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Abstract

The main thesis of this paper is that Platonism is inherent in clas-
sical infinitary reasoning and that strict formalism inevitably leads one
to the author’s non-Aristotelian finitary logic (NAFL) proposed in the
Philsci preprint ID Code 635. This claim is established by an elementary
analysis of Peano Arithmetic and its weak fragments (especially Successor
Arithmetic). Hence it is argued that Hilbert’s program is decisively settled
negatively — classical infinitary reasoning stands refuted from the finitary
and formalistic standpoints. The philosophical basis for NAFL is dis-
cussed thoroughly and motivated via consideration of several examples,
including the Schrédinger cat and four-mirror experiments of quantum
mechanics. Particular attention is paid to the delicate interplay between
syntax and semantics in NAFL, and the differences in this regard between
NAFL and classical/intuitionistic/constructive logics. The meaning of
‘existence’ of mathematical objects and the concept of negation in NAFL
are discussed. NAFL also correctly handles time-dependent truth values
for propositions involving future contingencies; this is illustrated with ex-
amples, such as, Aristotle’s ‘There will be a sea battle tomorrow’. That
NAFL justifies quantum superposition on the one hand, while emphati-
cally rejecting much of classical infinitary reasoning and the continuum-
based relativity theories (see also the PhilSci preprint ID Code 666) on
the other, means that the incompatibility between quantum mechanics
and the theory of relativity is clearly established in NAFL. Another im-
portant implication for quantum mechanics is that NAFL requires the
concept of ‘measurement’ to be confined to the metatheory, i.e., it is not
formalizable.

1 Platonism in classical first-order predicate logic

We begin by quoting Stephen Simpson[1] on the current status of the philosophy
of mathematics:

We have mentioned three competing 20th century doctrines: for-
malism, constructivism, set-theoretical Platonism. None of these
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doctrines are philosophically satisfactory, and they do not provide
much guidance for mathematically oriented scientists and other users
of mathematics. As a result, late 20th century mathematicians have
developed a split view, a kind of Kantian schizophrenia, which is usu-
ally described as “Platonism on weekdays, formalism on weekends”.
In other words, they accept the existence of infinite sets as a work-
ing hypothesis in their mathematical research, but when it comes to
philosophical speculation, they retreat to a formalist stance. Thus
they have given up hope of an integrated view which accounts for
both mathematical knowledge and the applicability of mathematics
to physical reality. In this respect, the philosophy of mathematics is
in a sorry state.

In this section, we demonstrate that the “retreat to a formalist stance” in the
above quote is not really a viable option in classical first-order predicate logic
with equality (FOPL); i.e., Platonism is inherent in classical infinitary reasoning.

The existence of nonstandard models of Peano Arithmetic (PA) in FOPL
follows from any one of the completeness, compactness and incompleteness
theorems due to Godel [2] in 1930 and 1931; Skolem [3] first demonstrated
the existence of these nonstandard models in the 1930’s. The proofs of the
(in)completeness and compactness theorems may be formalized in a theory T of
intermediate strength between PA and Zermelo-Fraenkel set theory with axiom
of choice (ZFC). The proof of the existence of nonstandard integers therefore tac-
itly assumes the consistency of T; for if T were inconsistent, the (in)completeness
and compactness theorems would carry no conviction from the formalistic stand-
point, since proof is the ultimate criterion for formalists. The consistency of T in
turn requires nonstandard models of T to exist, by Godel’s incompleteness the-
orems, and so tacitly presumes the existence of nonstandard integers. It is clear
that from a formalistic standpoint, one does not have a convincing non-circular
proof of either the existence of nonstandard integers or of the consistency of
PA. In what follows, we demonstrate that a strict interpretation of formalism
requires one to deny the existence of nonstandard integers, and hence to deny
the consistency of PA and the validity of the proofs of the (in)completeness
and compactness theorems. This would leave Platonism as the only viable phi-
losophy for classical infinitary reasoning. In Section 2, we demonstrate that
the non-Aristotelian finitary logic (NAFL) developed by the author [4] is the
appropriate logic which embodies formalism.

1.1 Definition of formalism

Traditionally, formalism has been defined as the formal manipulation of sym-
bols according to certain well-defined rules. Thus mathematics consists solely
of syntax; semantics will be acceptable to formalists only when the concept of
truth itself is formalized, as in model theory. In other words, the axioms of
mathematics do not reflect any higher reality; the Platonic world of mathemat-
ical objects and the corresponding Platonic truths about these objects do not



exist. This leads to the following definition of formalism.

Definition 1 (Formalism). According to formalism, the only legitimate ‘truths’
regarding formal propositions in the language of a theory are the theorems prov-
able in that theory and the truths in models for that theory, when suitably formal-
ized in a stronger theory (i.e., the metatheory). The theorems of a given theory
do not reflect any metamathematical (Platonic) ‘reality’. Equivalently, no such
metamathematical truths ought to be deducible from the theorems of a given the-
ory; for that would mean that such informal/metamathematical/Platonic truths
have been used in formulating the axioms of that theory.

To understand the implications of the above definition, consider first the
theory PA in FOPL and let GC stand for Goldbach’s conjecture. Let P be a
suitable formalization, in ZFC, of the proposition “GC is undecidable in PA”.
Suppose that ZFC proves P (although we do not know whether this is the case).
From this proof, we can certainly deduce that PA is consistent and that GC
is true in the standard model of PA. From Definition 1, it follows that these
additional facts must also be formalizable and provable in ZFC; in fact the
proof of P is also a proof in ZFC: (a) of the existence of the standard model
of PA (suitably formalized), (b) of GC in the standard model of PA and (c) of
con(PA) (which formalizes “PA is consistent”). If any of (a), (b) and (c) above
were to be either not formalizable in the language of ZFC or not provable in
ZFC despite the assumed provability of P, then one would have to conclude that
ZFC is an illegitimately defined theory according to the formalistic philosophy
outlined in Definition 1. Of course, this is not the case in this specific instance.
But in what follows, we demonstrate that Definition 1 implies the inconsistency
and/or illegitimacy of PA and in fact, PRA (Primitive Recursive Arithmetic),
as formulated in FOPL.

1.2 The failure of formalism in FOPL

In this subsection, whenever we mention PA, it is to be understood that our
comments apply equally well to PRA. To get to the root of the problem in clas-
sical infinitary reasoning, we begin by considering the most elementary theory
postulating infinitely many entities, namely, Successor Arithmetic (SA). The
two axioms of SA are:

vz —(S(z) = 0),
(1)
VaVy(S(z) = S(y) = = =y).

Here S is the successor function. The induction axiom scheme (not included in
SA) is defined by

P(0) & Vz(P(z) = P(S(z))) = V=P (), 2)

where P represents any property of the natural numbers expressible in the
language of SA. We will later consider (2) as a proposition in SA and comment
on the fact that classical logic requires (2) to be undecidable in SA.



Consider the number-theoretic proposition Con(SA), which formalizes “SA
is consistent”. It is known that

PA I Con(SA), (3)

which should be read as “PA proves Con(SA)”. Indeed, PA proves the consis-
tency of every finite subset of its axioms and this includes SA. Keeping in mind
Definition 1, let us carefully examine the consequences of (3).

