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Abstract: There is a noticeable gap between results of cognitive neuroscientific research into basic
mathematical abilities and philosophical and empirical investigations of mathematics as a distinct
intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing
with this discrepancy.
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1. Introduction

Research in cognitive neuroscience on mathematics is largely focused on basic mathe-
matical abilities, such as counting, measuring, and spatial orientation. Higher mathematics
has remained by and large outside its scope; it is studied mainly from historical, social,
cultural, and philosophical perspectives. Thus, a gap appears between the results of the
former and those of the latter.

This paper is concerned with the question of how this gap can be bridged. The
leading idea is that a suitable conceptual framework can be culled from the work of
Wittgenstein on the philosophy of mathematics and, more generally, that on epistemic
practices. Wittgenstein’s analyses combine observations on natural abilities and (broadly)
cultural dimensions in a unified framework and connect with a 4E approach to cognition [1]
that transcends some of the limitations of neurocognitive research. By viewing the results
from cognitive neuroscience from this perspective, we gain insight both into the content
and scope of neuroscientific results and into the potential relevance of a Wittgensteinian
naturalistic approach in the analysis of mathematics.

The paper is structured as follows. We start with an overview of the results of cognitive
neuroscience on basic pre-symbolic numerical abilities (Section 2). Then we frame these
results in terms of the naturalistic elements of a Wittgensteinian framework (Section 3).
Next, we analyse the gap in terms of the role that training and education play in the
Wittgensteinian framework and relate the results to insights from developmental psychol-
ogy and other empirical disciplines (Section 4). In Section 5, we explore attempts to explain
the connection between basic numerical abilities and the socio-cultural development of
mathematics. Then we go back to some of Wittgenstein’s views on mathematics and their
naturalistic implications and look at their relevance for this issue (Section 6). We end with
conclusions and suggestions for further research.

2. Cognitive Neuroscience of Quantitative Competence
2.1. Pre-Verbal Cognition of Quantity

The early use and acquisition of numerals has been studied extensively with various
methods and much is still controversial or simply unknown. We discuss the most stable
findings and mention some controversies relevant for our argument.

Philosophies 2022, 7, 0. https://doi.org/10.3390/philosophies7040000 https://www.mdpi.com/journal/philosophies

https://www.mdpi.com/article/10.3390/philosophies7040000?type=check_update&version=1
https://doi.org/10.3390/philosophies7040000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/philosophies
https://www.mdpi.com
https://orcid.org/0000-0002-8966-8095
https://doi.org/10.3390/philosophies7040000
https://www.mdpi.com/journal/philosophies


Philosophies 2022, 7, 0 2 of 15

An ability to estimate small quantities of objects, called the ‘Approximate Number
System’ (ANS)1, has been demonstrated in animals, in pre-verbal children, and in cultures
without number language. Newborn babies react to relative differences between quantities
of visual objects or sounds. The ratio of the difference that can be detected increases
gradually with age, from 1:3 at birth to 3:4 in the fourth year up to the adult 7:8 ratio [3].
Anthropological studies of cultures without a symbolic number system confirmed that
the ANS is a universal human ability [4]. Many vertebrate animal species and insects
exhibit ANS abilities, and field studies show that animals estimate and compare quantities
of conspecifics or food items [5]. Moreover, animals can be trained to react to sums and
differences and even to the empty set (zero) [6]. A variety of experimental techniques
(fMRI; Event Related EEG Potentials, single neuron recordings) show increased neural
activity during numerosity estimation tasks in the human intra-parietal sulcus (IPS) and
the prefrontal cortex, and in homologous cortical regions of monkeys. Number neurons in
the latter respond selectively, but noisily, to the quantity of visually presented small sets [2].
It has been argued that the ANS is not dedicated to estimating discrete quantities but is
a manifestation of a general system for estimating continuous magnitudes, such as size
and duration. Walsh proposed a parieto-frontal system for guiding action by information
about space, time, and discrete quantity, extracted by the IPS from sensory input [7]2. A
recent review of the experimental evidence concluded that the ANS is selectively tuned
to discrete quantities [9], but others support the idea of a single system for discrete and
continuous magnitudes [6].

Besides the approximate number system, there is a mechanism for accurate and
rapid recognition of the exact quantity of small sets, called ‘subitizing’, described by
Wittgenstein as ‘groups of objects that can be taken in at a glance’ (PI, 9)3. Subitizing
may be a manifestation of a more general-purpose object tracking system (OTS), a neural
mechanism for tracking small sets of objects through space and time, constrained by the
capacity of the visuo-spatial short-term memory of about 3–4 items [3]. Subitizing is
demonstrated in animals and pre-verbal infants. It matures more rapidly than the ANS,
and around their first birthday, children reach the adult limit of 3–4 items4.

Neuro-cognitive aspects of geometry have been studied by similar methods as applied
for numerical abilities. Individuals without geometric language or schooling, such as young
children and adults from cultures without symbolic geometry or maps, can recognize
differences in geometrical features among sets of otherwise similar figures, for instance
between straight and skewed angles and between parallel and nonparallel lines [17]. The
impressive navigation and construction skills of many animals suggest that they possess
a kind of ‘natural geometry’. The discovery of neurons which become selectively active
when rats or humans visit certain locations are evidence of a cerebral positioning system5.
These observations inspired the idea of universal inborn ‘core systems of geometry’ [18].

