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Abstract 
Drawing mainly from the Tractatus Logico-Philosophicus and his middle pe-
riod writings, strategic issues and problems arising from Wittgenstein’s phi-
losophy of mathematics are discussed. Topics have been so chosen as to assist 
mediation between the perspective of philosophers and that of mathemati-
cians on their developing discipline. There is consideration of rules within 
arithmetic and geometry and Wittgenstein’s distinctive approach to number 
systems whether elementary or transfinite. Examples are presented to illumi-
nate the relation between the meaning of an arithmetical generalisation or 
theorem and its proof. An attempt is made to meet directly some of Witt-
genstein’s critical comments on the mathematical treatment of infinity and 
irrational numbers. 
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1. Introduction 

The philosophy of mathematics was a major concern of Wittgenstein through-
out his philosophical life and he expressed the opinion at one point that his 
greatest contribution to philosophy might lie there (Bangu, 2018). The topic is 
succinctly situated within the Tractatus and was to have formed a second part of 
the Philosophical Investigations as originally envisaged; it was a subject taken up 
in his Cambridge lectures of the 1930s and his many informal writings for ex-
tended periods. Yet, it is hard to draw overall conclusions about his contribu-
tion’s precise value and significance even with the help of a substantial second-
ary literature and also hard to disagree with Potter (2011: p. 122) that Wittgens-
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tein’s impact on later philosophy of mathematics is much less than his impact on 
the philosophy of mind or language. The intention in this article is to draw out 
some strategic aspects and issues from his work in a way which enables its signi-
ficance to be more readily evaluated.  

It is fair to say that Wittgenstein’s comments sometimes irritate mathemati-
cians (Math-Reddit, 2013). An attempt is made here to assist a reader with only 
school mathematics more readily to appreciate the relation of Wittgenstein’s 
remarks to the perspective of mathematicians themselves. What is addressed 
here is the account of mathematics in the Tractatus and also remarks and com-
ments on the subject in what is generally referred to as his “middle-period” 
writings. Of course, awareness is needed that much of the latter derive from his 
notes or lectures which had not been prepared for (final) publication; neverthe-
less, that which is available by way of English-language publication both invites 
and repays our full critical attention. Among the topics taken up are rules in 
arithmetic and geometry, the relation between an arithmetical generalisation and 
its proof, and the development of number with particular attention to infinity, 
irrational numbers, and transfinite numbers.  

Arguably, Wittgenstein does not adhere to any one of the main systematic po-
sitions within the philosophy of mathematics, logicism, intuitionism, and for-
malism, although his remarks are very much informed by his understanding of 
them. In some respects his contribution amounts to a challenge to those doc-
trines as well as to viewpoints that mathematicians commonly articulate them-
selves about the nature of, or elements of, their own subject. There is a percepti-
ble tendency for him to say rather less about areas of mathematics which are ap-
plied either within the subject itself or within the sciences, and rather more by 
way of critical comment on the accounts mathematicians themselves provide of 
relatively isolated topics, perhaps the clearest examples being irrational and 
transfinite numbers.  

By way of orientation, one may distinguish early, middle- and late-period 
writings, but with evident continuities. In the Tractatus and for most of his ca-
reer Wittgenstein maintains that mathematical assertions are pseudo-propositions 
and that what is understood as mathematical truth is non-referential and syntac-
tical in its nature. In what may roughly be classified as a “middle period” (of 
Philosophical Remarks and Philosophical Grammar) there is development to-
wards what some have labelled “finitistic constructivism” which is subject to 
subsequent modification (in the Remarks on the Foundations of Mathematics). 
As is often commented, his writing and philosophical style which is aphoristic in 
the Tractatus evolves to become more argumentative in the middle period and 
more interlocutory in later writings. While in his middle period Wittgenstein 
tends to use “the calculus conception” (which includes ways of determining a 
quantity or required expression), later on, it is “the language-game conception” 
(Gerrard, 1991, 1996). In his later writings, greater sense is given to the idea that 
mathematical propositions are dependent upon experience. 
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2. Mathematics in the Tractatus 

Although the Tractatus is a very demanding work its stance links directly to the 
perspective of many educated people who understand there to be a difference 
between empirical generalisations requiring supporting evidence and mathe-
matical statements requiring proof; and who also sense that the relation between 
mathematics and logic is particularly intimate. Wittgenstein (1922) proceeds 
through a contrast between contingent propositions and mathematical equa-
tions: “If the elementary proposition is true, the atomic fact exists; if it is false 
the atomic fact does not exist” (1922: 4.25). “The propositions of mathematics 
are equations, and therefore pseudo-propositions” (6.2). “And… that the propo-
sitions of mathematics can be proved means nothing else than that their cor-
rectness can be seen without our having to compare what they express with the 
facts as regards correctness” (6.2321). Wittgenstein understands cardinal num-
bers to be generated by successive applications of the operation of adding one 
after commencing with zero (5.2523; 6.03). Indeed the conception of natural 
numbers as exponents of an operation is the hallmark of his view of arithmetic. 
In his account, Wittgenstein also points up the importance of applications: “In life, 
it is never a mathematical proposition which we need, but we use mathematical 
propositions only in order to infer from propositions which do not belong to ma-
thematics to others which equally do not belong to mathematics” (6.211).  

