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Résumé : Cet article cherche à montrer comment la pratique mathématique,
particulièrement celle admettant des représentations visuelles, peut conduire
à de nouveau résultats mathématiques. L’argumentation est basée sur l’étude
du cas d’un domaine des mathématiques relativement récent et prometteur: la
théorie géométrique des groupes. L’article discute comment la représentation
des groupes par les graphes de Cayley rendit possible la découverte de nouvelles
propriétés géométriques de groupes.

Abstract: The paper aims to show how mathematical practice, in partic-
ular with visual representations can lead to new mathematical results. The
argument is based on a case study from a relatively recent and promising
mathematical subject—geometric group theory. The paper discusses how the
representation of groups by Cayley graphs made possible to discover new ge-
ometric properties of groups.

Introduction

In practice, it seems that mathematics is not carried on solely in terms of ax-
ioms, theorems and proofs. Often, some properties are easy to overlook from
the perspective given by a definition or a traditional representation. An effec-
tive method of revealing new properties is by using different representations
of the concepts in such a way that these properties become noticeable.

The example demonstrates how groups were represented as graphs. Then
the latter represented as metric spaces helped to reveal many geometric proper-
ties of groups. As a result, many combinatorial problems were solved through
the application of geometry and topology.
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For the epistemological analysis of this example, I apply the approach
proposed by Manders [Manders 1999]. He considers mathematical practice as
control of the selective response to given information, where selective response
means emphasising some properties of an object while neglecting others. From
this perspective, representations serve to implement the principal constituents
of this activity. As will be demonstrated below, this approach makes clear that
a change in representation is a valuable means of finding new properties.

The structure of the paper is as follows. The first section explains Manders’
approach and his comparison of Euclid’s and Descartes’ geometries. The sec-
ond section presents the case study, namely, it explains how groups previously
studied algebraically were approached as geometric objects. This was realised
through the representation of groups by Cayley graphs, and then through
representing graphs as metric spaces. Detailed definitions will be provided,
but for the purpose of this paper it is enough to grasp the general idea.
Finally, the conceptual impact of the geometric approach to groups will be
analysed in terms of Manders’ approach. These issues are developed in detail in
Starikova [Starikova 2011].

1 Mathematical practice in the terms of se-
lective responses

In his unpublished paper ‘Euclid or Descartes? Representation and Respon-
siveness’, Manders analyses the contribution of Géométrie, compared to
Euclid’s plane geometry. He particularly stresses the epistemic role of the
algebraic notation in that contribution. He draws attention to the fact that
mathematical problem solving has a strategically selective character: at each
segment of practice only some information is taken into account, but not all.
Strategical indifference includes such epistemic activities as abstraction, uni-
fication, idealisation and approximation. Responding to particular elements
of the context and remaining indifferent to others provides control over each
step of the context:

...[T]he mathematician faced with a proposition to prove must
exercise strategically allocated indifference in responding to that
situation, say, details of examples that do not bear on general
claims one is trying to frame or prove. [Manders 1999, 4]

Manders uses the term ‘respondif’ for these responses and indifferences. I will
refer to them as ‘selective responses’ (which includes indifferences).

In short, Manders announces that two things are to be demonstrated:
a. that mathematical advance is based on a systematic, coor-

dinated use of responsiveness and indifference, and
b. that the coordination of this responsiveness and indifference

is implemented by means of representations [Manders 1999, 2].



From practice to new concepts: Geometric properties of groups 131

Let me explain the key ideas of his approach.

1.1 Application and applicative response

Selective responses are often applied from another domain. This way one
can distinguish between direct and application-mediated responses. Further
on, I will use the ‘original’ and ‘applicative’ response terms correspondingly.
The purpose of application is to access the resources of the applied domain.
For example, in Descartes’ geometry, geometric problems are solved through
solving algebraic equations, which represent the geometric curves. Here is
Manders’ summary of Descartes’ approach: 1

From a diagram-based problem to initial equations.
– Set out the problem in diagram form, as if it is already solved.
– Elaborate the diagram, to consider its lines and what will be the primi-

tives in the algebraic equations (constants and variables).
– List the algebraic conditions for the problem.
– Label the known and unknown line segments with single letters.

Algebraic manipulation.
– Eliminate the auxiliary unknowns.
– Reduce the equation to a ‘normal form’.
– Analyse how the degree of the equations can be reduced.