2.2. Limitations of Neuro-Cognitive Research

Neuroscience mainly studies individual subjects, isolated from their natural and social
surroundings, and with a small range of possible movements. Brain imaging requires that
subjects lie in the narrow core of the MRI magnet where they can hardly move. Single
neuron recording in animals often requires restraining the subjects, and extensive training
before they accept the experimental conditions and perform the standardized tasks needed
to make reproducible measurements. These limitations may blind neuroscience to the
contextual and social dimensions of behaviour and the cognitive aspects of action and
interaction. Favouring perception experiments in individual subjects can reinforce philo-
sophically untenable intuitions, for instance that complex cognitive behaviour can be fully
explained by processes in individual brains6. It reproduces the neglect in the traditional
philosophy of mind of situational and social embedding and practices (‘enactivism’), which
are central considerations in Wittgenstein’s later thinking. Psychological experiments have
their own limitations. Training animals to react to sums or differences of quantities, inter-
esting as it is, does not show that they possess arithmetic skills. Looking time experiments
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with babies, as evidence of their reactivity to differences in quantities, are hard to replicate
and their interpretation is controversial [19].

Besides these experimental issues, neuroscience faces theoretical problems. One of
them is the tendency to construct overarching theories of how the brain or the mind works
based on limited data. Some of these theories contain dualist philosophical residues. A
key example is the widespread use of the term ‘representation’ to describe processes in
the brain. Uncritical use of the term confuses brain states with mental or symbolic content,
obfuscating the huge explanatory gaps between the two [19]7. Representational expressions
may be innocent metaphors, but they often reveal an underlying intuition that to know
something or to be able to act requires some sort of copy of (relevant parts of) the world in
the brain or the mind. This mentalist view, nowadays mostly disguised as brain talk, was
one of the targets of Wittgenstein’s criticisms.

Another problem is the habit to describe the results of experiments with animals or
preverbal humans using terms borrowed from symbolic mathematical knowledge. The
use of expressions such as ‘number sense’ [2] or ‘natural geometry’ [18] to characterize the
nonverbal ability to react to discrete or continuous magnitudes suggests that animals or
babies know about numbers or measures, or even Euclidian geometry8. However, geometry
is a mathematical technique applied to idealized pictures of reality, by far surpassing the
basic abilities observed in those experiments [21].

How to connect the nonverbal systems of quantity perception causally with the human
symbolic number system is an instance of the ‘symbol grounding problem’, a central
problem in the philosophy of mind and language and one that is far from solved [22].
There is a huge gap between a nonverbal grasp of quantity and the ability to use number
words and to count or measure. We will explore the development of symbolic abilities later
(Sections 4 and 5), but first we discuss how Wittgenstein’s views may help to understand
the nature of mathematics.

3. Wittgensteinian Naturalism and Mathematics
3.1. Wittgenstein and Naturalism

In recent years, there has been an increased interest in the role played by naturalistic
considerations in Wittgenstein’s work. Although there are dissident [23] and sceptical [24]
voices, it appears to be widely accepted that there are indeed such considerations, and
a variety of analyses of them can be found in the literature. Rule following is a central
topic [25], as are sensations [26], ethics [27,28], mathematics [25,29].

The status of Wittgensteinian naturalism has been questioned. Dromm argues that it is
‘imaginary’, by which he means that it is first and foremost a methodological tool and not
an appeal to facts about nature (human and/or physical) [23]. Baker [24] observes a tension
with Wittgenstein’s emphatic rejection of the idea that philosophy formulates theses and
provides explanations. However, other authors see a connection with Wittgenstein’s views
on science and philosophy [30,31].

A complicating factor here is that not all authors understand naturalism in the same
way. For example, Medina [32] makes a distinction between the kind of naturalism pro-
posed by Quine and ‘anthropologism’, as conceptualised by Jacquette [33], and, quite
rightly, dismisses the idea that Wittgenstein would endorse naturalism in the Quinean
sense. The scientism inherent in the latter is alien to Wittgenstein’s views [34]. Liberal
naturalism as defined by Macarthur [30]9 seems more akin to Wittgenstein’s conception10.

Most congenial with the undertaking of this paper is the view that ties Wittgenstein’s
naturalism to current 4E-theories of human cognition [36–38]. However, we will argue
that the social dimension, especially the role of socialisation and education, is at least as
important [39–41]11.

3.2. Wittgenstein and Practices

To provide a conceptual framework, we need to analyse where and how exactly
naturalistic considerations enter into Wittgensteinian analyses. We focus on On Certainty
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(OC), noting that although it is sometimes considered to represent a distinct stage in
the development of Wittgenstein’s thought [42], there is ample evidence that core ideas
of OC go back to his work from the 1930s, which justifies also using other work from
Wittgenstein [43,44].

The concept of a practice plays a central role in Wittgenstein’s later work12. Practices
can be of different kinds, and no general definition is forthcoming, but a couple of charac-
teristic features can be identified from Wittgenstein’s descriptions: practices come with ‘a
point’; they constitute meaning; they have both natural and social dimensions.

‘Having a point’ means that a practice allows for the question ‘Why do we engage in
this?’ It should be taken in a broad sense (Wittgenstein includes singing rhymes, telling
jokes (PI, 23)), but not everything goes. Practices constitute meaning in a broad sense, not
just of what we say but also of what we do, and thereby they normatively constrain our
doings and sayings. Practices themselves are determined by both social and cultural factors
as well as natural ones. The former account for socio-cultural diversity and historical
change, the latter for the stability and relative socio-cultural invariance of basic practices.

It is the third characteristic that provides a vector for naturalistic considerations. As
Wittgenstein indicates in OC13, practices are constituted by what he calls ‘certainties’.
The concept of a certainty is complex, but some shared characteristics are forthcoming.
First, certainties are not beliefs, they are not part of epistemic practices, and thus are not
subject to doubt, justification, and so on. Second, although some certainties have linguistic
counterparts, most of them are manifested in our ways of acting. Finally, certainties are
not characterised by content but by function. Something’s being a certainty is not a matter
of ‘what it is about’ but of how it functions: being exempt from doubt, assumed in the
background, constitutive of a certain practice14.