Let N denote the infinite class of all natural numbers in classical arithmetic,
ie,, N ={0,5(0),5(5(0)),...}. Note that N is the standard model for SA. In
the terminology of nonstandard arithmetic, every natural number is standard
finite by definition (as opposed to nonstandard finite); we reserve the word
‘integer’ for numbers that may possibly be nonstandard finite. We state the
main result of this subsection in the following metatheorem:

Metatheorem 1. Let () be the proposition that formalizes the existence of N
as an infinite class. Definition 1 and equation (38) imply that PA + Q. Conse-
quently, nonstandard models for PA cannot exist and by Gddel’s incompleteness
theorems, PA is inconsistent.

The question of how @) can be a legitimate proposition of PA is addressed
in Remark 1. The simplest proof of metatheorem 1 is as follows.

Proof. The consistency of SA (i.e., Con(SA)) is equivalent in FOPL to the
existence of a model for SA, which must either be a standard model (N) or a
nonstandard one. To prove the metatheorem, one only needs to demonstrate
that the existence of a nonstandard model for SA implies @) (as is done in the
ensuing paragraph); this would make

Con(SA) & Q. 4)
From (4), (3) and Definition 1 it would then follow that
PA I Q. (5)

To see why (5) must follow, note the example for GC discussed below Defi-
nition 1. For (4) makes the truth of @ essential to formalize the very notion
of a model for SA, i.e., to formalize ‘SA is consistent’ via Con(SA). Defini-
tion 1 then forces the conclusion that PA must prove @); in the absence of
such a proof, we would be able to draw the conclusion from (4) that @ is in-
formally /metamathematically /Platonically true, in violation of Definition 1. A
proof in PA of () would amount to a denial in PA of the existence of nonstandard
integers and the metatheorem would follow.

The proof that the existence of a nonstandard model for SA implies @ is
as follows. The very notion of a nonstandard integer requires the existence
of the class N, of ‘all’ standard non-negative integers; a nonstandard positive
integer, by definition, is required to be greater than every member of N,. Of
course, N, can only be defined by putting it in one-to-one correspondence with



N; such a mapping would be called “external” in nonstandard analysis. So it
is impossible to formalize the existence of a nonstandard model for SA without
first postulating @, i.e., the existence of N. It follows that the existence of any
model for SA, or equivalently, con(SA), is logically equivalent to @, and (4)
follows. O

Remark 1. The reader’s first reaction upon looking at (5) will probably be “PA
supposedly does not even formalize the notion of ‘standard finite’ required to
formulate the proposition () and so cannot possibly prove )”. But this claim is
true if and only if one already presumes that PA is consistent and that therefore
nonstandard models for PA exist. Since metatheorem 1 falsifies this claim, one
has to re-examine it in that light. Our contention is that every universally quan-
tified proposition, in particular, Con(SA), is logically equivalent to . When
PA proves that something is true for ‘all’ integers, Definition 1 demands that
the notion of ‘all’ must also be formalized as the existence of an infinite class of
integers which must be taken as provable in PA. But the proof of metatheorem 1
shows that the existence of any such infinite class of integers (i.e., any model for
SA) is in fact logically equivalent to ). One example of a universally quantified
proposition provable in PA is

VYnIm (m > n).

The truth of this proposition clearly allows us to draw the inference (via a proof
by contradiction) that infinitely many integers of the form {0, 1,2, ...} exist and
therefore () must be ‘true’. Definition 1 would make PA an illegally defined
theory if such an inference were not formalizable and provable in PA; taking @
as ‘true-but-unprovable’ is unacceptable in formalism.

In fact the following proposition, provable in SA, is also logically equivalent
to Q:

Vedy (y = S(x)).

This means that SA proves its own consistency; this is not surprising, because
as we will argue below in Remark 3, the very notion of SA as a theory can only
be formalized with the unavoidable assumption that @ is ‘metamathematically
true’. Definition 1 then demands that ) be provable in SA. Of course, this does
not make SA inconsistent because SA is too weak for Godel’s theorems to apply.
It follows that nonstandard integers do not exist, period. So in fact even Gdédel’s
incompleteness theorems and the completeness/compactness theorems of FOPL
do not go through, because, as noted earlier, they require theories at least as
strong or even stronger than PRA to formulate and metatheorem 1 shows that
PA (PRA) is inconsistent. There is clearly a problem of circularity here; the
inconsistency of PA (PRA) is deduced from Gd6del’s theorems, which however,
are unreliable because of said inconsistency. In Section 2, we observe that a
new logic [4] which accepts the requirement of metatheorem 1 that PA F @, but
rejects the validity of Godel’s theorems because of their self-referential nature,
will be needed to justify the axioms of PA from the point of view of formalism.



Remark 2. Another way of looking at Definition 1 is as follows. If a propo-
sition were to be undecidable or cannot even be formalized in a theory, then
the metatheory that formulates such a theory should in principle be able to
either affirm or deny that proposition via a proof/refutation, or not even de-
cide/formalize such a proposition. Thus formalism requires that the truth or
falsity of such a proposition should not be essential in specifying that theory. In
the case of (), one finds that it is essential to assume it as ‘true’ in formulating
any infinitary axiomatic theory of FOPL (see Remark 3 below), in particular,
SA. So @ cannot be denied in the metatheory that formalizes SA, i.e., Q must
be ‘really’ true in every model for SA. Definition 1 then requires SA F Q). An
important consequence of this fact is that the induction axiom scheme (2) must
be taken as provable in SA as explained below. It is the assumed undecidability
of (2) in SA that leads to the existence of nonstandard models for SA, denied
herein. To see why, consider the theory SA*, defined as SA with an additional
predicate St and the following additional axiom:

S(0) & Vz(St(z) = St(S(z))). (6)

Clearly, every natural number n will satisfy St(n). But the assumed undecid-
ability of (2) implies VzSt(z) is not provable in SA* and so there must exist a
nonstandard model for SA* in which 3z - St(z) is true; such an z would be a
nonstandard integer. Definition 1 shows that (2) must in fact be provable in
SA and hence SA*; this means that nonstandard integers do not exist and St
becomes a superfluous predicate that may be thought of as defining ‘standard
finite’. Observe that the undecidability of (2) in SA is established in FOPL only
by circular reasoning; the theory that establishes such undecidability presumes
the existence of nonstandard integers (via its own consistency, which is a tacit
assumption); so what such a theory really establishes is the tautology ‘If (2) is
undecidable in SA, then (2) is undecidable in SA’.