Concluding geometrical steps.
– ‘Construct’ (solve geometrically) the equation.
– Select the root appropriate to the original problem from amongst those

constructed.
– Make a Euclidean-style demonstration, to show that the root selected

solves the problem.
Each stage of this process gives rise either to selective responses to the orig-

inal context or to the applicative context. According to Manders, what makes
Descartes’ approach exceptionally effective is that it enriches traditional geom-
etry with many new types of selective responses. It also coordinates them with
each other and the already established Euclidean geometrical responses and
indifferences. For example, the Cartesian approach applies algebraic selective
responses:

Descartes’ geometrical method enhances geometry in the style of
the ancients by the algebra of his time, by introducing algebraic
responses to geometrical problems (systems of equations), alge-
braic methods to simplify systems of equations and geometrical
responses to equations. [Manders 1999, 8]

1. Manders examines the problem of Heraclides in Pappus’ Collectio as ap-
proached by Descartes in Book III of Géométrie: given the square AD and the
line BN , extend the side AC to E so that EF , on EB with F on CD, equals BN .
See [Manders 1999, 13–14].
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1.2 The role of representations (artefacts)

In mathematical reasoning we often produce and respond to artefacts: nat-
ural language expressions, Euclidean diagrams, algebraic or logical formulas.
According to Manders, artefacts help to implement and control selective re-
sponses. Artefacts also provide new responses, suitable for the current context:
e.g. to recognise a region bounded by three sides. They also make the artefacts
available for further steps: e.g. to draw a line between two points. Therefore
artefacts fix and stabilise the responses and indifferences to particular elements
of a structure.

There is also a coordination of the diagram and the text: the text specifies
what is essential in producing and reading the diagrams. Therefore Euclidean
constructions involve a complex coordination and control of selective responses
both to the diagram and the text.

Such control and coordination may have different levels of ‘quality’, and
this is the point where improvement is possible. In Euclid’s demonstrations
some information may be read only from a diagram, some only inferred from
prior text entries, while some is diagram-based and text-based. For example,
in the demonstration of Euclid I.1, we know that the closed curves are circles
only from prior stipulation in the text. The fact that they intersect arises only
from their situation in the diagram as in the figure below, rather than being
inferred from the prior text.

Figure 1: Euclid’s proposition I.1.

Diagrams are produced according to the specifications in the accompanying
text, which makes the depicted relations reproducible and therefore stable.
Diagram and text contribute to each other differently, and compensate for
each others’ weaknesses.

However, Manders admits that our control over (Euclidean) diagrams is
limited. In the Euclidean style of using diagrams it is possible that some metric
properties are unclear. For example, some segments or angles may appear as
equal, when in fact they are non-equal. Also there is a risk of missing cases in
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Euclidean diagrammatic practice (e.g. the case of an obtuse triangle may be
missed with considerable consequences).

Manders specifies that the features that we read directly from a diagram are
(a) perceptually explicit, and (b) stable under the diagram perturbations such
as a sequence of reproductions of the diagram. These conditions compensate
for our limited control of diagrams.

Therefore the Euclidean use of diagrams extensively relies on the appear-
ance of the diagrams, which means that the diagrams have to be realised in
a medium, and a degree of accuracy—to satisfy conditions (a) and (b)—is
required. Furthermore, the non-trivial nuances, such as the solutions’ depen-
dence on case branching, must be taken into account.

Let us return to the stages of Descartes’ approach. The second stage is
paramount for an applicative approach. This stage brings about a substantial
advance in problem solving: after the equations are written down, all the
calculations proceed quickly by means of efficient algebraic algorithms and
become largely a “cut-and-dried matter” [Manders 1999, 28].

Note that the second stage consists mainly of the algebraic manipulations.
Indeed, we do not need any more geometrical consideration of known and un-
known quantities in the diagram. The coefficients extracted from the diagram
at the beginning are later on treated indifferently to their geometrical mag-
nitudes. This is a case of indifference to the diagram metric properties and
the application of an algebraic response—solving equations. After the first
stage, our reasoning is neither motivated by, nor particularly responsive to,
the diagram of the original problem. As Manders put it:

Compared to traditional geometrical analysis/synthesis, exclu-
sively compared to “purely synthetic” geometrical thought, the
elaborate and clear-cut segmentation of Cartesian geometric prob-
lem solving method into distinct tasks and stages, at moderate
cost of ultimate geometrical grasp, turns on greatly enhanced
respondif coordination and control, especially in the algebraic
stages... [Manders 1999, 25]

The final step is just to check if the solutions are relevant. But what initi-
ates the application is the first or representational stage. Manders calls it a
“response-shaping” coordination. He makes the important point that the intro-
duction of algebraic notation helps us to apply the fast algebraic algorithms:

Changing the artefact basis of part of the analytic process, to
a representation (algebraic equations) indifferent to diagram ap-
pearance, allows all this progress towards solving problems, unim-
peded by the difficulties of diagram control in Euclidean-style rea-
soning. [Manders 1999, 18]

Therefore, in the case of an applicative approach, the representation facilitates
the application. Moreover, it endorses a new algebraic notion to geometry—
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the degree of an equation. Degree is a new concept unknown in Euclidean
practice, which now becomes available for approaching geometrical problems.