The framework of certainties that a community entertains constitutes its practices. As
is evident from contemporaneous diversity and historical change, there is a plurality of
such frameworks. However, this does not entail radical relativism: certainties, in their turn,
are constrained by ‘very general facts of nature’ (PPF, xii, 365): the way the world is and
the way we as human beings are, i.e., our physiology and basic psychology, constrain what
makes sense for us to entertain as certainties15.

The constraints that nature, broadly conceived, imposes can force some certainties
while only ‘suggesting’ others. The latter relate to the point of a practice, and it is here that
the possibility of change enters the picture. Nature may change, we may change, our needs
may change, our knowledge of the world changes, and that may result in a change in our
practices. The purpose they serve may become obsolete, or different ways of achieving the
purpose may become available.

3.3. Mathematics as Practice

What does mathematics as practice come to16? In the end, this calls for an extensive
analysis of all that Wittgenstein has written about mathematics, but that is beyond the
scope of this paper. Here we limit ourselves to reviewing the three general characteristics
of practices outlined above, and then examine whether the concepts of certainty and
natural constraints can fit into a conception of mathematics that can accommodate a natural
dimension.

‘Having a point’ is a key consideration for Wittgenstein17. What makes a practice one
of mathematics is not the use of a particular set of expressions or symbols, or of operations
on such. A fortiori it is not a matter of these expressions referring to a particular kind of
entities. Actions—including, but not limited to, the use of expressions—are mathematical
because they serve a particular kind of purpose. This is most obvious in the case of basic
counting and measuring. These actions are what they are used for—concrete, mundane
purposes that are shared across various practices18.

For higher mathematics ‘having a point’, is much less obviously practical in the
mundane sense. Here, the distinction between ‘pure’ and ‘applied’, which does not play
any role at the level of basic counting and measuring, becomes relevant. One could surmise
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that the point of applied mathematics is a derivative of the points of the practices in which a
particular piece of mathematics (method, result) is applied. In pure mathematics, the point
is internal to the practice itself19. A particular area in pure mathematics comes with its
own, self-generated standards for what makes sense, what is important, what constitutes
progress and success, and even beauty (RFM I, 166–167). In that respect, the practices of
pure mathematics resemble certain artistic practices—an intuitive association that is not
uncommon.

‘Constitute meaning’ is quite clear in the case of higher mathematics: what makes a
particular procedure or statement meaningful is internal to the practice. For basic counting
and measuring that may be less obvious, but this might very well be due to their being
dispersed practices. After a certain stage of initial training, we hardly ever count or measure
just for the sake of counting or measuring. Normally, counting and measuring occur as
elements in a more encompassing practice 20.

Regarding ‘natural and social dimensions’, viewing mathematics as a practice means
assigning it an intrinsically social dimension: mathematics is learned, taught, practiced.
This manifests itself in pluralism, and Wittgenstein takes that quite seriously. The case
of the wood sellers who price their ware by the ground surface of a pile, and not by its
volume (LFM, 202; RFM, I, 147–151), is a prime example of a practice involving ‘counting
and measuring’ that is quite different from ours, and hence not readily understandable.
Wittgenstein’s insistence that the rationality of their practice cannot be judged by the criteria
that are internal to our practice clearly shows his commitment to pluralism [57].

Finally, what about the natural dimension? The key here is the observation that in
Wittgenstein’s analysis, a practice always assumes a shared set of capacities, to enable teach-
ing and learning, and to validate and maintain a practice as something that a community of
people is meaningfully engaged in. Without these natural abilities and their development,
we could not enter the stage of learning more complex behaviour21. In the next sections,
we will look at scientific findings that are consistent with this view.

4. Training and Education
4.1. Learning Number Names and Counting

The pre-symbolic numerical abilities, subitizing and the ANS, which we share with
many animal species, are mostly innate, but mastering the correct use of symbolic (oral
or written) numbers requires a long process of training and learning. Around their third
birthday, most children correctly use the word ‘one’ and many can recite the numerals up
to ten, but they cannot use them to count. About a year later, they usually can count small
sets in the subitizing range, up to four. Counting to 10 is generally achieved around 5 to
6 years22. Correct use of the number words, just like mastering colour words, develops
slowly compared to the rapid increase in the general vocabulary. These delays may be a
consequence of the so-called ‘segregation problem’ [59]23. Children are confronted with
countless (literally) different set sizes and varieties of hues. Properties such as number
or colour are not encountered independently but immersed in a large manifold of other
properties. This precludes simple association learning, such as by ostensive teaching
(pointing and naming)24. Ramscar et al. [59] argue that children learn abstract concepts by
competitive discrimination, a mechanism of prediction and error to match the words they
hear with the appropriate selection from environmental cues25.

An area of controversy is whether learning to count is dependent on or secondary
to learning language. One theory, based upon Chomskyan linguistics, is that suppos-
edly innate grammar rules or principles such as place-coding are also applied in number
systems. The idea that complex rules are somehow genetically encoded in the neonate’s
cerebral wetware is biologically implausible and is largely abandoned. Nonverbal quantity
cognition and its early development are probably innate—as are, of course, the neural
networks, which in humans continue to develop and enable the enormous learning capacity
of children. This could be called ‘weak nativism’ as opposed to Chomskyan strong nativism.
Rejecting strong nativism entails that more explanatory work must be attributed to devel-



Philosophies 2022, 7, 0 6 of 15

opmental mechanisms and learning, such as anatomically developing neural networks
and changing functional (synaptic) connectivity. Of course, language is indispensable in
learning more abstract concepts26.

4.2. Learning Experiments ‘In Silico’

Zorzi and Testolin examined the issue of nativism versus early learning of nonsymbolic
number cognition in two computer simulations [62]. In a simulated evolution (A), simple
‘organisms’ living in a limited world had a small neural network that recognized food
units and enabled movements to find and consume them. An intermediate network layer
connecting input and output could mutate at random. Selection pressure for finding more
food units resulted in offspring that was able to recognize the number of food units. In a
second experiment (B), a single multilayer neural network was exposed to arrays of different
amounts of dots. The network spontaneously learned to respond to the numerosity of the
stimuli with minimal instruction. Its behaviour mimicked human and animal findings,
such as a gradual increase in accuracy similar to that of the ANS. After training, number
selective neurons emerged in intermediate network layers. Their response pattern to
discrete quantities of dots closely resembled that of neurons in the IPS of monkeys.

