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The operational semantics of Urquhart [1972a,b] is a deep and important part
of the development of relevant logics.1 Formally, the operational semantics pro-
vided one of the first intuitive model-theoretic interpretations for the implication
of relevant logics.2 Philosophically, the operational models have a natural inter-
pretation in terms of combining information: The elements of the domain are
pieces of information, and a piece of information verifies an implication when-
ever combining it with any piece of information verifying the antecedent results
in a piece of information verifying the consequent. This relation of verification ex-
tends naturally to conjunction and disjunction.3 Completeness results are avail-
able as well.4

The operational frames come with a set of postulates, many of which can be
dropped.5 Dropping postulates, of course, results in different sets of validities.

*This is a preprint of an article in the OCL volume for Alasdair Urquhart. Please cite the published
version, as some differences may exist.

1See Dunn and Restall [2002] and Bimbó [2006] for more on the general area of relevant logics.
2The period when the operational semantics was developed was quite active for the area of mod-

els for relevant logics, with the publication of Maksimova [1969], Routley and Meyer [1972a,b, 1973],
and Fine [1974]. See Bimbó and Dunn [2018] and Bimbó et al. [2018] for more on some of the early
contributions to the area, including discussion of an early manuscript by Routley, published as
Ferenz [2018]. Scott [1973, fn. 33] and Chellas [1975, 143, fn. 17-18] note that Scott had developed
a version of ternary relational models earlier but had not published it. I thank Lloyd Humberstone
for the references of the preceding sentence.

3The extension to conjunction is arguably more natural than the extension to disjunction, a
point raised by Humberstone [1988]. Some information can reasonably verify a disjunction by ex-
haustively splitting into two portions, each of which verifies one of the disjuncts, as opposed to the
standard clause used by Urquhart, namely that a disjunction is verified by some information when
one or the other disjunct is. I will briefly return to Humberstone’s approach to disjunction in the
next section.

4See Fine [1976a] and Charlwood [1981]. It should be noted that Urquhart [1972b] already had
completeness results for the implicational logics.

5Urquhart [1972b,a] also considered extending the frames with modal elements, adding a set
of possible worlds and a modal accessibility relation on them in order to interpret the implication
of the logic E of entailment. The modal accessibility relation for E obeys the usual S4 conditions,
namely reflexivity and transitivity. Urquhart raises some questions about different logics resulting
from different conditions put on the modal accessibility relation. Fine [1976b] proves a completeness
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The full set of the standard postulates, which will be set out shortly, give the oper-
ational models the structure of a join semilattice. The models obeying the full set
of postulates will be called semilattice models.

Operational models have been studied by others in other contexts. Došen [1988,
1989] studies general groupoid models of substructural logics and connects them
with sequent systems. Buszkowski [1986] uses groupoid models to study Lambek
calculus.

The goal of this paper is to set out another view on semilattice semantics. Re-
stall and Standefer [20xx] provides a new approach to frame semantics for rel-
evant logics. Our approach uses a binary relation between collections of points
and points, rather than the standard ternary relation among points.6 For this pa-
per, I will focus on the case when the collections of interest are sets of points. In
this paper, I will show that functional set models coincide with semilattice models
in the sense that from a semilattice model one can define a functional set frame,
and from a functional set frame, one can define a semilattice model, and repeat-
ing the process gets you the original model. Further, I will show that the logic of
functional set frames properly extends the logic of (possibly non-functional) set
frames. Before getting to these results, I will provide some background on opera-
tional and semilattice models and their logic, highlighting some features that are
perhaps underappreciated. I will then briefly present an overview of set frames.
In the final section, I will present the results, which will, I hope, add to our under-
standing of the logic of the semilattice models.

1 Semilattice frames

In this section I will define semilattice frames, and the more general operational
frames, and provide some comments on their logic. Once the basic formal appa-
ratus has been presented, I will briefly survey the work that has been done in the
area, in order to highlight some underappreciated aspects of the semilattice and
operational frames.

Definition 1 (Semilattice frame). A semilattice frame is a triple 〈P,t, 0〉, where 0 ∈ P
andt : P × P 7→ P obeys the following conditions.

theorem for theS5 analog ofE. This idea is briefly discussed by Mares and Standefer [2017]. As far as
I know, there has been no exploration of the modal expansions of the semilattice semantics, or more
general operational semantics, with of a primitive modal operator, 2, in addition to the non-modal
implication of the underlying logic.