Manders remarks that in terms of such criteria as proof-strength, consis-
tency and computability, nothing is significantly improved in Descartes’ geom-
etry (except for computability). Also, viewing Descartes’ method as simply
the elimination of (tedious) geometric constructions would be incomplete. The
results of Descartes’ algebraisation of geometry are fundamental, and Manders’
approach does explain the (conceptual) advance of Descartes’ geometry over
Greek geometry. It gives us concrete examples of the benefits. One such ex-
ample is the indifference towards case distinctions, which are not needed in
Descartes’ algebraic method. Another example is the new type of response—
the appreciation of the equation degree.

2 The case study

Let me now move to geometric group theory. I shall start with explaining the
geometric approach, and then when analysing it I will make the comparison
with the combinatorial approach with its focus on the role of representations.

The geometric perspective on groups is not new. Groups were com-
monly seen as transformations of geometric objects, and this view was the
core of Klein’s Erlangen programme which aimed to classify and characterise
geometries on the basis of group theory (and projective geometry) [Klein
1873]. 2 However, in this paper I discuss a new approach, which is based
on the idea that groups as such can be thought of as geometric objects. I
shall consider hyperbolic groups as an important example and then give it
a philosophical analysis.

2.1 The geometric approach

2.1.1 Generated groups

Definition (a generating set). Let G be a group. Then a subset S ⊆ G is called
a generating set for the group G if every element of G can be expressed as a
product of the elements of S or the inverses of the elements of S.

In other words, every element of G can be written as a composition of
symbols (called letters) representing the elements of S and their inverses. A
representation of a non-identity element s as a product of n ≥ 1 letters is called
a word. In a given word the number n ∈ N is called the length of the word. The
word with the length equal to 0 is called an empty word and by definition it

2. For a historical exposition, see [Hawkins 1984].
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represents the group identity I. Other representations of I by words of length
n ≥ 1 are called group relations.

There may be several generating sets for the same group. The largest
generating set is the set of all group elements. For example, the subsets {1}
and {2,3} generate the group (Z,+) or Z for short, whereas {2} does not.

Definition (a finitely generated group). A group with a specified set of
generators S is called a generated group and is designated as (G,S). If a
group has a finite set of generators, it is called a finitely generated group.

Example. The group Z is a finitely generated group, for it has a finite
generating set, for example S = {1}. The generated group Z with respect to
the generating set {1} is usually designated as (Z,{1}). The group (Q,+) of
rational numbers under addition cannot be finitely generated.

Generators provide us with a ‘compact’ representation of finitely generated
groups: i.e. a finite set of elements, which by the application of the group
operation, gives us the rest of the group.

2.1.2 Groups represented by graphs

In effect, a representation of a finitely generated group with respect to a
chosen set of generators can be realised as a graph.

Definition (a Cayley graph). Let (G,S) be a finitely generated group.
Then the Cayley graph Γ(G,S) of a group G with respect to the choice of S
is a directed coloured graph, where vertices are identified with the elements
of G and the directed edges of a colour s connect all possible pairs of vertices
(x, sx), x ∈ G, s ∈ S.

The vertices of a Cayley graph do not have to be labelled, whereas edges
must be coloured if there is more than one generator. The edge corresponding
to the multiplication by group element x, which satisfies the condition x2 = I,
does not need to be a directed edge.

Example. The Cayley graph for the first example, (Z,{1}) is an infinite
chain as illustrated in the figure below:

⋯ ⋯
Figure 2: The Cayley graph of the group (Z,{1}).
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Different choices of generators give different Cayley graphs. The same
group Z with generators {1,2} can be depicted as an infinite ladder, as in
Figure 3:

⋯ ⋯
Figure 3: The Cayley graph of the group (Z,{1,2}), where bold stands
for {1} .

and (Z, {2,3}) in the figure below gives the graph:

⋯ ⋯
Figure 4: The Cayley graph of the group (Z,{2,3}), where bold stands
for {3}.

2.2 Groups and their graphs as metric spaces

The ‘geometric’ properties of groups mean the properties which can be revealed
by thinking of their Cayley graphs as metric spaces (I will explain how). Many
of these geometric properties turn out to be independent from the choice of
generators for a Cayley graph. For this reason they are considered to be the
properties of the groups themselves. At first glance it looks like they depend
on the choice of generators, simply because the Cayley graph does. However,
it turns out that these properties are the same for different generating sets.
Studying these properties makes up a substantial part of geometric group
theory. To relate the geometric and algebraic properties of groups means to
answer the question:
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If G, G′ are quasi-isometric groups, to what extent do G and G′

share the same algebraic properties?