Remark 3. The proposition Con(SA) literally denotes “There does not exist a
proof of ‘0=S(0)’ in SA”. Of course, this raises the question of what “There
does not exist”, “proof” and “SA” denote. It is clear that the theory SA can
only be defined, in particular, by identifying its infinite class of well-formed
formulae (wff’s), each of which is a string of standard finite (as opposed to
nonstandard finite) length, and its infinite class of proofs each of which must
contain a standard finite number of wif’s. Therefore what Con(SA) ‘really’
denotes is: “The infinite class of SA-proofs does not contain within it a proof of
‘0=S(0)’, or equivalently, does not contain within it a pair of SA-proofs which
come to contradictory conclusions”. It is absolutely essential to note that the
“infinite class” of SA-proofs (or wil’s) referred to above can only be formally
defined by mapping the SA-proofs (wfl’s) to the class N of all natural numbers.
If such a mapping is not done, the notion of “all SA-proofs” or “all wit’s of
SA” cannot be said to have been formalized. The requirement that N contain
‘all’ and only standard finite (natural) numbers is also absolutely essential; it is
easy to show that if one permits nonstandardly long proofs/wff’s, then SA will
be inconsistent. One concludes that to even formulate SA as a theory one has



to assume the truth of (). Even within a nonstandard model for SA, ‘all’ SA-
proofs and wif’s must necessarily be identified to be of standard finite length,
i.e., mapped to NV; it is only with such identification that one can meaningfully
assert that ‘all’ theorems of SA are true within such a nonstandard model.
As noted earlier, the nonstandardly long candidates for ‘wff’ or ‘proof’ must
be rejected in order to prove that a given (nonstandard) structure is in fact a
model for SA. This fact augments the assertion in the proof of metatheorem 1
that the very existence of nonstandard integers requires @) to be true. The main
point of this remark is that it is impossible to formalize the notion of SA as a
theory and its consistency via Con(SA) without first formally postulating the
existence of N.

Remark 4. Note that Con(SA) is a purely number-theoretic (universally quanti-
fied) proposition. To interpret it as meaning ‘SA is consistent’ (or equivalently,
‘There exists a model for SA’) requires formulating this latter proposition in a
stronger theory than PA and translating it into the PA-proposition Con(SA)
using the techniques developed by Gddel [2]. That such an infinitary proposi-
tion can even be translated into PA clearly demonstrates that PA ‘really’ proves
the existence of an infinite class. Metatheorem 1 forces us to conclude (4) and
(5). Hence Definition 1 implies that Godel really translated the proposition @
(i.e., ‘There exists the standard model NV of SA’) into Con(SA). The claim that
‘There exists a model for SA’ can be translated into Con(SA) without at the
same time translating () is a matter of Platonic belief. But this (Platonic) leap
of faith is unacceptable in formalism because any metatheory that formalizes
“There exists a model for SA” must necessarily prove its equivalence to Q; to
translate one into Con(SA) is to translate the other.

Remark 5. As noted in Remark 1, the objection that PA does not even contain
the predicate ‘standard’ and so cannot possibly formulate () is met by the fact
that if nonstandard integers do not even exist, such a predicate is unnecessary.
As observed earlier, in nonstandard arithmetic, the class of ‘all’ standard in-
tegers Ny is first defined by putting it into one-to-one correspondence with V.
But by fiat, such a mapping, required to define a nonstandard integer, is deemed
‘external’; only ‘internal’ propositions are legitimate in nonstandard arithmetic.
Hence the class N, of ‘all’ nonnegative integers and the class Ny in nonstandard
arithmetic do not coincide, even though their definitions are identical except for
the word ‘standard’. The definition of NV, is given by

0€ N, &Vz (z € N, = S(z) € Ny).
To define Ny, one merely introduces the predicate ‘standard’ as follows:
0 € N, & V¥'z (z € Ns; = S(z) € Ny),

where ‘V*z’ should be read as ‘for all standard z’. Thus merely by introducing
the word ‘standard’, the meanings of ‘all’ in ‘all integers’ and ‘all standard inte-
gers’ do not coincide in these two otherwise identical definitions of N, and Nj.
Defnition 1 essentially tells us that formalism will not permit such obfuscation of



the meaning of the world ‘all’; Platonism is inherent in such obfuscation (which
would make nonstandard integers ‘internally nonstandard finite’, but ‘externally
infinite’). In other words, formalism requires ‘all’ to have a unique meaning in
the two definitions given above.

Remark 6. Let Con(n) be the arithmetical proposition equivalent to the con-
sistency of the first n axioms of PA (suitably enumerated), where n is a natural
number (i.e., n € N; for convenience, we take n = 0 to denote the null set of
axioms). By the compactness theorem,

Con(PA) < Vn Con(n). (7

It is also known that for each given natural number m (here ‘m’ is a constant
symbol),
PA + Con(m), m € N. (8)

Note that according to conventional wisdom, (8) is not to be interpreted as
PA + Con(n), 9)

which is the same as ‘PA proves the open formula Con(n)’, where n is a free
variable ranging over all non-negative integers. Such an interpretation is illegal
in FOPL because by universal generalization and (7), (9) would amount to
PA + Con(PA) and make PA inconsistent by Gdédel’s second incompleteness
theorem. Metatheorem 1 shows, however, that (8) and (9) are in fact equivalent,
since nonstandard integers do not exist; from either of these formulae, one can
infer the existence of N and by Definition 1, PA I ). Formalism requires that
an ‘arbitrary constant’ like m in (8) is exactly the same as the free variable n,
since both range over ‘all’ nonnegative integers. To give a different meaning to
‘all’ in these two contexts when it is clear that the axioms of PA do not imply
any such difference is illegal according to formalism.

Remark 7. One may also conclude that Turing’s halting problem ought not to
be undecidable, for the same reason that Goédel’s theorems do not apply: non-
standard integers cannot exist, by metatheorem 1. It follows that Cantor’s
diagonalization procedure, used by Godel and Turing to deduce their incom-
pleteness results, must be illegal. Similarly, the axioms for addition and mul-
tiplication and (2) (as noted earlier) cannot be undecidable in SA since these
axioms can only fail in nonstandard models. In Section 2, we demonstrate that
the author’s proposed non-Aristotelian finitary logic (NAFL) [4] is consistent
with and justifies all these restrictions.

Remark 8. Nevertheless, if one insists that PA does not formalize the notion of
“standard finite” and hence does not prove @ despite (3), then one concludes
that PA is illegitimately defined from the strictly formalistic standpoint of Def-
inition 1. One option would be to abandon formalism as a valid philosophy of
classical mathematics and resort to Platonic existence of N. The argument here
would be that since N “really” exists (in a Platonic world), notions such as “all”
theorems/proofs/wiff’s of SA do not have to be formalized by PA, eventhough



such notions are required to interpret the PA-proof of Con(SA) as meaning “SA
is consistent”. The proposition @) is therefore being taken as Platonically ‘true’,
eventhough unprovable in PA. Of course ZFC would prove @, but then one is
taking the axioms of ZFC as Platonically true, i.e., one is assuming the Platonic
existence of the “universe of ZFC sets”. Hence Platonism is inherent in classical
infinitary reasoning.

Remark 9. The arguments of this subsection lead to the strong conclusion that
Hilbert’s Program is decisively settled negatively from the finitary and formal-
istic standpoints; classical PA (PRA), and hence classical infinitary reasoning,
would be inconsistent if one insists on Definition 1. From the finitary stand-
point, one must also deny the legitimacy of ZFC in formalizing the ‘truth’ of
the existence of N. The second option is to accept this conclusion, i.e., to reject
Platonism and insist on Definition 1 as valid. Since this would make PA (PRA)
inconsistent, a new logic would be required to implement formalism as a philos-
ophy of infinitary reasoning in mathematics. In Section 2, we demonstrate that
Definition 1 is consistent with the truth definition given in the Main Postulate
of the logic (NAFL) proposed by the author [4]; in other words, strict formalism
inevitably leads one away from classical logic and into NAFL.