6For more on ternary relational frames, see Routley and Meyer [1972a,b, 1973], Routley et al.
[1982], or Restall [2000], among others. For discussion of their philosophical significance, see Beall
et al. [2012].
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(S1) 0 t x = x

(S2) x t y = y t x

(S3) x t (y t z) = (x t y) t z

(S4) x t x = x

More general operational frames can be had by dropping any of the latter three
conditions. The class of operational frames dropping postulate (S4) is one I will
come back to briefly.

Definition 2 (Semilattice model). A semilattice model is a pair of a semilattice frame
〈P,t, 0〉 together with a valuationV : At 7→ ℘(P).

A verification relation  is a binary relation between points and formulas defined in-
ductively as follows.

• x  p iff x ∈ V(p)

• x  B∧ C iff x  B and x  C

• x  B∨ C iff x  B or x  C

• x  B→ C iff for all y ∈ P, if y  B, then x t y  C

Definition 3 (Holds, Validity). A formulaA holds in a semilattice model 〈P,t, 0, V〉 iff
0  A

A formulaA is valid for semilattice frames iffA holds in all semilattice models.
Write |=SL A to mean thatA is valid for semilattice frames.

When discussing the operational semantics, the natural point of comparison
is with the logic R+, which is the “positive fragment” of R in the vocabulary {→
,∧,∨} and its subvocabularies.7 R+ can be given a Hilbert-style axiomatization
as follows.

(R1) A→ A

(R2) A∧ B→ A,A∧ B→ B

(R3) (A→ B)∧ (A→ C) → (A→ B∧ C)

7The term “positive fragment” is somewhat misleading, since this is naturally taken to include
at least the fusion connective, ◦, and the Ackermann constant, t, as these are usually included, with
negation, in standard forms of the full axiomatization of R. For this paper, I will use “positive frag-
ment” for what is better called “the implication-conjunction-disjunction fragment”.
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(R4) A→ A∨ B,A→ B∨A

(R5) (A→ C)∧ (B→ C) → (A∨ B→ C)

(R6) A∧ (B∨ C) → (A∧ B)∨ (A∧ C)

(R7) (A→ B) → ((B→ C) → (A→ C))

(R8) A→ ((A→ B) → B)

(R9) (A→ (A→ B)) → (A→ B)

(R10) A,A→ B⇒ B

(R11) A,B⇒ A∧ B

The logicRW+is obtained by dropping axiom (R9). The logicsT+ andTW+, which
will figure only briefly below, can be obtained by dropping axiom (R8) fromR+ and
RW+, respectively, and adding (A→ B) → ((C→ A) → (C→ B)).

Let us call the logic generated by the semilattice semantics UR. There are a
few related logics that get discussed in the literature. One of those, URW, is the
set of formulas valid in the class of operational frames obtained by dropping the
postulate xx = x while retaining the others. The logic URW is most naturally
compared with RW+. Finally, the logics UT and UTW are obtained by adding a
binary relation,4, on points to the classes of operational frames forUR andURW,
respectively, and modifying the verification clause for implication.8 These four
logics will be called the operational logics.

Let us say L→ and L→,∧ for the fragments of the logic L in the subscripted
vocabularies. It turns out that the theorems of UR→ coincide with those of R+→,
and, similarly, UR→,∧ coincides with R+→,∧.

With disjunction, a difference emerges. UR properly extends R+. By way of
example, both

(A→ B∨ C)∧ (B→ D) → (A→ D∨ C)

and
(A→ ((A→ A)∨A)) → (A→ A)

are theorems ofUR that are not theorems ofR+.9 Humberstone [1988] shows how
to modify the semilattice frames along with the verification condition for disjunc-
tion to yield frames for which R+ is sound and complete. Humberstone does this

8The modification is: x  B→ C iff for ally ∈ P such that x 4 y, ify  B, then xty  C. The
logics UT and UTW will not feature much below, so further comment on them will be relegated to
footnotes.

9It is worth noting that UT properly extends T+, as shown by the same examples.
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by adding a second operation, +, on points to the frames, which operation is used
in the verification condition for disjunction, as well as a distinguished unit ele-
ment for this operation. Humberstone’s verification condition for disjunction is
the following.