In other words, the idea is to ‘look at groups through’ their
Cayley graphs and try to see new (geometric) properties of groups.
Then to return to the algebra and check which groups share these
properties and under which constraints. This opens up the fol-
lowing opportunities for a group-theorist:

1. Using a presentation of the group G to define a metric on the group and
then to exploit the consequent geometry;

2. Defining geometric counterparts to some algebraic properties of groups
(‘up to quasi-isometry’);

3. Classifying groups with these geometric properties.

The obtained results can be considered as a contribution of the groups’ ge-
ometrisation to the algebra of groups. Now some more precise formulations
and examples are to be given.

2.2.1 Word metric

Thinking of groups in terms of metric spaces requires that the relevant space
is given by a group G with a particular generating set S and the word metric
dS :[(G,S), dS]. A metric on groups can be introduced by the notion of word
as defined above.

Definition (a word metric). If g, h ∈ G then the word metric (with respect
to S) dS(g, h) is the length of a shortest word representing g−1h, where g−1h
is a word w such that gw = h.

The metric space [(G,S), dS] may not appear at first glance to give us
much structure to study as compared to that found in the classical metric
spaces, such as the Euclidean or hyperbolic. However it becomes potentially
more intriguing when one observes that a discrete valued metric space can
be compared to an interesting continuously valued metric space such as the
hyperbolic plane. Here is how Gromov expresses this issue about a word metric
space:

This space may appear boring and uneventful to a geometer’s eye
since it is discrete and the traditional local (e.g. topological and
infinitesimal) machinery does not run in [the group] Γ. To regain
the geometric perspective one has to change one’s position and
move the observation point far away from Γ. Then the metric in
Γ seen from the distance d becomes the original distance divided
by d and for d → ∞ the points in Γ coalesce into a connected
continuous solid unity which occupies the visual horizon with-
out any gaps and holes and fills our geometer’s heart with joy.
[Gromov 1993, 1]
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This implies that if in a discrete space any pair of distinct points is
joined by a geodesic segment (the shortest path), it makes such a metric
space comparable to the classical metric spaces in the same way as a se-
quence of connected points can be similar to a line. 3 This idea is cen-
tral to geometric group theory, and next I will explain how it was realised
in a technical sense.

2.2.2 Cayley graphs as metric spaces

The idea above can be realised through the introduction of a metric on Cayley
graphs. By the definition of a Cayley graph, words in a generated group (G,S)
correspond to paths in the Cayley graph Γ(G,S).

Definition. A path between two arbitrary vertices of the graph, x and y,
is a sequence of edges between x and y.

The idea is to take each such edge to be of a length equal to 1. Then
the length of the path is equal to the number of unit edges in this path. For
example, for the Cayley graph in Figure 5 which has one generator 1, the
word/path from 0 to 3 is 1 ⋅ 1 ⋅ 1, and its length is 3.

Figure 5: The Cayley graph of the group Z6.

Definition (a path metric). Let Γ(G,S) be the Cayley graph for a gener-
ated group (G, S). For any pair of vertices x, y of Γ(G,S) the path metric
(word metric) dΓ,S(x, y) on the Cayley graph Γ(G,S) can be defined as the
length of (one of) the shortest paths (geodesic segments) connecting x and y.

The set of vertices in a Cayley graph with this path metric is now a metric
space, and the group metric space ((G,S), dS) is isometric to the Cayley graph
metric space (Γ(G,S), dΓ,S) by definition.

There can be more than one path (word) that is the shortest in a group.
For example, in the Cayley graph of the group C3 × C2 in the figure below
there are two equally short paths between the vertices labelled 0 and 1: i.e.
0,4,1 and 0,3,1.

3. A geodesic is locally the shortest path between points in the space.
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Figure 6: The Cayley graph of the group C3 ×C2.

2.3 Quasi-isometry

The notion of quasi-isometry is central to geometric group theory. It serves to
formalise the idea of comparing metric spaces as expressed above by Gromov.
Let me use also Bridson’s words to better explain its role:

... [O]ne needs a language that will lend precision to obser-
vations such as the following: if one places a dot at each integer
point along a line in the Euclidean plane, then the line and the set
of dots become indistinguishable when viewed from afar, whereas
the line and the plane remain visibly distinct. One makes this ob-
servation precise by saying that the set of dots is quasi-isometric
to the line whereas the line is not quasi-isometric to the plane.
[Bridson 1999, 138]

2.3.1 Definition and some examples

As Bridson points out, the way to compare metric spaces is through the notion
of quasi-isometry. It is based on isometry, which is a distance-preserving map
between metric spaces. Isometry is similar to congruence in geometry, in
that it expresses the idea ‘is the same as’ in a given category. To distinguish it
further, quasi-isometry is a weaker equivalence relation between metric spaces:
it is supposed to grasp the idea ‘is similar to’.