2 Formalism in non-Aristotelian finitary logic

In Section 1, we saw that a consistent (non-circular) interpretation of formalism
is not possible within classical logic; formalism requires one to reject Godel’s and
Turing’s incompleteness results and hence the Cantor diagonalization argument
as self-referential; nonstandard integers also cannot exist. In NAFL [4], these
restrictions are justified rigorously by demonstrating that infinite sets cannot
exist, and so N (the class of all natural numbers) must be a proper class.
Diagonalization will then be seen to fail because of the restriction that one
cannot quantify over infinitely many infinite (proper) classes, as explained later.
Other important implications for quantum mechanics, the relativity theories and
non-Euclidean geometries are also discussed.

2.1 The Main Postulate of NAFL

Definition 1 seemingly provides an intuitively correct definition for formalism;
yet it is not sustainable within classical logic. The flaw is in the requirement
of classical logic that the law of the excluded middle (LEM) must necessarily
apply to an undecidable proposition in a consistent theory. It is this particular
requirement that makes Platonism inherent in classical logic. NAFL does away
with LEM and also the law of non-contradiction (LNC) via the truth definition
given by its Main Postulate (see Sec. 2 of [4]), which provides the appropriate
generalization of Definition 1. This makes formalism sustainable in NAFL, but
with severe restrictions on classical infinitary reasoning.

The fundamental assumption of NAFL is that the only metamathematical
objects that exist are axiomatic theories (which have the same rules of inference



as classical FOPL theories) and their models, which are structures in which all
the axioms of these theories and their logical consequences are assigned ‘true’;
propositions undecidable in an axiomatic theory may be assigned ‘true’, ‘false’
or ‘neither true nor false’. This last option makes NAFL models different from
classical models as will become clear from the explanations below. Formal math-
ematical objects do not have any existence outside of the theories in which they
are postulated. There are no ‘truths’ outside of these axiomatic theories for
formal propositions of NAFL; this is in keeping with Definition 1. Platonic
truths do exist in NAFL, but these are regarding propositions about axiomatic
theories which cannot be formalized in consistent NAFL theories, because of
their self-referential nature (and also because the theories themselves are not
formal objects); examples of such non-formalizable propositions are provabil-
ity /refutability /undecidability of formal propositions with respect to the theo-
ries in which they are formulated, and the consistency of NAFL theories. In
NAFL, a theory is consistent if and only if it has a model; this definition also
holds in FOPL, but the NAFL notion of consistency is a metamathematical
one and is not quite the same as that of classical logic, for reasons that will be
explained later. It immediately follows that in NAFL, truths for formal propo-
sitions can only exist with respect to axiomatic theories; there cannot exist any
absolute truths in just the language of a theory.

This raises the question of what it means for a proposition ¥ to be true or
false in a consistent NAFL theory T. If ¥ is provable/refutable in T, then it is
certainly true/false in T, i.e., a model for T will assign ¥ to be true/false. If ¥
is undecidable in T, i.e., neither ¥ nor its negation =¥ is provable in T, then the
Main Postulate of NAFL provides the appropriate truth definition as follows: ¥
is true/false in T if and only if ¥ is provable/refutable in an interpretation T* of
T. Here ‘interpretation’ is defined as an axiomatic theory T* that resides in the
human mind and acts as the ‘truth-maker’ for (a model of) T; it immediately
follows that T* must prove all the axioms and theorems of T. Thus far it appears
that NAFL is not much different from classical logic and that the NAFL truth
definition coincides with Definition 1. The crucial difference occurs when ¥ is
undecidable in T*; in this case NAFL interprets ¥ as neither true nor false in
T, and metatheorems 1 and 2 of [4] show that both LEM and LNC fail for ¥,
in a non-classical model for T in which U&—¥ is the case. This non-classical
model is essentially a superposition of two or more classical models. Here we
are using the words ‘classical model’ and ‘non-classical model’ only with respect
to the truth values for ¥. Since the NAFL model for T will, in general, contain
some proposition undecided in T*, it will always be non-classical with respect
to this proposition.

The essence of the Main Postulate is that an undecidable proposition ¥
in a consistent NAFL theory T is true/false in T if and only if it has been
aziomatically asserted as true/false by virtue of its provability/refutability in
the interpretation T* of T. This essentially means that ¥ is true/false in T
if and only if T* = T + ¥/T + —¥; this notation is used in [4] to emphasize
the fact that ¥ (=¥) is an aziomatic declaration with respect to T, regardless
of its status as an axiom or otherwise in the theory T*. Note in particular
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that axiomatic assertions are made by human beings, and that T* resides in
the human mind. In the absence of any axiomatic assertions regarding ¥, (i.e.,
if ¥ is undecidable in T*), consistency of T demands that there must exist a
non-classical model for T in which ¥ is neither true nor false, i.e., &V is the
case. The (non-classical) interpretation of ¥&—¥ is explained in the ensuing
subsection.

2.2 The philosophical basis for NAFL

The first question that one may ask is why the truth for undecidable propositions
in a consistent theory T is axiomatic in NAFL. Here there are two important
points to be understood. Firstly, in NAFL there is no Platonic world in which
formal propositions are either true or false, independent of an axiomatic dec-
laration (in the interpretation T* of T). Secondly, NAFL interprets LEM for a
T-undecidable proposition ¥ to mean ‘¥ is either true or false’; since there is
no Platonic world in which such truth/falsity occurs independent of the human
mind, the axiomatic nature of truth in NAFL follows and LEM holds if and only
if an axiomatic declaration of truth/falsity of ¥ is made (via provability) in T*.
In the absence of such an axiomatic declaration, the failure of LEM and LNC
follows for the reasons explained in metatheorems 1 and 2 of [4]. In particular,
the classical refutation of ¥&—¥ in T proceeds as follows: “If ¥ (—=¥) is true,
then =¥ (¥) must be false”. This classical argument appeals to Platonic truths
of ¥ and -V in “pre-existing” models of T; i.e., these classical models have to
be assumed to “exist” prior to and independent of any axiomatic declarations
of truth made in T. In NAFL, on the other hand, there are no such Platonic
truths and no “pre-existing” models. The NAFL model of T is generated by its
interpretation T*, which is also an axiomatic NAFL theory. Hence the NAFL
model of T has only a temporary existence in the human mind and the ‘truths’
in this model are axiomatic declarations generated after T has been specified.
In summary, the attempted (classical) refutation of ¥&—¥ in T fails in NAFL
because such a refutation must necessarily appeal to aziomatic (as opposed to
the classically Platonic) truths of ¥ and =¥ and so the refutation is valid only
in the NAFL theories T+¥ and T+-%. Note that this failure of LNC makes
LNC equivalent to LEM in NAFL, unlike intuitionistic logic (where LEM fails,
but LNC holds for undecidable propositions in a theory).