• x  B∨ C iff there are y, z ∈ P such that x = y+ z, y  B and z  C.10

There are, additionally, a few conditions on the modified frames, for which the
interested reader should see the cited paper.11

URproperly extendsR+, and further, the extension is not captured by a simple
axiom scheme in the way that R extends T by the addition of axiom scheme (R8).
Rather, the following additional rule is used, where the notation [A1, . . . , Ak] →
BmeansA1 → (· · · (Ak → B) · · · ): From

B∧ ([A1 ∧ q1, . . . , An ∧ qn] → C) → ([B1 ∧ q1, . . . , Bn ∧ qn]) → E)

and

B∧ ([A1 ∧ q1, . . . , An ∧ qn] → D) → ([B1 ∧ q1, . . . , Bn ∧ qn] → E),

to infer
B∧ ([A1, . . . , An] → C∨D) → ([B1, . . . , Bn] → E),

where the qi, 1 ≤ i ≤ n, are distinct and occur only where displayed.
When viewed as a Hilbert-style axiom system, the charm of UR is, perhaps,

not obvious. It adds to R+ a complex rule, and one might wonder whether the ad-
ditional theorems are really that appealing. The Hilbert-style axiomatization is, I
think, not the logic’s best side. Indeed, Dunn and Restall [2002, 69] remark, “We
forbear taking cheap shots at such an ungainly rule, the true elegance of which is
hidden in the details of the completeness proof that we shall not be looking into.
Obviously Anderson and Belnap’s R is to be preferred when the issue is simplic-
ity of Hilbert-style axiomatisations.” The models have a clear appeal, but there is
more to say on a proof-theoretic front.

Charlwood [1978] presents a natural deduction system for UR.12 The system
uses subscripts, much like the Fitch systems of Anderson and Belnap [1975] and
Brady [1984]. Charlwood shows that the natural deduction system for UR admits

10This sort of condition for disjunction also occurs in work on dependence logic and inquisitive
semantics. For the former, see Yang and Väänänen [2016]. For the latter, see Ciardelli et al. [2019],
as well as Ciardelli and Roelofsen [2011],Punčochář [2015, 2016, 2019], and Holliday [forthcoming].
Humberstone [2019] discusses the issues in a general setting.

11The reader should also see the discussion of Humberstone [2011, 905ff.].
12This system and variants for URW, UT, and UTW are presented by Giambrone and Urquhart

[1987, 437-438]
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a normalization theorem. On the basis of that thoerem, he shows that a second
additional rule used by Fine [1976a] is in fact admissible and, in light of a proved
equivalence with the Hilbert-style axiomatization with the above rule, unneces-
sary. This is instrumental is showing that the Hilbert-style axiomatization is com-
plete for the semilattice semantics. As far as I know, similar completeness results
for Hilbert-style axiomatizations for the other operational logics have yet to be ob-
tained. While completeness for UR has been settled, Urquhart [2016] points out
that another important meta-theoretic question remains open, namely whether
UR is decidable. Urquhart [1984] famously showed that R was undecidable, and a
decidability result for semilattice logic would provide an important contrast.

The normalization theorem shows that the rules fit together in a natural way.
Further evidence of the naturalness with which the rules fit together comes from
the fact that distribution,A∧(B∨C) → (A∧B)∨(A∧C), is derivable without a
special distribution rule, which is not the case in the Anderson-Belnap-Brady-style
indexed Fitch systems. Distribution is, rather, a consequence of the introduction
and elimination rules for the connectives involved, which the normal proof having
the same form that it would in intuitionistic natural deduction. Indeed, Urquhart
[1989] notes this as a point in favor of the semilattice logic.

Sequent systems have received much attention in the study of the logic of op-
erational semantics. A sequent system was already provided by Urquhart [1972b,
31], along with a completeness proof for UR. This system uses indexed formu-
las and multiple conclusions. Giambrone and Urquhart [1987] presents two sub-
scripted sequent systems for UR, as well as modifications to obtain systems for
the other operational logics. These systems are proved equivalent to each other.
Kashima [2003] presents cut-free, multiple conclusion, labelled sequent systems
for the operational logics.

While the semilattice semantics has gotten a lot of attention, the more general
operational semantics should not be ignored. In particular the operational frames
that drop postulate (S4), xx = x, have a lot of appeal for logicians interested in
non-contractive logics.13 An alternative semantics, disjoint semantics, for the non-
contractive logic URW was defined by Giambrone et al. [1987]. Disjoint frames
keep all the postulates of the semilattice frame and add the postulate

• x ≤ y t z iff there are u,w such that u tw = x, u ≤ y, andw ≤ z, where
x ≤ y iff x t y = y.

Two points x and y are said to be disjoint, Jxy, iff for all z ∈ P, z ≤ x and z ≤ y
13In the relevant logic tradition, one of the primary virtues of non-contractive logics is that they

support a non-trivial naive set theory. For examples of work in this area, see Brady [1984, 1989, 2006,
2014, 2017] and Weber [2010a,b, 2012, 2013], among others.
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only if z = 0. The verification clause for the implication is then modified to the
following.