Definition (a quasi-isometry). For metric spaces (M1, d1) and (M2, d2) a
function f :M1 →M2 (not necessarily continuous) is called a quasi-isometry if
there exist constants A ≥ 1 and B ≥ 0 such that

1

A
d1(x, y) −B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B

for all x, y ∈M1 and a constant C ≥ 0 such that to every u inM2 there exists x
in M1 with d2(u, f(x)) ≤ C. The spaces M1 and M2 are called quasi-isometric
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if there exists a quasi-isometry f :M1 → M2. This means that the distance
between any two points in M2 is bounded above and below by linear functions
of the distance between the images of these vertices in M1. The notion of
quasi-isometry generalises the familiar definition of isometry corresponding to
the case A = 1 and B = 0.

Examples:
1. Any non-empty bounded space is quasi-isometric to a point: f ∶ X1 →

{x} is a quasi-isometry.
2. f ∶ R × [0,1] → R: projection to the first coordinate is a quasi-isometry,

where d is the usual Euclidean metric.
3. f ∶ (Z, d) → (R, d) is a quasi-isometry (f(x) = x for any x ∈ Z),

where d is the usual Euclidean metric (see the figure below). Indeed,
d2(f(x), f(y)) = d1(x, y). Take A = 1 and B = 0.

Figure 7: Z is quasi-isomorphic to R.

4. f ∶ Z2 → E2 is a quasi-isometry with respect to the Euclidean metric, as
in the figure below:

Figure 8: Z2 is quasi-isometric to E2.

5. The Cayley graph of (Z,{1,2}) as well as the Cayley graph of
(Z,{2,3}) with respect to word metric are quasi-isometric to R (see
Figures 3 and 4).

Non-examples:
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1. The empty set is quasi-isometric only to itself. Let us take B to be the
empty set, and A to be a non-empty set with some arbitrary metric d.
There is no function f ∶ A→ B if B is empty and A is non-empty.

2. Boundedness is a quasi-isometry invariant. Thus for example,
R is not quasi-isometric to [0,1].

Quasi-isometry on groups The next proposition states that for a given
group all its Cayley graphs are quasi-isometric:

Proposition. Take a group G, with finite subsets S and T , such that both
S and T generate G. Then the Cayley graph Γ(G,S) is quasi-isometric to
Γ(G,T ). Indeed, dT (x, y) ≤ kdS(x, y), where k = maxidT (si, I), that is k is
the greatest length of the generators in the set S measured in the metric dT ,
and vice versa.

Now it is possible to define quasi-isometry between two finitely generated
groups.

Definition (a quasi-isometric group). Two finitely generated groups G and
G′ are quasi-isometric, if there is a Cayley graph Γ(G,S) of the group G with
respect to a generating set S, such that Γ(G,S) is quasi-isometric to a Cayley
graph Γ(G

′

, T ) of the group G
′

with respect to a generating set T .
In other words, two finitely generated groups are quasi-isometric if and

only if for some choices of generators in groups G and G′, their Cayley graphs
are quasi-isometric. The choice of generators is however unimportant because
of the previous proposition.

2.3.2 Quasi-isometry invariants: hyperbolicity

It turns out that there is a substantial number of properties in finitely gen-
erated groups that are independent from the choice of generators and that
are called ‘quasi-isometry invariants’ or ‘geometric properties of groups’. By
having a number of geometric properties of groups, one can relate them to the
algebraic properties and approach algebraic problems through these geometric
properties. One amongst many of these geometric properties is hyperbolicity.

The concept of hyperbolic groups was introduced by [Gromov 1987], which
has since become very influential and given rise to an extensive research pro-
gramme. Before this, hyperbolicity was considered only on surfaces and other
differentiable manifolds with a metric. Gromov’s innovation was to extrapo-
late it in a more general context, defining it also on discrete objects such as
graphs or groups [Gromov 1987]. The idea is again to embed a Cayley graph of
a group quasi-isometrically into the hyperbolic space Hn and apply hyperbolic
geometry to study this group. 4 This involves the notion of a geodesic triangle.

4. For details see [Gromov 1987] and [Bridson 1999].
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Definition. A geodesic triangle is a figure consisting of three different points
together with the pairwise-connecting geodesic segments.