We first list some results explained in detail in Remarks 1-7 of [4]. The
failure of LNC in a non-classical model for T is a unique NAFL phenomenon,
and has the following explanation: ‘¥’ in ¥&—W¥ asserts that ‘=¥ has not been
axiomatically asserted as true (provable) in T*’, while ‘=¥’ in U&—-T asserts
that ‘T has not been axiomatically asserted as true (provable) in T*’; as in
classical logic (and unlike intuitionistic/constructive logics) there is no difference
between ¥ and ——¥ in NAFL (see below under the heading ‘The concept of
negation in NAFL’). An important consequence of the failure of LNC is that
the classical assertion ‘From ¥&—W¥, any proposition can be deduced’ fails in
NAFL. LEM and its negation are not legitimate propositions in NAFL theories.
A more general result (as noted in Remark 5 of [4]) is that if ¢ and ¢ are
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undecidable propositions in a theory T, then ¢ = ¢ is a legitimate proposition
of T if and only if ¢ (—%) is not a theorem of T+ (T+-¢) (or equivalently,
if and only if ¢y = ¢ is not classically deducible in T). At this stage the reader
might wonder how ¥ = ¢ can be classically deducible in T and yet be an
illegitimate proposition of an NAFL theory T, which has, after all, the same
rules of inference as classical FOPL theories. This is explained in detail under
the ensuing heading, where the syntax and semantics of NAFL theories are
considered.

As noted earlier, consistency of an NAFL theory T and the provability (or
undecidability) of a formal NAFL proposition in a theory T are propositions
that cannot be formalized in NAFL theories. All these ‘informal’ propositions
are in fact valid propositions of the metatheory, which is NAFL itself; as will be
explained below, LEM does apply to these Platonic (informal) notions, i.e., they
are either true or false, independent of the human mind. For this reason, the
notion of ‘consistency’ is not the same in NAFL and FOPL; in NAFL (unlike
FOPL), a proposition can be undecidable in an inconsistent theory (which is
rendered inconsistent by the fact that the required non-classical model for that
theory cannot exist). So in NAFL (unlike classical/intuitionistic/constructive
logics), the assertion that ‘any proposition can be deduced in an inconsistent
theory’ fails.

Syntax of an NAFL theory, syntax of its proofs and the metatheory

We now discuss a very important issue of syntax versus semantics not clearly
addressed in [4]. In NAFL, the syntaz of a theory, which we will henceforth
refer to as ‘t-syntax’, consists essentially of all its legitimate propositions, in-
cluding the axioms, theorems and undecidable propositions; in particular, the
t-syntax will not admit certain (classically acceptable) propositions deemed ‘il-
legitimate’ or ‘not formalizable’ in NAFL, such as, LEM (LNC) or its negation
for propositions undecidable in that theory. More generally, as noted earlier, the
proposition ¢ = ¢ is illegitimate in the t-syntax if 1) and ¢ are undecidable in T
and ¥ = ¢ is classically provable in T. The notion of provability /undecidability
is fixed by a second level of syntax in NAFL, namely, the syntaz of proofs in
a theory, which we will henceforth refer to as ‘p-syntax’. The p-syntax of a
theory T will include all the rules of inference of FOPL, in addition to all the
(classically legitimate) propositions in the language of the theory. In particu-
lar, the p-syntax is purely classical and will admit some propositions, such as
LEM (LNC) or its negation, or the more general example noted above, which
are deemed illegitimate in the t-syntax. Thus LEM (LNC) is assumed true in
the p-syntax and may occur in proofs of legitimate propositions in the t-syntax;
but LEM (LNC) and its negation by themselves cannot occur in the t-syntax.
An example of this situation is a deduction ¢y = ¢&—¢ in the p-syntax of T
for a proposition ¢ that is undecidable in a theory T. Such a deduction is a
legitimate proof by contradiction (in the p-syntax) of - in T despite the fact
that ¢&—¢ and its negation are illegitimate in the t-syntax and also despite
the fact that in the metatheory there does exist a non-classical model for T
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in which ¢&—¢ is the case. This metatheory, of course, is NAFL itself, which
provides the semantics for the t-syntax. The notions of consistency of T and
those of provability /refutability /undecidability of propositions in T are purely
metamathematical notions (permitted only in the metatheory) and cannot even
be expressed in the language of T in NAFL (note that Godel’s translation of
these notions into number-theoretic propositions is not valid in NAFL essen-
tially because of their self-referential nature). Another reason why the notion of
provability or undecidability of propositions is not formalizable in NAFL theo-
ries is clearly the fact that the p-syntax admits classical inference rules including
propositions illegitimate in the t-syntax; this feature of the p-syntax makes it
Platonistic in intent, while the t-syntax is formalistic.

The p-syntax is Platonistic (i.e., admits classical inference rules) because this
is the only non-circular way in which the concept of undecidability of proposi-
tions or that of consistency of a theory can even be defined. As an example,
consider the example of the assumption v leading to the conclusion — in an
NAFL theory T; in the p-syntax of T this is a proof by contradiction of —).
Clearly LNC, i.e., =(1&—)), has been assumed in this proof; the objection that
LNC need not hold by the Main Postulate if 4 is undecidable in T will not make
sense in the p-syntax because the notion of undecidability of ¢ is valid in the
first place only after all proofs of T are available (note that the undecidability
of ¢ in T means that the class of all proofs in T does not include within it either
a proof of ¢ or a proof of —)). This argument also explains why a deduction
of ¥ = ¢&—¢ in the p-syntax of T is a proof of =) in T despite the possible
undecidability of ¢ in T.

The author believes that intuitionism fails to provide a non-circular defi-
nition of the concept of undecidability of propositions in theories because in-
tuitionism does not distinguish between the p-syntax and the t-syntax. As an
example, let To be the null set of axioms. In NAFL, every legitimate proposition
of Ty is undecidable in Ty; this assertion is made in the metatheory and there
is no ‘proof’ for it because the p-syntax of Ty does not admit the concept of un-
decidability. In fact it is self-evident that this this assertion cannot be proved in
Ty for precisely the same reason that it is true — nothing is provable in Ty. Thus
the attempt to formalize the notion of undecidability in Ty in NAFL will violate
the Main Postulate. Intuitionism, on the other hand, insists on a proof for this
assertion, which is non-existent, and as a result comes to the conclusion that it is
not even valid to assert that every proposition is either provable or refutable or
undecidable in intuitionistic theories. Classical logic accepts this last assertion
but insists that the concept of provability /undecidability is formalizable. This
results in self-reference and Platonism for the truth of formal propositions of a
theory, not acceptable in NAFL. Intuitionism also fails to get rid of Platonism
because it insists on LNC for undecidable propositions of a theory; this forces
intuitionists to look for formal ‘proofs’ of undecidable propositions outside of
the theory (e.g., To). In summary, NAFL requires the p-syntax to be Platonistic
and the t-syntax to be formalistic; intuitionism fails on both counts by rejecting
LEM in the p-syntax and by accepting LNC in the t-syntax.

Note that the failure of LNC (LEM) for an undecidable proposition of an
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NAFL theory T in a non-classical model occurs in the metatheory, because
models are metamathematical objects. This does not contradict the t-syntax,
because LNC (LEM) is not even a legitimate proposition of the t-syntax. Thus
no inconsistency is implied by the existence of such a non-classical model. A
second important point regarding the metatheory is, as noted earlier, that LEM
applies to all (informal) propositions occurring in the metatheory. Thus the
metatheory requires that a theory is either consistent or inconsistent, and a
formal proposition (in the t-syntax) is either provable or refutable or undecidable
in a given theory, possibly independent of the human mind. In summary, the
metatheory is scrupulously Platonistic in intent, in contrast to the (formal)
theory itself. This is so because NAFL insists that the propositions in the
metatheory must make sense in the real world. Thus, in the real world, one
has either axiomatically declared an undecidable proposition ¥ in a consistent
NAFL theory T to be true or false or neither (the last disjunct occurs by default;
it is not legal to declare a proposition ¥ to be ‘neither true nor false’ in T,
for that would amount to adding ¥&-¥ formally as an axiom, which is not
permitted by the t-syntax). It is not legal in the real world for the human mind
that interprets T to assert that he/she does not know which of these is the case,
or to assert that none of these options hold. In this respect, NAFL differs from
both classical logic and intuitionism.