• x  B→ C iff for all y ∈ P, if Jxy and y  B, then x t y  C

Disjoint semantics for UTW is obtained by adding in a binary relation and adapt-
ing the verification clause, much the same as operational semantics for UT is ob-
tained from the semilattice semantics.

Meyer et al. [1988] shows that over the vocabulary {→,∧}, the disjoint and
contraction-free operational semantics are equivalent and thatRW→,∧ andTW→,∧
are complete with respect to the appropriate classes of operational models. Kashima
[2003] shows that disjoint and operational semantics are equivalent even when
disjunction is in the language. It is, as far as I know, an open question whether
RW+ and TW+ are complete with respect to the appropriate classes of frames. As
remarked by Giambrone and Urquhart [1987, 439], the standard examples where
the semilattice semantics goes beyond the ternary relational semantics, or equiv-
alently the standard axiomatizations of the contraction-less relevant logics, turn
out not to be valid in contraction-free operational semantics.

This brief survey of work on semilattice semantics will conclude with some re-
cent work. A logic has the variable sharing property when all theorems of the form
A→ B are such thatA and B share a propositional variable.14 The logic R enjoys
the variable sharing property, and variable sharing is usually taken as a neces-
sary condition on being a relevant logic. Weiss [2019] shows that UR has the vari-
able sharing property, as does as an extension with an involutive negation, and
he does this via a semilattice structure using arithmetic operations, as opposed
to the matrix methods often used, such as the 8-valued algebra used by Anderson
and Belnap [1975, 252-254]. Weiss [2020] shows how to conservatively extend the
semilattice semantics with a constructive negation.

Given the importance of the operational semantics, it is worth comparing any
new semantics for relevant logics to it. In the remainder of the paper, I will pro-
vide enough background on collection frames to illuminate the connections and
divergences between collection frames and operational frames.

2 Set frames

Let us turn to set frames. As a notational convention, where P is a non-empty set,
P will be the set of all finite subsets of P.

14For a general characterization of the variable sharing property, see Robles and Méndez [2011,
2012].

7



Definition 4 (Set frames). A set frame is a pair 〈P, R〉, where P is a non-empty set of
points and R is a binary relation onP × P that obeys the conditions

Reflexivity ∀x ∈ P, {x}Rx, and

Transitivity ∀X, Y ∈ P∀y ∈ P, if ∃z(XRz∧ ({z} ∪ Y)Ry), then (X ∪ Y)Ry.

Evaluation ∀X, Y ∈ P∀y ∈ P, if (X ∪ Y)Ry, then ∃z(XRz∧ ({z} ∪ Y)Ry).

The conjunction of Transitivity and Evaluation will be called Compositionality, and set re-
lations obeying Compositionality will be called compositional.

In general, we do not have to impose the first condition,Reflexivity, although
dropping it will require generalizing the definition of validity. In this paper there
will not be a need to discuss non-reflexive set frames, since the desired equiva-
lence appears to require the condition, so all set frames will be reflexive. Non-
empty members of P will be called inhabited.15 One can consider set frames only
on inhabited sets, but I will not do so here. The conditions Transitivity and Eval-
uation appear to be required for collection frames to work properly, unlike the
previous conditions. Their contributions in the development of the framework
are many, including the verification of heredity for conditionals, A → B, and
validating structural rules in proof systems. An example of their contribution in
the present work can be found in the proof of lemma 11, verifying that a frame
has a certain property. The interested reader should consult Restall and Stande-
fer [20xx] for details.

Some comments on set frames are in order. First, the binary relations of set
frames are defined over finite sets of points because the binary relations of more
general collection frames are defined over finite collections. This enables a straight-
forward connection with more familiar frames, such as ternary relational frames
and operational frames, where one is possible. There appears to be no barrier to
defining the binary relations over infinite collections, and this generalization will
be left to future work.

Next is a comment on the interpretation of the binary relation R. If we think
of the points as being bodies of information, we can think of XRy as saying that
the result of combining together all the information inX is contained iny. On this
interpretation, Reflexivity is a sensible condition, as it is intuitive that the infor-
mation obtained by combining all the information in {x} is contained in x. After
all, there is no other point that can supply information available. We can also use

15Restall and Standefer [20xx] consider many types of collections, not just sets, and there are
empty versions of all of these. Especially in the general setting is useful to have a term for distin-
guishing the collection frames that exclude empty collections and those that include them. The term
‘inhabited’ is used here for terminological continuity with the cited paper and Restall [20xx].
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the informational interpretation to motivate the two parts of Compositionality.
The two parts say that one can combine together the information in X ∪ Y in one
go or break it into parts and combine together the information inX and combine
that with the information in Y. These are especially natural conditions in the con-
text of set frames, since most sets can be broken into parts in a variety of ways.