Both experiments are supportive evidence for two explanatory theories of nonsym-
bolic number recognition: (A) evolution and nativism, and (B) spontaneous learning with
minimal instruction. Both simulations resulted in systems with a number sense, but system
B agreed better with behavioural and experimental data in animals. These observations sup-
port the view that both evolution and postnatal development can be conceived as learning
processes, on vastly different time scales [63]. In humans, these processes result in limited
innate abilities and extensive postnatal maturation and learning ([64], pp. 312–315), but the
relative contributions of nature and nurture to numerical cognition is controversial [65].

4.3. Learning to Calculate

After nonverbal numerical cognition and informal pre-school learning, we enter the
domain of formal education. In what follows, we review some observations which we
think are relevant for the connection with Wittgenstein’s views. Having mastered counting
to about 10, children enter primary school and start the long process to master elementary
arithmetic and geometry. For those of us who forgot how much we learned, we summarize
what children are supposed to master at the end of primary school, at 12 years of age in
most countries (Table 1).

Table 1. Global educational objectives for mathematics at the end of primary school in the Nether-
lands. Extracted from [66].

Arithmetic
Names of numerals; digits; decimal position system and notation; concept of zero; number

sequence and number line; ordinal relations; insight in orders of magnitude up to ca. one billion;
estimating; fractions, decimals, and conversion ( 3

4 = 0.75, etc.); rounding; calculating (+ − × ÷)
with small numbers; multiplication tables to 10 × 10 by heart; using an electronic calculator; order

of arithmetic operations, grouping, brackets.
Geometry

Length, surface, volume (estimating, measuring, calculating); metric system; temperature; weight;
time (units and intervals, clock, calendar); instrument readings; maps, scale, distance, route

planning; simple 3D objects; 2D <> 3D projections; simple formulas (velocity, etc.); basic graphs
and tables; symmetry; tiling.

Abilities such as reciting the multiplication tables are taught by training, in Wittgen-
stein’s strong sense of ‘Abrichtung’27. For competencies such as basic arithmetic, the
exact nature of the learning process is less evident. Adding two numbers a child never
added before requires mastering the procedure of addition, but explaining beforehand the
procedure or the rules to be followed will not work, just as we do not learn language by
first having the grammar explained28. Children start with small and easy sums and a lot
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of drill and practice, and not by first being taught general principles, such as the law of
commutativity29. This results in their ability to follow (simple) rules, which is still differ-
ent from them having acquired knowledge of mathematical facts30. When a child finally
masters basic arithmetic, we say that it knows the principles. It has learnt the procedure,
not before learning but while learning. As Wittgenstein observed, ‘We got to know the
nature of calculating by learning to calculate’ (OC, 45). This is a special kind of knowledge,
a practical know-how, rather than factual knowledge, because few children will be able
to explain the principles, even though they master them31. It is about knowing how to do
something, which is an ability that is not derived from having acquired a prior, innate, or
mental set of rules or principles. To know ‘how’ instead of to know ‘that’ is at the core of
Wittgenstein’s rule-following considerations (PI, 138–242)32.

5. Second Nature: The Socio-Cultural Acquisition of Symbolic Abilities

As we enter more complex domains of human behaviour, neuroscientific explanations
fall short, and the biggest challenge to any kind of naturalism is to provide explanations at
the socio-cultural level. The explanatory gap between biology and a cognitive achievement
such as mathematics, which is transmitted, refined, and expanded over many generations,
seems unbridgeable. We discuss two approaches which show how naturalistic explanations
of cultural achievements could be developed but also demonstrate the huge lacunae in that
kind of understanding of complex social behaviour and culture33.

5.1. Connecting Culture to Brains

‘Cultural recycling theory’ proposes that symbolic cognition and behaviour reuses
pre-existing cerebral networks, which developed through pre-cultural evolutionary mecha-
nisms [67]. The idea is that culturally invented and transmitted tools, such as the symbolic
number system, make use of cerebral systems which had developed to serve biological
functions. The central argument for this theory is the existence of cortical regions which are
indispensable for certain symbolic abilities. This causal connection cannot be explained by
evolution because the cultural development of approximately 6000 years is too brief for
adaptation of the brain by natural selection. Therefore, some cortical structures, having
first slowly developed by natural selection to enable certain biological functions, become
hubs for rapid cultural developments. Such a change in function of a structure to enable
new capacities, called ‘exaptation’, is a well-established biological phenomenon34.

The strongest case for cultural reuse is a specialised region in the left occipito-temporal
cortex, the Visual Word Form Area (VWFA). It is consistently activated by reading letters
and words, across different cultures and writing systems. Injury to this area or its cortical
input (disconnection) damages the capacity to read, while writing and speech are preserved,
a condition called ‘pure alexia’. The VWFA is closely linked to cortical areas involved in
high-resolution vision and object recognition. The hypothesis is that the VWFA, by virtue
of its strategic position and its original function, is optimally prepared to serve as a cortical
centre for reading [67]. Another example is the consistent involvement of the intraparietal
sulcus (IPS) in nonverbal quantity perception, across cultures and primate species. This
cortical area might be reused in the development of symbolic number processing.

These theories are highly speculative and hard to confirm empirically. The cultural
recycling theory leans heavily on the specificity of the VWFA for reading. It is, however,
involved in many other capacities, such as auditory word repetition and colour naming
and is, of course, an integral part of larger multifunctional networks. Price and Devlin [68]
therefore called the concept of a specialized VWFA a myth. Be that as it may, we think the
cultural recycling theory presently has too many loose ends to be a plausible candidate for
closing the biology–culture gap.