Open formulas and the meaning of ‘existence’ in NAFL

An immediate consequence of metatheorem 2 of [4] (which asserts the failure of
LNC and the existence of a non-classical model for a consistent theory in which a
given proposition is undecidable) is that open formulas (with free variables) and
formulas with ‘arbitrary constants’ in them in a given theory are in fact univer-
sally quantified formulas with respect to the free variables/arbitrary constants.
The reason is that the theory in question clearly does not decide the values of
the free variables/arbitrary constants which must therefore be in a superposed
state of assuming all possible values. It follows that the two formulae in (8) and
(9) are in fact equivalent in NAFL (to a universally quantified formula) and this
is in conformity with the requirements of formalism as stated in Remark 6. It
also follows that an NAFL theory which asserts the existence of a unique = such
that some property P(z) holds, but does not provide a construction (value) for
that z, is an inconsistent theory. This is so because the uniqueness requirement
precludes the existence of a non-classical model for that theory with values of
x superposed; but such existence is required for the consistency of an NAFL
theory in which the supposedly unique value of ‘@’ in 3z P(x) is undecidable.
In NAFL, the issue of the meaning of ‘existence’ of entities within a theory
is resolved as follows. Clearly, NAFL rejects Platonic existence of mathemati-
cal entities. In constructive/intuitionistic logics, existence of an entity has the
meaning that a construction must necessarily be available for that entity; i.e.,
JzP(x) can only be asserted by specifying such a construction for z. NAFL
is not quite as restrictive; existence of an entity X in an NAFL theory T is to
be interpreted as meaning “X is a legal entity of T”, i.e., it is legal to speak

14



of X in propositions/theorems of T. A construction for such an X need not
necessarily be available within T. But in a proposition of an NAFL theory T
such as 3z P(x), whether a construction for such an z is required or not de-
pends on whether metatheorem 2 of [4] will permit such a proposition to be
undecidable within T. As an example, let x range over the natural numbers. It
is known that each natural number has a unique construction available (built
up from the null set, for example, in set theory); so in this case, Iz P(z) can-
not be undecidable in T; the required non-classical model cannot exist because
LEM must unavoidably apply to this proposition by virtue of the definition of
‘natural number’.

For an example of non-constructive existence in NAFL, let G stand for a
suitable formalization of “God exists” in the null set of axioms Ty; further, let
GG formalize “God is great”. Clearly, Ty does not specify any construction for
the entity ‘God’, and so a non-classical model for Tg in which G&—G is the
case does exist. Hence undecidability of G in Ty is not a contradiction and non-
constructive existence is permitted here. Given the axiomatic nature of truth in
NAFL, the superposition G&—G means that neither G nor =G has been asserted
axiomatically in the interpretation T* of Ty, which is therefore non-classical.
This non-classical model clearly corresponds to agnosticism, for an agonostic
refuses to acknowledge that God is either a legitimate or an illegitimate entity.
Next consider the proposition GG = G. This is clearly a rule of inference;
Platonically one would argue that ‘If God is great, then surely God does exist’;
in NAFL, GG = G should be interpreted as “If ‘God is great’ is true then it is
certainly a legitimate sentence; it follows that God has to be a legitimate entity
and so ‘God exists’ is true”. So GG = @ is in the p-syntax of Ty as a rule of
inference. But since G (—=GG) is provable in the theory To + GG (T + -G)
and both G and GG are undecidable in Ty, it follows from Remark 5 of [4] that
GG = @ is not in the t-syntax of Ty i.e., it is not a legitimate proposition of
To. Therefore there does exist a non-classical model for Tg (in the metatheory)
in which both G&—G and GG&—~GG are the case, i.e., no axiomatic assertions
have been made in T* regarding the truth or falsity of either G or GG and so
both are neither true nor false. As noted in Remark 5 of [4], in this non-classical
model GG = @ is also neither true nor false; this would not be permitted if
GG = G were in the t-syntax of Ty, since it would then immediately become
provable by virtue of its presence in the p-syntax (as a rule of inference); but
then the said non-classical model required by NAFL cannot exist and T¢ would
become inconsistent. Intuitively, the non-classical model simply asserts that for
the agnostic, “If God is great then God exists” is as meaningless as “God exists”
and “God is great” and so is just as entitled to have a non-classical truth value
of ‘neither true nor false’. Careful thought will show that this is the correct
formalistic position; it is Platonism that forces GG = G to be a theorem of T
when both G and GG are undecidable in Ty. To conclude this subsection, note
that the believer and atheist have respectively made the aziomatic assertions
G and —G with respect to Ty from the NAFL point of view, eventhough they
may personally believe that God ‘really’ exists/does not exist. NAFL essentially
states that their Platonic beliefs are irrelevant and they have ultimately made
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axiomatic declarations of truth in an interpretation T* of Ty.

The concept of negation in NAFL

As noted earlier, for any proposition ¥, (=) < ) holds in the p-syntax of
NAFL theories (as in FOPL and unlike intuitionistic/constructive logics). But
there are a couple of subtleties regarding NAFL negation that need to be noted.

Firstly, note that in a non-classical model of a consistent NAFL theory T
in which &) is the case under the interpretation T*, the (classical) logical
equivalence ~—1) < 9 certainly fails. In fact even ¢ = ¢ fails since its negation
is seen to hold. To avoid confusion, we reserve the notation ¢ = ¢ to always
mean the classical disjunction —) V ¢, whose negation is )&—¢. The equiva-
lence between 1 and —— holds in the non-classical model under a non-classical
interpretation which we define as =—1 < 9. Here ¥p — ¢ is a non-classical
disjunction given by -V ¢ V (—&¢), i.e., all three disjuncts are possible even
when ¢ is replaced by 1. In the non-classical model, ¥ expresses that —) has not
been classically asserted as an axiom (is not provable) in T*  —) expresses that
1 has not been classically asserted as an axiom (is not provable) in T* and their
conjunction ¥&—1) also obviously holds under this interpretation. Similarly, the
equivalence = + v also holds; both ——1) and 1) express the same concept in
the non-classical model and one can be substituted for the other.

Secondly, let ¢ stand for the outcome ‘one’ in the roll of a dice, and let —)
stand for its negation, i.e., any one of the outcomes ‘two’, ‘three’, ‘four’, ‘five’
or ‘six’. Consider the null set of axioms Ty. Suppose we add the axiom ¥ to Tq
to obtain an interpretation T*. Then — is certainly a legitimate proposition
of Ty and T* that stands refuted in T*. But suppose we wish to add — to Ty
instead to obtain the interpretation T*; now —1) is also a legitimate proposition
of Ty, but it can be a legitimate axiom of T* if and only if T* proves one
of the outcomes ‘two’, ‘three’, ‘four’, ‘five’ or ‘six’. The bottom line is that a
disjunction can be asserted as an aziom of a consistent NAFL theory if and
only if that theory proves at least one of the disjuncts. On the other hand, the
disjunction can still be a legitimate proposition in the t-syntax of a theory even if
none of the disjuncts are proved, provided the restriction given in Remark 5 of [4]
is satisfied. In this example, the said restriction is satisfied and the disjunction
—1) is a legitimate proposition of T (because —) is of the form A = B, where A
and B are undecidable in Tq and A = B is not classically deducible in Ty). Of
course, if all disjuncts are refuted by the theory (as in the above example where
—) is such a disjunction in the theory Tg + 1), then the (refuted) disjunction
itself is in the t-syntax of that theory. This example illustrates the difference
between NAFL negation and its classical and intuitionistic counterparts.