Finally, we will comment on the relation between set frames and the better
known ternary relational frames for relevant logics. Every set frame, as defined
above, induces a ternary relational frame, but not every ternary relational frame
induces a set frame. This is a point that will come up again later. Set frames are
interesting for at least two reasons. First, they permit generalizations that are
not obvious with ternary relational frames, namely permitting non-reflexive and
inhabited frames. Second, it is comparatively easy to verify whether a structure is
a set frame, whereas it is somewhat more involved to verify that a structure is a
ternary relational frame that verifies the frame conditions for R.

Compositional set relations are fairly common. For example, suppose that
P = ω and XRy iff y = max(X), where max({ }) = 0. This relation is com-
positional and reflexive. As another example, let P = ω+, the positive natural
numbers, and XRy iff for some x ∈ X, x and y share a prime factor or y = 1,
when X 6= { }, and { }R1. This relation is also compositional and reflexive. The in-
terested reader should see Restall and Standefer [20xx] or Restall [20xx] for more.
The first example is an example of a functional, compositional relation. I will put
things more precisely in a definition, which will be important below.

Definition 5 (Functional). A set frame 〈P, R〉 is functional iff both

• for allX ∈ P there is x ∈ P such thatXRx, and

• ifXRy andXRz, then y = z.

Functional set frames are pleasantly common. Note that functional set frames
obey a stronger form of Evaluation.16

Uniform Evaluation ∀X ∈ P∃z ∈ P[XRz and ∀Y ∈ P∀y ∈ P, if (X ∪ Y)Ry, then
({z} ∪ Y)Ry].

Uniform Evaluation differs from Evaluation in that the point to whichX evaluates,
z, is independent of the choice of Y.

Definition 6. A set model is a pair of a set frame 〈P, R〉 and a valuation V : At 7→ ℘(P)
satisfying the heredity property, if x ∈ V(p) and {x}Ry, theny ∈ V(p). Valuations with
this property will be called hereditary. Such a model is said to be built on the set frame.

16I thank Lloyd Humberstone for pointing this out.
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A verification relation  is a binary relation between points and formulas defined in-
ductively as follows.

• x  p iff x ∈ V(p)

• x  B∧ C iff x  B and x  C

• x  B∨ C iff x  B or x  C

• x  B→ C iff for all y, z ∈ P, if {x, y}Rz and y  B, then z  C

As one might expect, preservation of verification along R extends from atoms
to all formulas.

Theorem 7 (Heredity). If x  A and {x}Ry, then y  A.

Proof. The proof is by induction on the construction of the formula. It is routine.

In the present setting, I will focus on valid formulas. This permits the use of
the following definition for validity, which is a special case of the more general
notion.17

Definition 8 (Holds, valid). A formulaA holds on a set model iff for all x ∈ P such that
{ }Rx, x  A.

A formulaA is valid on a set frame iffA holds in all models built on that set frame.
A formulaA is valid in a class of set frames iffA is valid on every set frame in that class.
IfA is valid in the class of all set frames, we will write |=Set A. IfA is valid in the class

of all functional set frames, we will write |=Fun A.

With the definition of validity in hand, we can talk about the logic of set frames.
The logic R+ is sound for the class of set frames, which is to say that if A is

a theorem of R+then |= A. The question of completeness, whether whenever we
have |= Awe also have thatA is a theorem ofR+, is still open at the time of writing.
In the next section, I will show that UR is sound and complete for the class of
functional set frames. It is this contrast, between the logic of set frames, which
may beR+ or may extend it, and the logic of functional set frames, which coincides
with UR, that is the main reason for focusing on set frames.

An alternative that is not being pursued here is to use multiset frames, rather
than set frames.18 Multisets differ from sets in distinguishing the number of times

17 Restall and Standefer [20xx] use a sequent presentation ofR+, and define validity for sequents.
The present definition of validity is a special case of the definition they use.

18Multiset frames that obey a contraction principle are similar to the definition of R-frame of
Mares [2004, 210]. Given the conditions onRn+1, forn ≥ 2, the firstn arguments can be viewed as
forming a multiset related to the final argument.
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an element is a member of that multiset, and multisets and sets are similar in
not keeping track of the order.19 The multisets [a, a, b] and [a, b, a] are identical,
but they both differ from the multiset [a, b], as the latter contains a only once
and the former both contain it twice. Finite multisets are those that contain a
finite number of elements a finite, non-zero number of times. Multiset frames
and models are defined much as set frames and models, where the binaryR relates
finite multisets of points to points and the definition of verification trades sets for
multisets. The technical details of the arguments to follow are slightly easier in
the context of multiset frames, but the technical advance is in the context of set
frames.20 For that reason the focus is on set frames.