5.2. From Tool Use to Symbol Manipulation

Exaptation presupposes that some cortical networks are equipped to accommodate
rapidly evolving cultural symbolic abilities. It can however not explain the emergence of
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symbolic systems per se, the socio-genetic question. A promising, enactivist approach of
this problem is based upon a historical reconstruction of the early development of number
systems [69]35. This approach, called ‘cognitive archaeology’, tries to reconstruct the
emergence of symbolic cognition from simple practices and techniques. External tools for
counting, such as fingers, pebbles and tallies are plausible candidates for primitive external
number systems. Tally sticks have the advantage of providing a record, and very old,
possibly prehistoric specimens have been found. Mesopotamian clay tokens of different
shapes (later called ‘calculi’), dating from the fourth millennium BC, made it possible to
record larger numbers by grouping. Tallies and tokens function as an external memory,
spatially and temporally distant from the originally counted objects, substantial abstractions
compared to finger counting. Archaeological findings suggest a gradual transition from
clay tokens to images of the tokens on the outside of the clay containers used to keep them,
and from there to simple inscriptions. The latter were intermediate stages towards the
first written number systems in cuneiform [69]. This process demonstrates a plausible
development of a symbolic number system from external counting tools. A comparable
enactivist account has been proposed for the emergence of abstract geometrical concepts,
such as parallel lines, square angles, circles, etc., from external tools used in measurement
and construction [21].

One big question of course remains: How can external counting systems, first material
and proximal to the objects to be counted, later abstract, distal, and symbolic, give rise to
mental symbolic operations such as calculating in the head? Cognitive archaeology cannot
answer this, but we think a radical enactivist account could be developed to provide natu-
ralist explanations of mental phenomena: external tools as precursors of external symbols,
which subsequently become mental ‘off-line’ symbolic, tools. This process may occur on
the timescale of cultural development but also on the timescale of individual development.
It is tempting to speculate that the cultural (phylogenetic) development of societies is
reproduced in every child on the ontogenetic timescale [37]36. If the phylogeny–ontogeny
analogy has any merit for the cultural domain, then the relevant ontogenesis is not prenatal,
but postnatal—the long process of acculturation, of learning to read, write, count, and cal-
culate. For oral language, the recapitulation analogy fails because the child grows up in an
environment already saturated with language, slowly developed during the phylogenetic
eons before it was born.

Despite these differences between the phylogenetic and ontogenetic processes, enac-
tivism may help to explain the acquisition of symbolic capacities on both timescales. Most
children start counting using their fingers [70] and slowly progress towards the culturally
required level of arithmetic. Only after mastering counting with external tools do they
become able to use numerical symbols and subsequently perform mental arithmetic. As
Wittgenstein observed, ‘Only if you have learnt to calculate—on paper and out loud—can
you be made to grasp, by means of this concept, what calculating in the head is’ (PPF, xi,
277). This is of course not a theory of how mental calculation develops from using external
tools, but a meta-observation. We can only grasp what mental calculation is if we first have
learnt to calculate, by manipulating the external symbols on paper and ‘out loud’. It is an
imaginative statement (in Dromm’s [23] sense), which can, however, be transformed into
a naturalist view about the enactivist origin of mental processes. Arguably, Wittgenstein
makes this very move in the same paragraph when he observes the following: ‘You can
only learn to calculate in your head by learning to calculate’ (PPF, xi, 304). In PI 385, he
asks this: ‘Would it be imaginable for someone to learn to do sums in his head without
ever doing written or oral ones?’ The philosophical error, one might say, the main target of
Wittgenstein’s critique, is that the order is reversed. Instead of action first (‘in the beginning
was the deed’; OC, 402), the philosophical tradition had put the mental first.

6. Wittgenstein and Mathematics

That mathematics holds a special place in Wittgenstein’s oeuvre may not be obvious,
as much of it deals with a whole range of other topics. However, Wittgenstein himself was
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quite insistent, stating about himself that “Wittgenstein’s chief contribution has been in the
philosophy of mathematics” ([71], p. 466).

If one works through Wittgenstein’s remarks or reads the reports of his lectures,
one is struck by the heterogeneity of the topics that he addressed, which range from
observations about basic counting and addition to remarks on Cantor’s diagonalisation
argument and Gödel’s incompleteness theorems. Puzzling as this may be for a reader
trained in the philosophy of mathematics, for Wittgenstein, apparently this motley of topics
all belonged together.

A persistent element in Wittgenstein’s thinking about mathematics is his radical
antirealism, which can be traced from the Tractatus37 up to his latest remarks. When
he famously compares the treatment of philosophical questions with the treatment of
an illness, the exemplary disease is mathematical realism (PI, 254–255)38. His principal
answer to mathematical realism is a particular kind of constructivism. Mathematicians
do not discover facts waiting somewhere to be discovered; they invent them (RFM I,
168). The interpretation of his view of mathematical propositions—equations, theorems,
etc.—is controversial, but one picture transpires: he compares them to imperatives, or
normative rules of expression, with a remote empirical origin [29,73]. They are ‘invented to
suit experience and then made independent of experience’ (LFM, 43). Thus, Wittgenstein
characterizes arithmetical propositions as empirical propositions hardened or fossilized into
rules or paradigms (RFM VI, 22–23; OC, 657). These rules are neither arbitrary nor necessary;
our experience, i.e., nature and our access to it, provides the basis for a variety of practices.
Thus, the unassailability of mathematics is not due to its subject matter but to its function;
mathematical propositions are certainties (OC, 650–655) that constitute practices. Like the
rules of chess, we do not make them up, but we have inherited them (LFM, 143)39, and
from that perspective, mathematics can be conceived as an anthropological phenomenon
(RFM VII, 33). The constructivism of Wittgenstein, with the remote origin of mathematical
expressions being located in experience and practices, and the anthropological view on
their function, is a useful point of departure for developing a naturalist conception of
mathematics that can accommodate the empirical findings that we reviewed above.