2.3 Implications for some classical theories

It turns out that metatheorem 2 of [4] is a killer of classical infinitary reasoning
in all but its weakest forms. The theory of finite sets F, described in detail in
Sec. 3 of [4], is essentially Godel-Bernays set theory with classes and without the
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axiom of infinity (see Cohen [5], pp. 73-78). Note that we have used boldface
notation for F in [4]. Since F is equivalent to PA, we will only consider F in
this paper. In Sec. 3 of [4], it is shown in detail that the undecidability of
existence of infinite sets in F is a contradiction because the non-classical model
for F required by metatheorem 2 of [4] cannot exist. It is argued in [4] that
infinite sets are self-referential objects and must therefore be banned if F is
to be consistent; in other words, NAFL requires that the p-syntax of F must
include additional inference rules that would ban such self-referential objects.
In particular, Zermelo-Fraenkel set theory would be inconsistent in NAFL. It is
easy to show that by similar reasoning, the axioms of F themselves cannot be
undecidable in weaker theories and so must be declared as tautologously true
in the p-syntax of F (i.e., they cannot be denied).

The most important consequence of metatheorem 2 of [4] is that the con-
sistency of F demands that undecidable propositions cannot exist in F, i.e., all
propositions of F in the t-syntax must be either provable or refutable in F. This
result may be derived from the fact that nonstandard models of F cannot exist,
if F is consistent; indeed, this is obvious from the fact that infinite sets can-
not exist in any form in F. Alternatively, non-existence of nonstandard integers
can be established by arguments similar to that in Sec. 1; the Main Postulate
of NAFL requires that the existence of class N of all (standard finite) natural
numbers be provable in F because it cannot be denied in any model for F and
NAFL does not permit the existence of NV to be ‘true-but-undecidable’ in F.
Note that the existence of N is a proposition (denoted by Q) about formal ob-
jects of F| i.e., the natural numbers; so by the Main Postulate, it is not legal in
NAFL to assert that () is not in the t-syntax of F, but is ‘true’ in the metathe-
ory. This violates the axiomatic nature of truth regarding propositions about
formal objects required in NAFL. The existence of an infinite class (such as,
N) in an NAFL theory must be equated with the existence of all of its objects,
since the infinite class by itself is not an object of any NAFL theory. Thus any
universally quantified proposition that asserts the existence of infinitely many
natural numbers (such as, the example given in Remark 1) proves @ in F. It is
extremely important to note that the consistency of F (or equivalently, consis-
tency of PA) is no longer equivalent to @), which is a formal proposition of F in
NAFL. The NAFL notion of consistency is different from the classical one.

It follows that Godel’s and Turing’s incompleteness theorems must be illegal
in NAFL, for they predict the existence of undecidable propositions in F. The
culprit is the Cantor diagonalization principle, used by Goédel and Turing; this
principle must be banned in NAFL because it is illegal in NAFL to quantify
over infinitely many infinite (proper) classes. Indeed, such quantification speaks
of infinite classes as infinite sets, since it tacitly presumes that the ‘super-class’
of these infinitely many infinite classes exists. Note that quantification over
finitely many infinite classes can always be eliminated and so is not a problem.
So the notions of consistency and undecidability cannot be formalized in NAFL
because of their self-referential nature. It is doubtful if there exist any methods
acceptable in NAFL that would establish the existence of undecidable propo-
sitions in F (and hence the inconsistency of F). An important corollary of this
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result is that some of the famous propositions of arithmetic, such as Fermat’s
last theorem, Goldbach’s conjecture, the Twin prime conjecture, etc., must all
be decidable in F. Further, Turing’s halting problem must also be decidable.

It is easy to demonstrate that Euclid’s fifth postulate cannot be undecidable
in NAFL with respect to the first four. The reason again is that if the first four
postulates are consistent, the non-classical model for these postulates (required
to exist by NAFL) in which the fifth postulate is neither true nor false cannot
exist; such existence would violate the requirement of the first four postulates
that a unique straight line must pass through any two given distinct points.
Hence non-Euclidean geometries should be banned as self-referential in NAFL,
and all five Euclid’s postulates must be declared as tautologously true in the
p-syntax. It follows that general relativity theory is inconsistent in NAFL. The
inconsistency of special relativity theory (SR) in NAFL is argued briefly in [4]
and in greater detail in [6], where strong grounds are established to suspect
inconsistency of SR even within classical FOPL.

2.4 Quantum superposition justified in NAFL

We consider two examples, namely, the four mirrors and the Schrédinger cat
experiments of quantum mechanics. These experiments are well known and we
will assume that the reader is aware of how they are set up. We will show
how quantum superposition is justified in NAFL and the discuss the role of
‘measurement’ in quantum mechanics.

The four mirrors experiment

The essential, surprising result of this experiment is that in the absence of a
‘measurement’; the photon seems to take both available paths (call these A and
B) simultaneously; any attempt to directly detect this phenomenon fails and
the photon is observed to take one of the two paths.

Let 9 be the proposition ‘The photon took path A’, with the negation —1)
denoting ‘The photon took path B’; let QM represent an axiomatization of
quantum mechanics. Clearly, ¢ is undecidable in QM (as will be explained
shortly, ‘measurement’ will have to be part of the metatheory in NAFL and
not of the formalism). So in NAFL, the Main Postulate takes over and the
truth/falsity of 4 is aziomatic in nature; i.e., ¢ is true/false if and only if so
asserted axiomatically in an interpretation QM* of QM. In the absence of any
such axiomatic assertions, consistency of QM in NAFL demands that there must
exist a non-classical model for QM in which ¥ is neither true nor false. Whether
such a non-classical model can exist in the present available formulations of QM
is another matter; we assume that QM can be ‘fixed’ such that this is possible.
Note that the superposition does not mean that ‘The photon took path A and
the photon took path B’; it only means that the photon took neither path A
nor path B in the sense that neither of these alternatives have been asserted
axiomatically (ie., can be proved) in the interpretation QM*. So NAFL confirms
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the Copenhagen interpretation of quantum mechanics, rather than the many-
worlds interpretation.

It is clear from this description that NAFL treats ‘measurement’ as pre-
cisely equivalent to an aziomatic declaration of truth, in the interpretation QM*
(which resides in the human mind). Since the notions of ‘axiomatic declaration’,
‘interpretation’ and ‘model’ are all part of the metatheory in NAFL, it follows
that ‘measurement’ must also be outside the formalism (QM). In NAFL, when
the human being makes a measurement, he/she simultaneously ‘sees’ the out-
come and makes an axiomatic declaration of the observed outcome in QM¥*.
If the observer chooses to keep the axiomatic declarations in tune with the ob-
served outcomes, then there is a perfect correspondence between such axiomatic
declarations and measurement in the real world. The assertion that one cannot
measure & is in correspondence with the NAFL requirement that ¢¥&—1) is
not in the t-syntax of QM and so can never be formally asserted as an axiom
(i.e., the notion of ‘undecidability’ is not formalizable in NAFL).

