−1)/6, Z(m). Then we have to prove that Z0(m) := Z(3m)
equals (−1)m, Z1(m) := Z(3m + 1) equals (−1)m, and Z2(m) :=
Z(3m + 2) equals 0. It is directly verified that these are true for
m = 0, 1, and the general result follows from the second order re-
currences produced by qEKHAD. The input files inZ0, inZ1, inZ2 as
well as the corresponding output files, outZ0, outZ1, outZ2 can
be obtained by anonymous ftp to ftp.math.temple.edu, directory
pub/ekhad/sasha. The package qEKHAD can be downloaded from
http://www.math.temple.edu/~zeilberg. q.e.d.

Figure 4. A “proof” according to Ekhad and Zeilberger in the Electronic
Journal of Combinatorics, (Ekhad and Zeilberger, 1996, p. 2, emphasis
added).

efficiency in establishing results is to be valued more, they think, than ab-
solute rigor according to the traditional standards. Therefore, Chaitin has
suggested assuming unproved hypotheses such as the Riemann Hypothesis
as axioms if they are experimentally justified and lead to fruitful research.17

Unsurprisingly, Zeilberger’s suggestion was met with criticism from pro-
ponents of a more classical view of mathematical epistemology.18 The
CECM-group also takes a different view of the situation. As the nicely
titled paper “Strange Series and High Precision Fraud” argues (Borwein
and Borwein, 1992), even high-precision verification is not a substitute for
formal proof.

Although the field of experimental mathematics is considerably broader
than applications of the PSLQ algorithm and similar searches for symbolic
identities using numerical methods, the PSLQ algorithm is a nice exam-
ple from which to discuss features of the new experimental approach to
mathematics. Integer relation detection is located on the border between
rigorously provable theorems and experimentally obtained conjectures. The
PSLQ algorithm allows mathematicians to interactively navigate open prob-
lems in many fields of mathematics in search of either rigorous lower bounds
or suggestions for relations. If the algorithm provides a rigorous lower
bound, mathematicians may continue pursuing a proof that no such re-
lations exist at all. On the other hand, if the algorithm suggests a relation,

17Cf., e.g., (Chaitin, 1993, pp. 326–327).
18Cf., e.g., (Andrews, 1994).



354 H. K. Sørensen

mathematicians may seek traditional proof of this suggestion. In both cases,
the situation is likely to be further explored using either experimental tech-
niques or more traditional proof, or a combination thereof.

10 Fact-gathering or interactive exploration

A traditional (post-foundationalist) framework for discussing the philoso-
phy of mathematical practice has been Lakatos’ conception of mathematics
as a quasi-empirical science directed by thought-experiments (also known
as proofs) and refutations through counter examples (Lakatos, 1976). Thus,
Lakatos’ philosophy as expressed in the Proofs and Refutations deals mainly
with concept formation presupposing phases of heuristic conjecturing. If
Lakatos’ philosophy is to be fully applied, another aspect of experimental
mathematics has to be considered. Gauss’ calculations (with the help of
human computers) of prime number tables to a large extent fell into the
category of fact-gathering for subsequent conjecturing. As such it can be
isolated as a most fundamental form of experiment, but not (yet) as ex-
ploratory experimentation. Similarly, many of the efforts that have gone
into computer visualisation and ‘number crunching’ of mathematical prob-
lems have served these roles of compiling and making accessible data on
which to form hypotheses. However, the interactive use of systems such
as Maple and Mathematica have opened the door for an integrated process
of experimentation, concept formation, and conjecturing. This can be il-
lustrated using an example relating to so-called Euler sums and using the
PSLQ algorithm that has been discussed by members of the CECM-cluster
in (Bailey et al. 1994; cf. also Borwein et al. 1996, pp. 13–15).

As recorded in (Borwein et al., 1996, pp. 13–15), an undergraduate stu-
dent observed the curious numerical fact that

∞∑
k=1

(
1 +

1
2

+ · · ·+ 1
k

)2

k−2 = 4.59987 · · · ≈ 17
4
ζ(4) =

17π4

360

and brought it to the attention of his professor (J. M. Borwein). At first a
serendipitous discovery, the experimental mathematicians began to explore
the relationship to greater numerical precision. When the relation was con-
firmed to a precision of 100 digits, they undertook to generalise the setting
and produce a framework for experimentally exploring similar conjectures
using the PSLQ algorithm. Among many similar so-called Euler sums, they
investigated sums of the form

sa(m,n) =
∞∑
k=1

(
1− 1

2
+ · · ·+ (−1)k+1

k

)m
(k + 1)−n for m ≥ 1, n ≥ 2
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and

sh(m,n) =
∞∑
k=1

(
1 +

1
2

+ · · ·+ 1
k

)m
(k + 1)−n for m ≥ 1, n ≥ 2.