The points are known as the vertices, while the geodesic segments are
known as the sides of the triangle. A geodesic triangle can be considered
in any space in which geodesics exist. For example, a geodesic triangle in a
Cayley graph with the associated word metric consists of three distinct arbi-
trary vertices x, y, z connected by three geodesic segments (the sides of the
triangle), from x to y, y to z and z to x respectively.

Example. In Figure 6, a simple geodesic triangle is formed by the vertices
0,2 and 4. However, the vertices 0,1,2 form two geodesic triangles with the
sides 0,2;0,4,1;2,4,1 and 0,2;0,3,1;2,4,1 correspondingly.

Obviously a geodesic triangle (as in the last example) does not have to be
shaped as a Euclidean triangle. All what is needed is that three vertices are
connected by a geodesic path.

Thin (hyperbolic) triangles and negatively curved groups
Given the notion of a geodesic triangle, one can introduce the notion of nega-
tive curvature or hyperbolicity on Cayley graphs.

The common definition of hyperbolicity is based on the key property of
hyperbolic spaces that the sum of a triangle’s angles is less than π. In a
discrete case as in the case of a graph, there are no angles, yet there is the
word metric. The following notion of a δ-thin triangle allows us to define
hyperbolicity for this metric in a more general way without appealing to the
notion of angle. I will now give two definitions of a δ-thin triangle and show
how it applies to Cayley graphs and their groups as hyperbolic spaces.

Definition 1 (a δ-thin triangle). Let δ ≥ 0. A geodesic triangle in a metric
space is said to be δ-thin if each of its sides is contained in the δ-neighbourhood
of the union of the other two sides, as demonstrated in Figure 9 below [Gromov
1987, 120].

Figure 9: A thin hyperbolic triangle.
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With the definition of a δ-thin geodesic triangle, we can define a δ-
hyperbolic space.

Definition (a hyperbolic space). A geodesic space X is called δ-hyperbolic
or negatively curved if there is a constant δ such that every triangle in X is
δ-thin.

The next definition gives a different perspective on thin triangles, which is
more clearly related to the idea of quasi-isometry. 5

Definition 2 (a δ-thin triangle). Let △ be a geodesic triangle in a metric
space X, and f△ ∶ △ → T∆ be an isometry from the sides of the triangle △ to
a tripod T∆. Namely, f sends the vertices of the triangle to the vertices of the
tripod. For some δ ≥ 0, triangle △ is δ-thin if f△(p) = f△(q) ⇒ d(p, q) ≤ δ.

The idea is the following. Take any triangle; by pinching the sides of
a triangle and making it thinner, one eventually arrives at a tripod as it is
visualised in Figure 10:

Figure 10: Mapping a hyperbolic triangle to a tripod.

Example. In Figure 5, the triangle 1,2,3 forms a tripod. Any of its sides
belongs to the union of its other sides. For instance, side 1,2 belongs to the
union of the sides 2,3 and 1,2,3. More generally a tripod is a 0-thin geodesic
triangle. However, the Cayley graph is hyperbolic because it is bounded (see
Example 1 of hyperbolic groups below).

The crucial observation made about the hyperbolicity of groups is that it
is an invariant with respect to the choice of generators. Therefore it can be
considered as a property of the group as itself and not only a generated group
[Gromov 1987, 75–263]. This follows from the next two facts:

5. For more details see [Bridson 1999, 409].
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1. For any generating sets S and T of a group G, the Cayley graph metric
spaces (Γ(G,S),dS) and (Γ(G,T ), dT ) are quasi-isometric. 6 This fact
follows from the proposition in 2.3.1.

2. If two geodesic spaces are quasi-isometric, one is hyperbolic if and only
if the other is [Howie 1999, Lemma 3, 10].

It follows from the second definition that those Cayley graphs which are trees
(along with other graphs satisfying δ-hyperbolicity) can be considered as hy-
perbolic spaces. 7 It is also often said that Gromov-hyperbolic spaces are the
ones that exhibit “tree-like behavior”. 8

Figure 11: A tree on the Poincaré disc.

Examples of hyperbolic groups ([Howie 1999, 11]):

1. Every finite group is hyperbolic, because its Cayley graphs are all
bounded. Indeed, for any generating set, the set of vertices in any of its
Cayley graphs is finite, as is the distance between any of the vertices.
Take δ to be equal to the longest path between all possible pairs of the
vertices, then any distance in the graph is no greater than this δ. In
particular, the distance between a point on one side of a geodesic trian-
gle and any point on the two other sides is no greater than δ. Therefore
this point is in the δ-neighbourhood of the union of the two other sides.

2. Every finitely generated free group is hyperbolic, because its Cayley
graphs are trees. 9

3. A non-example: Group Z2 is quasi-isometric to E2, and hence is not
hyperbolic. The fact that Z2 is not hyperbolic shows that not every
finitely generated group is hyperbolic.