It is also clear that NAFL does not assign any objective reality to the concept
of a photon as a ‘particle’. Indeed, if the photon were to be fixed as a particle
in the sense that we denote this term, then 1 V =@ must unavoidably be an
axiom of QM and hence the NAFL version of QM will be inconsistent (since
the non-classical model required by metatheorem 2 of [4] cannot exist and also,
1 V =) is not even in the t-syntax of QM). So the photon must be treated as
having a non-constructive existence in NAFL. The superposition & - in the
non-classical model only means that the human mind that inteprets QM has
not declared either ¢ or —) axiomatically as true in QM* (which proves neither
of these propositions). This is certainly true in the real world, provided, as
observed earlier, QM* is kept in tune with real-world measurements.

Note that NAFL correctly handles the temporal aspect of truth in this ex-
periment. The superposition )& —1) applies until the measurement is actually
made (in the detectors), at which point the observer switches to either ¢ or
—1) as axiomatic declarations in QM* in accordance with the measured result.
Thus QM* is ‘dynamic’ and will change in time to suit real-world measure-
ments/observations. Of course, NAFL does not insist in general that real-world
obervations should be available or that QM* should be kept in tune with such
observations even if available. Suppose the experiment is started at time ¢ = 0
and the outcome ) is observed at time ¢ = T'. Does this mean that the photon
‘really’ took path A for 0 < ¢ < T? Not in NAFL; NAFL can only tell us
the real-world truth that the photon was not observed/measured to take either
path A or path B during 0 < t < T. Howewver, the aposteriori conclusion ‘At
time ¢t > T, I conclude that the photon took path A for 0 < ¢ < T’ can certainly
be formalized in NAFL. There is no contradiction here because this conclusion
is valid only for ¢t > T.

The Schrodinger cat experiment

Let 9 denote ‘The cat is alive’ and —) denote ‘The cat is dead’. Again, ¥ is
undecidable in QM. If the experiment is started at ¢t = 0 and at ¢ = T, say,
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1 is observed, then ¥&—) is the case (in a non-classical model for QM) for
0 < t < T and neither 1 nor —% is provable in QM* for these times. For
t > T, the observer declares the observed result (¢ in this case) axiomatically
in QM*. Once again, the aposteriori conclusion that the cat was ‘really’ alive
for 0 < t < T can be reached and formalized only for ¢ > T'; during the interval
0 <t < T, NAFL only tells us the real-world truth that the cat has not been
observed to be either alive or dead.

2.5 Two further examples of the NAFL concept of truth

We discuss here the coin toss experiment and Aristotle’s example of ‘There will
be a sea-battle tomorrow’. Let the theory Ty denote the null set of axioms.

The coin toss experiment

Let the observer toss a coin and before the outcome is observed, cover the coin,
say, under the palm of his/her hand. Let ¢ stand for ‘The outcome is heads’
and — for the ‘The outcome is tails’. Again in NAFL, the superposition ¥& 1)
is the case in a non-classical model for T until the outcome is actually observed
to be either heads or tails (at which time the observer makes the appropriate
axiomatic declaration in the interpretation T* of Ty). Let ¢ stand for ‘The coin
has landed flat under the palm of the observer’s hand’. The important point
of this experiment is that the observer knows that ¢ is ‘true’ in the real world.
But in NAFL, ¢ is not part of the t-syntax of Ty, for clearly ¢ < ¥V —1. But ¢
is legitimate in the p-syntax and the metatheory of T¢. No matter how ‘real’ ¢
seems to the observer, it cannot be formalized as a proposition of Ty in NAFL.
Indeed, ¢ represents the conclusion that the observer will observe either v or
-4 if he/she lifts the palm of his/her hand; but in NAFL, ‘measurement’ or
‘observation’ is equivalent to an axiomatic declaration of truth and so is part of
the metatheory and not formalizable, as discussed earlier.

Aristotle’s sea-battle example

Finally, consider Aristotle’s example ‘There is/was/will be a sea-battle on a
specified date and time between two specified nations at a specified location’,
where the appropriate tense is to be used depending on the time at which the
proposition is considered; let v formalize this proposition in the NAFL theory
To. The superposition will once again apply until the specified date and time
when the observation is made by the observer. The details are similar to the
previous examples. The interest in this example is for the case when say, a
disaster takes place wiping out the two specified nations or the specified loca-
tion prior to the specified time and date. The proposition will clearly become
meaningless in classical logic. But in NAFL, the proposition can still be for-
malized; it no longer applies to the real world. The superposition will continue
to apply because the observer will not have the chance to make any real-world
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observations. Of course, the observer may make fictitious declarations of truth
in the interpretation T* of Tg at any given time.

3 Concluding remarks

In this paper, we have critically examined the concept of formalism and con-
cluded that it is only NAFL, and not either classical or intuitionistic logic, that
correctly embodies this concept. The result is that much of classical infinitary
reasoning becomes invalid in consistent NAFL theories. Anything ‘stronger’
than the theory of finite sets F (or equivalently, Peano arithmetic) discussed in
Sec. 2.3 will become inconsistent in NAFL. Hence Hilbert’s program has been
settled negatively — much of classical infinitary reasoning stands refuted from
the finitary and formalistic standpoints. However, it is important to note that
in inconsistent NAFL theories, it is still not possible to deduce any proposition;
this is in contrast to inconsistent theories in classical /intuitionistic/constructive
logics. It is still possible to permit infinite sets, say, in the p-syntax of F, to
prove results, such as FLT, in the t-syntax. However, such a ‘proof’ is not rigor-
ous by NAFL standards. So can the proof be trusted, i.e., is it true that we will
never ever find a counter-example to FLT? In general, the answer must be in
the negative; but nevertheless such inconsistent (by NAFL standards) infinitary
reasoning may still be useful and convenient in real life, such as, in the case of
the relativity theories. But while many of the predictions of such inconsistent
theories are valid in the sense that they have been confirmed by experiment,
all such predictions cannot be trusted in the absence of experimental data. For
example, did the Big Bang occur? Do black holes exist? Will the universe
shrink to a point as predicted by General Relativity? Is time travel possible
as predicted by General Relativity? Can the concept of quantum computing
be trusted? These are all questions that can only be answered empirically by
experiments. A useful line of further research will be to see how infinite sets can
be admitted into NAFL theories without sacrificing consistency; infinite sets,
and quantification over infinitely many such sets are very useful in real analysis.
A second line of research would be to abandon the concept of the continuum
and look for a (possibly very complicated) finitary, discrete description of na-
ture in a consistent NAFL theory in which everything, including space, time
and matter, is quantized. This line of research is suggested by the fact that
the very process by which quantum superposition is justified in NAFL is also
responsible for the rejection of the relativity theories in NAFL via the constraint
of consistency. Thus the suspected incompatibility between quantum mechanics
and the relativity theories is clearly established in NAFL.

Dedication

This paper is dedicated to my son R. Anand and my wife R. Jayanti.
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