Another naturalistic dimension originates with Wittgenstein’s frequent referrals to
teaching and learning. Although he explicitly denies seeking explanations or ‘doing natural
history’ (PI, 109; PPF, xii, 365), he repeatedly refers to how children learn words and
arithmetic. Some of these remarks can be interpreted as imaginary examples that are used
to change the readers’ way of looking40. However, many of his pedagogical observations
also serve, as we read them, to underscore Wittgenstein’s views of the nature of language,
counting and arithmetic as tools that we must learn to use. When he sketches a simple
language in a toy world (PI, 1–10), he observes that ‘a child uses such primitive forms of
language when it learns to talk’ (PI, 5)41. It learns not through explanation but by training
(‘Abrichtung’). Training in this simple world often is by ostensive teaching: pointing to
objects, uttering their names and learning their use (PI, 6). Even the first numerals can be
taught by ostension because of our ability to perceive small ‘groups of objects that can be
taken in at a glance’, without counting. According to Wittgenstein, ‘Children do learn the
use of the first five or six cardinal numerals in this way’ (PI, 9). This is not an imaginary
example but an empirical observation by someone with actual teaching experience with
children of that age42.

These Wittgensteinian perspectives can, in our view, be developed into a proto theory
of naturalized mathematics. Such a theory must globally explain how an individual learns
numbers, counting and calculating as a necessary base for acquiring more advanced mathe-
matical skills, but also how entire cultures developed mathematics as we know it. Framed
in biological terms, it should sketch an ontogenetic and phylogenetic (including cultural)
development which could explain the mathematical abilities of individuals and societies.



Philosophies 2022, 7, 0 10 of 15

7. Conclusions and Further Research

The scientific results we summarized above may form the nucleus of the develop-
ment of a naturalistic conception of mathematics. The philosophical groundwork for such
explanation, we argued, has been laid by Wittgenstein’s insights, which demystified the
traditional aura of mathematics as a system of eternal, unassailable truths. A Wittgen-
steinian naturalism, which has both natural and socio-cultural dimensions, may provide
a suitable framework for analysing how mathematics works, both at the basic level of
counting and measuring, as well as in the increasingly complex and abstract practices of
higher mathematics.

Of course, it would be odd to suppose that all of mathematics can be naturalised in
one of the senses discussed in this paper, but one would like to have some grasp of what
makes a mathematical subject naturalisable (or not).

To this end we introduce an admittedly coarse distinction between mathematics that
is primarily concerned with quantity, and mathematics dealing with structure. This is no
hard and fast distinction, but the following will do for our purposes.

The first type of mathematics (which dominated until Gauss) looks at mathematical
representations of extensive and intensive observable magnitudes (for example, speed).
These representations are typically computable functions, reflecting their intended use in
producing scientific, quantitative predictions. Computable functions can be conceptualized
as formulas43. Their relevance to our theme is that computability provides an intersub-
jective constraint on the meaningfulness of definitions and theorems; if one adopts the
Church–Turing thesis (as most mathematicians do), then computability is unique and is a
constitutive part of a practice.

This is very different for the part of mathematics that falls under the heading of ‘struc-
ture’. Here one proceeds by abstraction, isolating common features of systems of quantities.
The natural numbers N and the rational numbers Q have very different properties with
respect to the ‘less than’ order, and N is a part of Q but not conversely. However, viewed
purely as sets and ‘forgetting’ all other structural properties, N and Q are equivalent in
the sense that there is a bijection between them. One may take the existence of a bijection
between sets A and B as defining the relation ‘A and B have the same cardinality’, taking
one’s cue from the case where both A and B are finite. Doing so entails that the natural
numbers N and the rational numbers Q have the same cardinality, over-riding the part–
whole relationship. There is nothing inevitable about this definition, though; it is possible
to construct a theory of cardinality of (denumerably infinite) sets in which Q does have a
larger cardinality than N [48]. We are now in the realm of creativity and freedom, aided
by a good deal of powerplay: the freedom of fellow mathematicians to propose their own
definitions is not always recognised44.

This is just one way of approaching the multi-faceted nature of modern mathematics,
which is really a conglomerate of many different practices, rather than one, homogeneous,
intellectual discipline. Despite this diversity, there are also commonalities. All mathe-
matical practices have socio-cultural dimensions, which accounts for the pluralism of
modern mathematics. However, there are also basic mathematical abilities, grounded in
physical and human nature, that appear everywhere, as dispersed practices in the context
of complex integrative practices [45]. As such, they may have different roles to play in
different settings, but they do create a naturalistic dimension of even the most advanced
mathematical practices.

Author Contributions: Conceptualization, J.S., M.S. and M.V.L.; investigation, J.S., M.S. and M.V.L.;
original draft preparation, J.S. and M.S.; writing—review and editing, J.S., M.S. and M.V.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Philosophies 2022, 7, 0 11 of 15

Notes
1 Also called ‘number sense’ [2]. We regard this expression as shorthand for a perceptual system enabling organisms to be-

haviourally react to (‘recognize’) different discrete quantities of objects.
2 Leibovitch et al. emphasized the difficulty to separate in experiments the numerosity of discrete quantities (dots, sounds) from

the magnitude of the stimulus (circumference, surface, duration), which could make the question of the selectivity of the ANS
for numerosity unanswerable. Their paper attracted more than 30 pages of critical peer comments [8]. Most experts stick to the
concept of a specific pre-verbal number sense.

3 Throughout we refer to Wittgenstein’s works by the usual acronyms: ‘PI’ for Philosophical Investigations [10]; ‘PPF’ for
Philosophy of Psychology: A Fragment [10]; ‘Z’ for Zettel [11]; ‘OC’ for On Certainty [12]; ‘RFM’ for Remarks of the Foundations
of Mathematics [13]; ‘LFM’ for Wittgenstein’s Lectures on the Foundations of Mathematics [14].