These new expressions are thus part of a conceptualisation introduced in
order to formulate and generalise the outcomes of exploratory experimen-
tation.

The integer relation detection of the PSLQ algorithm functioned as an
important tool in finding potential integer relations involving other known
mathematical constants. When such relations are found using high precision
computations, the experiment is concluded, and it may either (according to
Zeilberger’s view) be accepted as an experimentally derived and supported
result, or be subjected to formal proof. For some of the many identities ob-
tained by Bailey and his coauthors, formal proofs have been found, whereas
others remain open conjectures. For instance,

sh(2, 2) =
3
2
ζ(4) +

1
2
ζ2(2) =

11π2

360

has been formally proved (1996), whereas

sh(3, 2) =
15
2
ζ(5) + ζ(2)ζ(3)

remained a conjecture (1996). As part of the process of exploratory ex-
perimentation, new connections between various constants (and, therefore,
presumably between various sets of theories) are suggested and need to be
explored.

Experimental mathematicians repeatedly stress the importance of inter-
active experimentation using computers, for which high-speed processors as
well as a functional user interface is imperative. For this, they often profess
their debt to Moore’s Law that semiconductor performance doubles every
18 to 24 months.19 In doing so, they repeat some of the arguments for
wide instrumentation discussed by Franklin. Only with interactive exper-
imentation and multi-purpose software—so it seems—could mathematical
experimentation make a transition from ‘number crunching’ to exploration.
Thus, high-speed computers and interactive software packages seem to be
the mathematical equivalents of wide instrumentation in the sciences. In
particular, this suggests an answer to why experimental mathematics only
became a discussion in the 1990s when both hardware and software had
been developed to meet these demands.

19Cf., e.g., (Borwein and Bailey, 2004, pp. 3–4). However, for the notion of Moore’s
Law and technological determinism, cf. (Ceruzzi, 2005).
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Thus, perhaps as a result of not referring to the most recent literature
that includes exploratory experimentation, experimental mathematics has
so far missed out on an obvious and yet very powerful symmetry with the
use of experimentation in the sciences. It is becoming increasingly clear
that experiments have an important role in the concept formation in the
sciences—a realization that is a reaction to the exclusive focus on theory-
driven experiments in much of the twentieth century. Similarly, an impor-
tant role is to be played by computational experimentation in mathematics,
when it is performed in the interactive, exploratory ways discussed above.

11 Is (experimental) mathematics special?

This paper has described aspects of the emerging discipline forming around
the use of computer experimentation in mathematics and institutionalising
as experimental mathematics. This subdiscipline has challenged the usual
deductivist philosophy of mathematics by arguing for a role for experiments
in mathematics. Thereby, its proponents not only blur the separation be-
tween the context of discovery and the context of justification in mathemat-
ics but also claim a role for experiments beyond that of heuristics.

By way of a single example—that of the PSLQ algorithm—I have shown
how the methodology of experimental mathematics features examples of
exploratory experimentation similar to the kind recently discussed in the
philosophy of the sciences. Thereby, I have pointed out that the practice
of experimental mathematics is, indeed, experimental in some of the ways
most often associated with physics or chemistry.

On the other hand, even within the community of experimental mathe-
matics, views differ concerning the role of experiment in justifying mathe-
matical claims. They all claim a role for it, but differ on precisely which one.
Here, again, I see a role for exploratory experimentation as a framework. It
highlights the role of experiments in the process of concept formation that
can lead to (formal) theory formation. In these respects, therefore, experi-
mental mathematics does pose an example challenging traditional views of
mathematical epistemology and bringing forward a suggestion for a more
empirically founded philosophy of mathematics that applies, at least, to the
domains of mathematics most susceptible to exploratory experiment.

To finally address the question whether (experimental) mathematics is
special, I would point out, that even considering exploratory experimen-
tation, “experiment” still means essentially different things in the sciences
and in experimental mathematics as was pointed out by, e.g., Baker (2008)
in the introduction. However, the emergence of experimental mathematics
shares features with exploratory experimentation in the sciences, particu-
larly when it comes to open-ended experimentation, wide instrumentation,
and the role of experimentation in concept formation. Thereby, this sugges-
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tion raises (again)—and from the novel perspective of comparing with the
sciences—the question whether deductive proof is really the only permissible
mode of justification in mathematics.
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