3 Another view on semilattice logic

With the necessary background in place, I can now turn to the task of connecting
semilattice models and functional set models. There is a tight connection between
them. Every semilattice frame induces a functional set frame, and each semilat-
tice model induces a corresponding functional set model that agrees on all for-
mulas. Similarly, every functional set frame induces a semilattice frame, and the
models on those frames agree on all formulas. Broadening out to include non-
functional set frames yields a counterexample to a theorem of UR.

Given a semilattice frame 〈P, 0,t〉, define
⊔

: P 7→ P as follows.

⊔
X =


0 X = { }

x X = {x}

x1 t (· · · (xn−1 t xn)) X = {x1, . . . , xn}

When X = {x, y}, I’ll write x t y for
⊔
X.

Lemma 9. Let 〈P,t, 0〉 be a semilattice frame. Then 〈P, R〉 is a functional set frame, where
R is defined as follows.

• XRy iff
⊔
X = y

Proof. The relation R is well-defined. If X = Y, then
⊔
X =

⊔
Y, so XRz iff YRz.

Reflexivity follows from the singleton case of the definition of
⊔

. It remains to
check the two directions of compositionality, for which we show that

⊔
(X∪Y) =⊔

X t
⊔
Y, for all X, Y ∈ P .

19See Blizard [1988] for an overview of multiset theory. Meyer and McRobbie [1982a,b] uses mul-
tisets in an illuminating study of relevant logics.

20Every ternary relational frame induces a reflexive multiset frame. As mentioned above, some
ternary relational frames can be shown not to induce a reflexive set frame.
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Suppose that X = Y = { }. Then
⊔
(X ∪ Y) =

⊔
{ } = 0 = 0 t 0 =

⊔
X t

⊔
Y.

Suppose that exactly one of X and Y is { }, say X. Then
⊔
(X ∪ Y) =

⊔
Y =

0 t
⊔
Y =

⊔
X t

⊔
Y.

Suppose that X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Then, we have⊔
(X ∪ Y) =

⊔
{x1, . . . , xn, y1, . . . , ym}.

In virtue of the semilattice frame conditions we have⊔
{x1, . . . , xn, y1, . . . , ym} =

⊔
{x1, . . . , xn} t

⊔
{y1, . . . , ym},

with (S2)–(S3) being used to separate out thexi’s from theyj’s, and (S4) being used
to duplicate or collapse some elements in caseX∩Y 6= ∅. Finally, from definitions,
we obtain ⊔

{x1, . . . , xn} t
⊔

{y1, . . . , ym} =
⊔
X t

⊔
Y,

which suffices for the desired identity,
⊔
(X ∪ Y) =

⊔
X t

⊔
Y.

For Transitivity, suppose that XRx and ({x} ∪ Y)Ry. Then
⊔
X = x and x t⊔

Y = y. It follows that
⊔
X t

⊔
Y = y, so

⊔
(X ∪ Y) = y, so (X ∪ Y)Ry.

For Evaluation, suppose that (X ∪ Y)Ry. Then
⊔
X t

⊔
Y = y. As

⊔
X = z,

for some z, XRz and z t
⊔
Y = y, so ({z} ∪ Y)Ry, as desired.

The functionality conditions are secured by the fact that
⊔

is a function.

For a given semilattice frame, the source frame, say that the preceding construc-
tion induces the set frame defined, which will be called the induced frame. All semi-
lattice frames induce functional set frames. What about the converse? Do all func-
tional set frames induce semilattice frames? Yes, as will be shown. I will prove a
lemma first.

Lemma 10. Let 〈P, R〉 be a functional set frame. For the x such that { }Rx, ({x} ∪ X)Ry
iffXRy.

Proof. The left to right direction follows from Transitivity and the assumption that
{ }Rx. The right to left direction follows from Evaluation and the fact that X =
X ∪ { }.

Lemma 11. Let 〈P, R〉 be a functional set frame. Then 〈P,t, 0〉 is a semilattice frame,
where 0 is the x such that { }Rx, and for x, y ∈ P, x t y = z iff {x, y}Rz.

Proof. We need to show that 0 and t are well defined and obey the appropriate
conditions. First, the uniqueness of 0 follows from the functionality of R.

Next, we show that t is well-defined.