4 Whether subitizing is continuous with the ANS is controversial. Its speed and accuracy versus the slower and inaccurate ANS
argue for separate systems [15]. In fMRI experiments, subitizing and ANS tasks activate different regions in the parietal cortex [3].
However, an information–theoretical model suggests a continuity between subitizing and the ANS and accurately predicted
experimental results in humans [16].

5 John O’Keefe, May-Britt Moser and Edward Moser discovered the place and grid cells (Nobel prize 2014).
6 According to Wittgenstein, ‘One of the most dangerous of ideas for a philosopher is, oddly enough, that we think, with our heads

or in our heads.’ (Z, p. 605).
7 Bennet and Hacker ([20], p. 143) regard the concept of representation as ‘a weed in the neuroscientific garden, not a tool—and the

sooner it is uprooted the better’. However, like most weeds, it proves to be quite resilient.
8 Dehaene et al. [17] for instance, reporting their experiments with Amazonian people who lack symbolic mathematical concepts,

concluded that ‘core geometric knowledge, like basic arithmetic, is a universal constituent of the human mind’.
9 According to Macarthur ([30], p. 46), ‘a metaphysical quietist version of liberal naturalism, one that avoids supernatural

theological commitments in philosophy as well as refusing to give science an unwarranted ontological significance’ This view
not only rejects the metaphysics of ‘spooky stuff’ such as souls, eternal platonic forms, etc., but also denies scientism and
physicalist reductionism. Nature in this view is not only what can be described by physics or biology but includes ‘human
nature’, socialization, education, and our daily practices.

10 Cf. Stkohof and Lambalgen [35] for an argument to that effect in the context of an analysis of naturalism in linguistics.
11 A referee asked us why we have not engaged with the vast corpus of Piagetian studies on the development of logico-mathematical

knowledge. The main empirical claim of these studies is that cognitive maturation consists in the acquisition of structures (for
example mathematical structures such as groups, logical structures such as propositional logic). The main theoretical claim is
that the acquisition of these structures is driven by biological processes aiming at homeostasis between an organism and its
environment. This is a multi-factorial dynamic process: the organism acts on the environment, monitors the effects of its actions,
and adjusts its behaviour accordingly, and all this against the background of biological maturation. The interaction of these
factors is bound to generate discrepancies between the organism’s epistemic state and what it discovers in the environment,
and Piaget’s theory claims that the resolution of these discrepancies takes the form of a determined progression of identifiable
developmental stages. This claim has been a focal point of criticism. Piaget’s theory of cognitive development is thus an example
of a domain-general theory, whereas naturalism in the Wittgensteinian mode tends to be domain-specific. More importantly,
Piaget downplays the role of language, whereas this is obviously a core issue for Wittgenstein. Since our intention is to explore
the Wittgensteinian perspective and to try and link it to cognitive scientific results, we have left the comparison with Piaget’s
naturalism (or more broadly, Kantian forms of naturalism) for another occasion.

12 Wittgenstein uses the term ‘language game’, but ‘practice’ is a more neutral term adopted in work on practice theory that is
inspired by Wittgenstein (cf., e.g., [45]).

13 Similar considerations, though not phrased in terms of certainties, can be found elsewhere, e.g., in LFM, RFM, PI, PPF.
14 Hence the term ‘hinge proposition’, which goes back to OC 341, 655. For more on the specific approach in epistemology, called

‘hinge epistemology’, that OC has given rise to see for instance [46,47].
15 In PI 206, Wittgenstein refers to this as ‘shared human behaviour’. The interplay between these natural constraints and various

socio-cultural parameters then accounts for the heterogeneity of certainties and different levels of entrenchment. The terms
‘constrains’ and ‘constraint’ should not be over-interpreted: we do not mean to suggest that what we call ‘constraints’ serve to
carve out a specific subdomain from a larger whole that is of the same nature. ‘Natural constraints’ indicates those features of
nature (including human nature) that are in a sense ‘inescapable’ and that in virtue of that specify a space of possible frameworks
of certainties that humans may entertain. To put it differently, there is a multiplicity of world views that humans may have, but
all of them are views of the same world and are entertained by humans that share basic features, and because of these two factors,
these world views will share certain characteristics.

16 Recent years have seen an increased interest among philosophers and social scientists in the practice of mathematics, i.e., in the
social structure of mathematical communities, practices of teaching and training, the pragmatics of proof, the situatedness of the
development of mathematical theories, and so on. Cf., e.g., [48–50]. A recent book length treatment is Wagner, 2017 [51]. Some of
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the work in this area takes inspiration from Wittgenstein (for example [51–54]. The approach taken by these studies is largely
complementary to the perspective of cognitive science that is our focus here, which is why an explicit comparison is beyond the
scope of this paper and must be left for another occasion.

17 The example of the wallpaper decorators (LFM, 36), who produce wallpaper that is adorned with complex proofs of deep
mathematical theorems but who lack any knowledge of mathematics, provides an illustration: what are proofs to us are
decorations to them; they don’t engage in mathematics: their practice has a completely different point.

18 Counting and measuring is relevant in a wide variety of practices. That makes them more akin to what Schatzki ([45], chapter 4)
calls ‘dispersed practices’, as opposed to ‘integrative practices’. One important distinction is that the latter have an intrinsic telos.
Interestingly, Schatzki argues that dispersed practices adapt to the integrative practices in which they occur. This might be part of
an explanation of the pluralism that Wittgenstein endorses.