6. See for example [Howie 1999, Example 5, 5].
7. Any connected graph without cycles is a tree, e.g. tripod is a tree.
8. See [Kapovich & Benakli 2002, 31].
9. A group G is called free if it has a subset S such that any element of G can be

generated by a unique finite sequence of elements from S and their inverses (disre-
garding trivial variations such as sg−1

1 = sg−1
2 g2g

-1
1 ).
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Some of the ‘geometric properties of groups’ independent of the choice of
generators are related to important combinatorial problems, such as finite
presentability and solvable word problem.

Finite presentability Definition. A finitely presented group is a group
with a finite number of generators and relations.

The question is which groups are finitely presentable. It turns out that
groups which are quasi-isometric to a finitely presented group are also finitely
presented:

Proposition 1. If two groups G and G′ are quasi-isometric, then G′ is
finitely presented if and only if G is finitely presented. 10

Solvable word problem Suppose a group G is finitely presented. A word
in the generators and their inverses represents some element of the group. Is
there an algorithm to decide if this is the identity element? Or that two arbi-
trary words of the group are equivalent? If so, then the group is said to have a
solvable word problem. The uniform word problem (for the class of all finitely
presented groups with solvable word problem) is unsolvable as demonstrated
by [Dehn 1911], [Novikov 1955], and [Boone, Cannonito, & Lyndon 1973].
However, the asymptotic approach allows us to formulate some more quanti-
tative statements about the solvability of the word problem in the classes of
quasi-isometric groups:

Proposition 2. For two quasi-isometric groups, if one has a solvable word
problem, then for the other it is also solvable.

Propositions 1 and 2 connect geometric properties with algebraic proper-
ties. Moreover, it was shown that hyperbolicity can give a new perspective
on these combinatorial problems. For example, the next two results due to
[Gromov 1987] establish important properties of hyperbolic groups related to
these problems:

1. Every hyperbolic group has a finite presentation [Howie 1999, Theorem
2, 11–12].

2. Every hyperbolic group has a solvable word problem [Howie 1999, 17,
Lemma 6].

Research into this question is still of major importance in combinatorial group
theory. Thus this result obtained by the geometric approach about hyperbolic
groups is a valuable contribution to the study of groups.

10. See more in [Bridson 1999, 143–144].
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3 Discussion

To analyse the case study I will use Manders’ model, introduced in the previous
section, which sees mathematical activities as the coordination of strategic
responses and indifferences to given information. Manders’ analysis makes
explicit the advantages of Descartes’ algebraisation. I will show that it is also
effective in my case study.

3.1 Combinatorial vs. geometric representation

To analyse the epistemic role of Cayley graphs in the geometrisation of groups,
let me compare them to the ways of representing groups that are traditionally
used in combinatorial group theory.

Combinatorial group theory mostly uses symbolic notation. Group ele-
ments can be expressed by symbols. For example, the elements of the dihedral
group of symmetries in an equilateral triangle D3 can be written as:

I, r, r2, f, fr, fr2.

For various concrete instances of groups such as D3, it is possible to have
a geometric model of this group. The group elements are three rotations and
three flips (in respect to the three heights of the triangle). The following figure
demonstrates the rotation r by 2

3
π and one of the flips f , in respect to one of

the triangle’s heights on a model of an equilateral triangle:

Figure 12: The flip f and the rotation r.
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All these ‘geometric’ groups have the same structure as permutation
groups, where permutations can also be imagined as transformations in a space
(or a plane).

For instance, if we take the equilateral triangle ABC and apply a flip, then
this transformation can be presented as a permutation of the set of vertices of
ABC: A is switching with C and B is staying the same. Then the rotation r
would be C moving to A, B to C and A to B. The flip f followed by rotation
r ● f can be written by using the following notation:

( C B A
A C B

)( A B C
C B A

)

Group elements can be also represented by a multiplication table:

∗ I r r2 f fr fr2

I I r r2 f fr fr2

r r r2 I rf rfr rfr2

r2 r2 I r r2f r2fr r2fr2

f f fr fr2 I r fr
fr fr fr2 f frf frfr frfr2

fr2 fr2 f fr fr2f fr2fr fr2fr2

Table 1: A multiplication table for D3.

In the latter two cases the algebra represents the concept that was artic-
ulated in a geometric way without geometrical allusions: merely in terms of
some abstract As and Bs. We can think of group D3 more abstractly as a
set with group axioms, no longer thinking about group elements as continuous
motion or as permutations. This is where indifference to the geometric as-
pects is especially effective. The combinatorial representations and axiomatic
expression of groups are detached from the concrete nature of the group: one
can talk about a group and its properties without specifying what exactly the
group operation is. What is important is that this operation satisfies group ax-
ioms. This abstract character of algebra allows one to describe the structural
aspects of objects from different origins in a flexible way. Indifference to ge-
ometry provides a broad applicability of group theory to other object-specific
fields (e.g. crystallography).