12



For all x, y ∈ P, there is a z such that {x, y}Rz, asR is functional. Suppose that
x t y = z and x t y = z ′. Then {x, y}Rz and {x, y}Rz ′. As R is functional, this
implies z = z ′. We conclude t is well-defined.

Finally, we show that t satisfies the conditions on semilattice frames.
Since {x}Rx and {x} = {x} ∪ { }, from the preceding lemma, {0, x}Rx, so

0 t x = x.
Since {x, y} = {y, x}, {x, y}Rz iff {y, x}Rz, so x t y = z = y t x.
As {x, x} = {x} and {x}Rx, by definition, {x, x}Rx, so x t x = x.
Let {x, y, z}Rw. By Compositionality, for some v, {x, y}Rv and {v, z}Rw, so

x t y = v and v t z = w. By Compositionality again, for some v ′, {y, z}Rv ′ and
{x, v ′}Rw, so y t z = v ′ and x t v ′ = w. So, x t (y t z) = w = (x t y) t z.

The preceding lemmas show that semilattice frames induce functional set frames
and, conversely, functional set frames induce semilattice frames. The induced
frames have a close connection with the source frames. I will prove two “round
trip” theorems, showing that the constructions given above do not result in any
changes when performed in succession.21 They are, in a sense, inverses.

For the next results, it will be useful to define some notation. Given a source
semilattice frame M, let Mσ be the induced functional set frame as defined in
lemma 9. Given a source functional set frameN, letNλ be the induced semilattice
frame as defined in lemma 11.

Theorem 12. LetM = 〈PM,tM, 0M〉 be a semilattice frame. ThenM =Mσλ.

Proof. The constructions keep the set of points the same, so PM = PMσ = PMσλ .
By definition, 0M = 0Mσ . As { }RMσ0Mσ , 0Mσλ = 0Mσ , whence 0M = 0Mσλ .
Suppose x tM y = z. This is the case iff {x, y}RMσz, which is equivalent to

x tMσλ y = z. This suffices for the showing that tM = tMσλ .

Theorem 13. LetM = 〈PM, RM〉 be a functional set frame. ThenM =Mλσ.

Proof. As in the proof of the previous theorem, the constructions do not change
the sets of points, so PM = PMλ = PMλσ .

LetX ∈ P be arbitrary and supposeXRMy. There are three subcases depend-
ing on X.

Suppose X = { }. Then y = 0Mλ , so XRMλσy.
Suppose X = {x}. Then {x}RMx implies x = y. Then

⊔
X = y, so XRMλσy.

The converse is similar.
21I thank Lloyd Humberstone for the suggestion of proving these theorems.
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SupposeX = {x1, . . . , xn}, for somen ≥ 2. From repeated application of Eval-
uation, there arez1, . . . , zn−1 such that {x1, x2}RMz1, {z1, x3}RMz2, . . . , {zn−1, xn}RMy.
By definition, x1 tMλ x2 = z1, . . . , and zn−1 tMλ xn = y. It then follows that⊔
Mλ{x1, . . . , xn} = y. Therefore XRMλσy, as desired. The converse is similar.

The final piece required for the connection between the logics of these two
classes of frames is to show that the models built on a source frame and an induced
frame agree on the evaluation of formulas. I will now prove that with two lemmas.

Lemma 14. LetM = 〈P,t, 0〉 be a semilattice frame. IfSL is a verification relation on
M, then Set is a hereditary verification relation onMσ, where x Set p iff x SL p.
Moreover, for all x ∈ P and all formulasA, x Set A iff x SL A

Proof. The coherence of the definition is straightforward from the definition. Hered-
ity then follows as {x}Ry implies x = y from the functionality of R.

The second part of the claim is proved by induction on formula structure. The
base case holds by definition. The cases whereA is of the formB∧C orB∨C are
immediate by the inductive hypothesis.

SupposeA is of the formB→ C. Then, x Set B→ C iff for ally, z, if {x, y}Rz
and y Set B then z Set C. Let y be an arbitrary point such that y SL B. AsR is
functional, there is az such that {x, y}Rz. By the inductive hypothesis,y Set B, so
z Set C. By the inductive hypothesis, z SL C. As {x, y}Rz, xty = z. Therefore,
so x t y SL C. Therefore, x SL B→ C.

Suppose x SL B → C. Let y, z be arbitrary points such that {x, y}Rz and
suppose y Set B. By the inductive hypothesis, y SL B. Therefore, xt y SL C.
Since {x, y}Rz, x t y = z, so it follows that z SL C. By the inductive hypothesis,
z Set C, which esablishes that x Set B→ C.