19 See also [55] for the position of non-applied mathematics in Wittgenstein’s descriptions.
20 There is ‘obsessive’ counting, but that serves a different purpose; cf., also the case reported by Oliver Sacks of the savant twins

that communicate prime numbers [56]: has that anything to do with primes?
21 Cf., e.g., Wittgenstein’s reference to ‘the common behaviour of mankind’ in PI 206. His investigations being conceptual rather

than empirical, Wittgenstein makes no attempt to come up with an empirically justified further specification. Various remarks
throughout his later work do provide some clues, but for reasons of space we cannot go into that here. The interested reader may
consult the literature referred to in Section 3.1.

22 To be able count sets beyond the size of 4, children are supposed to have grasped that the last numeral in the counting sequence
is the number of items in the set. Mastering this ‘cardinality principle’ is assumed to require ‘knowing’ the following procedural
principles: (a) the number sequence is stable; (b) number words must be matched one-to-one with objects in a set and (c)
irrespective of the kind of objects (abstraction); (d) the order of counting is irrelevant ([58], p. 31). This ‘knowing’ of procedural
principles may well be a rational reconstruction which has nothing to do with what is going on in the mind or brain.

23 ‘The question (...) is why young children, who have had some understanding of quantity since they were neonates, wait until
they are five to six years old to fully understand number’ ([60], p. 186).

24 A point that is also argued by Wittgenstein, cf., PI 26 ff.
25 A kind of learning by trial and error is also described by Wittgenstein: When someone learns a new language in a strange country,

he ‘will sometimes learn the language from ostensive definitions they give him; and he will often have to guess the meaning of
these definitions; and will guess sometimes right, sometimes wrong’ (PI, 32).

26 For example: Young children without numerical language can make simple ordinal (less, more) numerical judgements for smal
numbers, but their achievements improve after they have mastered verbal counting [61].

27 The German term ‘Abrichtung’ is normally used for the training of animals ([29], p. 161). Wittgenstein also uses it for teaching a
mathematical rule, and an expression like ‘365 × 428′ is even called an ‘order’ (RFM VI, 19–20).

28 The idea to first learn the principles or ‘foundations’ motivated the ‘new math’ educational reform in the 1960s, which was a
failure.

29 Wittgenstein describes the teaching of abstract concepts like ‘regular’ or ‘same’ to someone who only speaks French: ‘...if a person
has not yet got the concepts, I shall teach him to use the words by means of examples and by means of practice.—And when I do
this I do not communicate less to him than I know myself’ (PI, 208).

30 Cf., e.g., OC 113, where Wittgenstein makes the point that commutativity of addition is typically something that in teaching basic
arithmetic is treated as a rule, not as a (mathematical) fact. Facts are things you can claim to know, in which case you need to be
prepared to back them up by giving grounds. In this case, e.g., by providing a proof in some axiomatisation of arithmetic. But
that comes long after (if at all) learning to count, to add, and so on. Thus, the status of a + b = b + a depends on how it functions
in a particular setting. And if the setting is that of teaching, it simply functions as a rule that guides behaviour.

31 Calculating prodigies, ‘who get the right answer but cannot say how. Are we to say that they do not calculate?’ (PI, 236).
The association of knowledge and understanding with an ability extends beyond practical know-how and understanding and
includes propositional knowledge. Quite generally, Wittgenstein claims, the grammar of the word ‘know’ is related to that of ‘can’
and ‘be able to’: the mastery of a technique (PI, 150).

32 ‘And hence also ‘obeying a rule’ is a practice. And to think one is obeying a rule is not to obey the rule. Hence it is not possible
to obey a rule ‘privately’ (PI, 202). Following a rule is part of a practice, and as such it is taught and subject to social norms.
This summarizes Wittgenstein’s anti-mentalism and his enactive and socially embedded view. Important to note here is that the
rule-following considerations occur not only in PI, but also in RFM.

33 A disclaimer: we will not even try to summarize the huge literature in this field, which ranges from philosophy to psycholinguis-
tics, social and evolutionary psychology, game theory, sociology, economics, etc. We select a couple of in our view promising
approaches to naturalize conceptual levels of human mathematical cognition.

34 Already suggested by Charles Darwin, who proposed that the swim bladder of fishes developed into an organ of respiration in
land animals.

35 Inspired by the work by Overmann and Malafouris. We use Zahidi’s summary.
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36 Inspired by Haeckel’s ‘recapitulation theory’ in biology: the phylogenetic development of a species is reproduced in the
embryological development of the individual. Such analogous pictures are seductive but often incorrect. Biological phylogenesis
and ontogenesis differ radically in their causal mechanism: Phylogenesis is driven by the mechanism of natural selection;
ontogenesis (at least prenatally) by the genetically programmed growth and differentiation of the embryo.

37 TLP 6.21: ‘A proposition of mathematics does not express a thought’. ‘Thought’ is used here in the Fregean sense, it does not refer
to a mental entity.

38 In LFM he also rejects other positions which were mainstream in the 20th century philosophy of mathematics, such as Frege-
Russellian logistic foundationalism (LFM 260-66), formalism (112, 142-3), intuitionism (237) and finitism (141). His views of the
latter three ‘isms’ are more nuanced and complicated than we can summarise here [72].

39 The superficial similarity of mathematics to games might lead to formalist conclusions, but this would be misleading and even
‘very dangerous’ (LFM, p. 142–143).

40 As he declares for instance in PI 144.
41 Wittgenstein’s picture of early language acquisition during joint activities is supported by psycho-linguistic observations: the

‘social-pragmatic account of word learning’ ([64], p. 114).
42 See Bartley III [74] for Wittgenstein’s short-lived career as an elementary school teacher.
43 In the case of functions which take real numbers as values, ‘computable’ means that the number can be approximated in a

computable manner to any desired degree of accuracy.
44 Cantor, who took the existence of a bijection as definitional for equicardinality and then applied his diagonal argument to

construct a hierarchy of infinities, wrote scathing criticisms of DuBois Reymond’s work which took part–whole relationships as
the starting point of his theory of orders of infinity.
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