Presented groups are the closest algebraic counterparts to Cayley graphs.
Group presentation includes generators and group relations (words equal the
identity or empty words). Here is the group presentation of D3: < r, f ∣
r3, f2, rfrf >. To give a more general example: a cyclic group of order n
can be presented as ⟨a ∣ an = e⟩. This type of combinatorial representation
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is quite informative and at the same time, synoptic. It is used in both the
combinatorial and in the geometric approach. However, as demonstrated in
the previous chapter, for a detailed consideration of group geometry Cayley
graph diagrams are essential.

What makes them so effective? For example, the mathematical difference
between symbolic notation of a generated group and its Cayley graph is often
said to be insignificant, but the cognitive difference between the two cognitive
representations is significant. Let us consider how a Cayley graph diagram can
be useful in the same example of group D3 (see Figure 13). Recall that f2 = I.
This is immediately visible in the diagram: the two-arrowed edges reflect the
fact that f = f−1. Similarly, one can easily see that rf ≠ fr, but it is not the
case in Figure 6 and therefore the latter represents an abelian group whereas
the former represents a non-abelian group (in an abelian group G, ab = ba, ∀
a, b ∈ G).

Figure 13: The Cayley graph of the group D3.

Multiplication tables also reflect the abelian property: an abelian group
multiplication table is symmetric with respect to the main diagonal. But
multiplication tables show only simple relations like f2 = I, whereas in a
Cayley graph they are all visible as loops in the diagram. One can check in
the diagram if the two paths corresponding to given words end in the same
vertex. This would mean that these words are equivalent.

Comparing generated groups with Cayley graphs, geometric group theo-
rists would usually say that the two are ‘practically the same objects’. Indeed,
what is mathematically significant here is the response to the generating as-
pect of the group (the generators). It is essential that a Cayley graph gives
different information from the information given by the algebraic notation
of the generated group: e.g. by colours, edges, shapes, the structure of the
group at a glance, and importantly, connectedness. Groups do not have these
properties. It is the diagram that suggests our response to these properties.
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3.2 The geometric response to artefacts

As shown in section 2.2.1, groups can be seen as metric spaces equipped with
the word metric. This is a discrete-valued metric, so it does not give enough
structure to compare a word metric space to the classical metric spaces by
their geometric properties. However, the practice with particular types of se-
lective responses makes it possible to place groups in the same research-object
category as classical metric spaces. This means that groups can be studied by
using the same classical methods. The main elements of this practice are (i)
the indifference to the discrete structure of the group metric space, and (ii) the
response to the perceptual similarity of particular Cayley graphs with these
metric spaces. These are new responses, unavailable to the combinatorial ap-
proach. They are implemented by reading the graphs as geometric objects in
a space; which in turn leads to new advances—the concepts of quasi-isometry,
hyperbolicity of groups and other geometric properties of groups.

The applied responses are central to this approach. They are modified and
adapted to the original tasks. In the geometric response to Cayley graph dia-
grams, we perceive them as objects embedded in a space and having geometric
elements (e.g. the edges of a graph are thought of as the measurable sides of
triangles). This response is applied from geometry, as for example in Euclidean
geometry we respond to the intersections of lines, figures and their relations in
the diagrams. The response is modified : e.g. a geodesic triangle does not have
to be shaped like a Euclidean triangle. In other words, some of the Euclidean
diagrammatic appearance is neglected, whereas the more abstract properties
of triangularity (three connected vertices) are highlighted. Also for hyperbolic
Cayley graphs our response is modified to be non-Euclidean: we see the graph
as a geometric object on a saddle-shaped surface or the Poincaré disc (as in
Figure 11). Despite the fact that the graphs are visualised as being on a flat
surface, we apply indifference to this property of the visualisation.

To summarise, practice with various representations helps us to see the
different aspects of mathematical objects. Diagrams have some advantages
over symbolic notations in terms of representing the structure of objects at a
glance, in colours and connected shapes that resemble geometric figures. The
examples above demonstrate that the geometric response to the diagrams of
graphs makes it clear how we can naturally integrate additional geometric
machinery (geodesics, triangles, metric spaces, hyperbolicity). It is easier to
think of the geometric and topological properties of an object such as a graph
equipped with a diagram, than of an algebraic one equipped with algebraic
symbolism. As a result, a particular response to diagrammatic representations
facilitates the ongoing application and development of concepts.
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