From the preceding lemma, we can see that the logic of functional set frames is
contained in the logic of semilattice frames.

Theorem 15. For all formulasA, |=Fun A only if |=SL A.

As there are no conditions on verification relations in semilattice frames, we
can prove the following lemma.

Lemma 16. LetSet be a verification relation on a functional set frameN = 〈P, R〉 and let
〈P, 0,t〉 beNλ. Define a semilattice verificationSL as x SL p iff x Set p. The result
is a semilattice model. Moreover, for every x ∈ P and formulaA, x SL A iff x Set A.
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Proof. The initial portion of the corollary is immediate from the preceding lemma.
The moreover portion follows from a straightforward induction on formula com-
plexity. We will present the B→ C case, as it is the only non-trivial one.

Suppose x Set B→ C. Then, for all y, z such that {x, y}Rz, if y Set B, then
z Set C. Let y be arbitrary and suppose y SL B. By the inductive hypothesis,
y Set B. SinceR is functional, for some z, {x, y}Rz, so z Set C. By the inductive
hypothesis again, z SL C. Since {x, y}Rz, x t y = z, so x t y SL C, which
suffices for x SL B→ C.

Suppose x SL B → C. Then for all y, if y SL B then x t y SL C. Let
y, z be arbitrary points such that {x, y}Rz. Suppose y Set B. By the inductive
hypothesis, y SL B, so x t y SL C. Since {x, y}Rz, x t y = z, so z SL C. By
the inductive hypothesis z Set C, which suffices to establish x Set B→ C.

This corollary suffices for the following theorem.

Theorem 17. For all formulasA, |=SL A only if |=Fun A.

There is, then, a match between the valid formulas of semilattice frames and those
of functional set frames.

One more theorem remains to be proved, showing that the logic of functional
set frames properly extends the logic of set frames.

Lemma 18. There is a formulaA such thatA is valid in the class of functional set frames
but not valid in the class of set frames.

Proof. For the formula, we take (p → (q ∨ r)) ∧ (q → r) → (p → r), which is
valid in semilattice frames but is not a theorem ofR+, as noted by Urquhart [1972a,
163] who attributes it to Dunn and Meyer. A simple non-functional set frame coun-
terexample to this in the class of all set frames can be found. For this counterex-
ample, let P = {a, b, c} and R defined as in Table 1. R so defined is a reflexive,
compositional set relation. The valuation given in Table 1 is trivially hereditary. It

R

{ } b

{a} a

{b} b

{c} c

R

{a, b} a

{a, c} a, b, c

{b, c} c

{a, b, c} a, b, c


a r

b q

c p, r

Table 1: Counterexample

suffices to refute (p→ (q∨ r))∧ (q→ r) → (p→ r) to find a point x at which
the antecedent of the implication is true but the consequent is not, for which we
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will use a. Since {a, c}Rb, while c  p and b 6 r, a 6 p→ r. It remains to verify
thata  p→ (q∨ r) anda  q→ r. For the former, note that q∨ r is true at all
points, although it is in virtue of the q disjunct at b and in virtue of the r disjunct
at the other points. For the latter, the only point at which q is true is b, and the
only point that {a, b} bears R to is a, which has r true.

This lemma suffices for the desired theorem.

Theorem 19. The set of formulas valid in the class of all set frames is a proper subset of the
set of all formulas valid in the class of all functional set frames, which is UR. In symbols,
there is a formulaA such that |=Fun A but 6|=Set A.

Proof. Immediate from the preceding lemma.

The results of this section situate set frames with respect to the well known
semilattice frames. Functional set models and semilattice models line up neatly.
They generate the logic UR. Further, the procedure of inducing one frame type
from the other takes you back to where you started after two steps. We can see
points in a functional set frame as pieces of information, as suggested in the con-
text of semilattice frames by Urquhart [1972a], and sets of points are collections
of information. Combining these collections of information is done via set union,
which pleasantly coincides with Urquhart’s original notation.

Stepping back, we see that UR is not sound for the class of all set frames. R+

is sound for the class of all set frames but it is currently unknown whether it is
complete with respect to that class.22 Finally, I will note that essentially the same
arguments show the same fit between functional multiset frames and operational
frames that drop postulate (S4), xx = x, but retain the others.
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Katalin Bimbó and J. Michael Dunn. Larisa Maksimova’s early contributions to
relevance logic. In S. Odintsov, editor, Larisa Maksimova on Implication, Interpola-
tion, and Definability, volume 15 of Outstanding Contributions to Logic, pages 33–60.
Springer International Publishing, 2018. doi:10.1007/978-3-319-69917-2 3.
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