Before proceeding further it is pertinent to note the thesis of logicism which 
has two main components: that the concepts of mathematics can be defined in 
terms of logical concepts; that the theorems of mathematics may be derived from 
logical axioms through purely logical deduction (Savitt, 1986: p. 26). Wittgens-
tein seems to approach this position when strikingly he asserts: “Mathematics is 
a method of logic” (6.234). “The logic of the world which the propositions of 
logic show in tautologies, mathematics shows in equations” (6.22). Not surpri-
singly, therefore, some have interpreted his view as a variant of logicism but in 
the last analysis, this is perhaps not justified, for instance, because he does not 
define numbers “logically” in either Frege’s or Russell’s way (Rodych, 2018). He 
seems not to regard mathematics as reducible to logic in the manner of White-
head and Russell in their work Principia Mathematica (Black, 1964: p. 340) and 
he rejects Frege’s view that numbers are objects; he also firmly maintains the po-
sition that arithmetical equations are not tautologies. Furthermore, as reported 
by Waismann (1979, 1986), Wittgenstein around this time affirmed that logical 
operations are performed with propositions, arithmetical ones with numbers.  

Potter (2011: pp. 123-124) draws attention to a specific point on which Witt-
genstein departs from Russell’s version of logicism. “The theory of classes”, 
Wittgenstein writes, “is altogether superfluous in mathematics. This is con-
nected with the fact that the generality which we need in mathematics is not the 
accidental kind” (6.031). He is alluding here to Russell’s idea that classes may be 
reduced to propositional functions thus enabling one to talk about an “acciden-
tal” class, in the sense that it has as its members just those objects which happen 
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to satisfy the function. This does not, however, provide a route to consideration 
of “essential” classes, where qualification for membership does not depend upon 
the properties members happen to have. However, as Potter (2011: p. 124) goes 
on to note, despite the evident weight given to the point, Wittgenstein fails to 
justify in the Tractatus his assertion that the generality needed in mathematics is 
not the accidental one.  

Regarding significant omission in the treatment of mathematics in the Trac-
tatus, particularly telling is the point made by Frank Ramsey (1986: p. 43) in his 
review of that work to the effect that the author fails to situate and deal with the 
role of inequalities in mathematics, as opposed to equalities. Ramsey has in mind 
such relations between numerical quantities or algebraic expressions as “is less 
than or equal to” and “is greater than” and not simply “is not equal to”. One can 
hint at the difficulties here in the following way. Confronted with an arithmetical 
or algebraic equation it is very easy in language or thought to slip between the 
use of the words “equals” and “is”, as though they were equivalents. Thus one 
might say “two times two equals four” or “two times two is four”. The latter re-
sembles in form such an empirically and contingently related proposition as 
“this patch of colour is blue”. This may lead on—it may be suggested—to the 
philosopher of mathematics who is focusing on equations to think that the job to 
be performed is at least primarily to analyse the difference in the meaning and 
syntax (or “grammar” in Wittgenstein’s sense) of types of affirmative propositions 
(or pseudo-propositions) across mathematics, logic and the contingent empirical 
sphere—at least some of which would be identities. However, it remains to be 
seen whether and in what way that type of analysis would bear adequately upon 
inequalities and the role they play in mathematics; Ramsey’s probably justified 
presumption is that it would not.  

A further significant point rather flows from Ramsey’s way of putting it when 
he says that the pseudo-propositions of mathematics are, according to Witt-
genstein, “equations obtained by writing ‘=’ between two expressions which can 
be substituted for one another” (Ramsey, 1986: p. 43). This is suggestive of the 
idea that mathematics is concerned at least in part with equality construed as al-
gebraic equivalence. A problem here is that mathematicians would themselves 
routinely distinguish between algebraic equivalence (indicated by three horizon-
tal lines) and equality (indicated by two); the contribution of each symbol to the 
corpus of mathematics is different and stands in need of explication. 

In the interests of completeness, it is worth adding that mathematical proposi-
tions are not exhausted by equations and inequalities. What is clear from ex-
amination of mathematical works is that the subject consists substantially of 
sentences and figures but there is a variety of each. Consider, for instance, the 
following three sentences, no one of which is an equation. If a prime p divides a 
product ab, then p must divide a or b. The diagonal of a square is incommen-
surable with its side. If C is a fixed point with coordinates x = a, y = b, then the 
locus of all points P having a given distance r from C is a circle with C as centre 
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and radius r. It is clear that the subject is characterised by provision of proof, but 
it is inaccurate to say that its results and theorems simply consist of a series of 
equations and inequalities. Importantly, too, where an equation appears it is of-
ten embedded in a sentence containing additional words and phrases (e.g. “if… 
then”; “must”, as above) which are essential to the argument. Certainly, it could 
be the case that, were all the elements in a particular theorem that do not take 
the form of equations to be struck out, the residue might be meaningless. Fur-
thermore, it may well be that a consideration of the structure of mathematical 
reasoning as a whole—with all its various elements—would lead one back in the 
direction of a logicist account.  

3. The Meaning of a Statement and Its Proof 

Potter (2011: p. 127) may well be right that Wittgenstein’s post-Tractatus deli-
berations took as a starting point the verification principle that the meaning of a 
proposition consists in its means of verification. Basic to mathematics is the 
fundamental activity of provision of proof, which may lead to the parallel- 
sounding assertion that the meaning of a mathematical proposition is its proof. 
Anyway, whatever its source, we find Wittgenstein by the early 1930s making the 
assertion that the meaning of an arithmetical generalization consists in its in-
ductive proof.  

In this connection, suggestive is his observation that, “Generality in arithmetic 
is indicated by an induction. An induction is the expression for arithmetical ge-
nerality” (Wittgenstein, 1975: §149, p. 172). Even more decisive is this statement 
of the sense of an arithmetical generalization: “We are not saying that when f(1) 
holds and when f(c +1) follows from f(c), the proposition f(x) is therefore true of 
all cardinal numbers; but: “the proposition f(x) holds for all cardinal numbers” 
means ‘it holds for x = 1, and f(c + 1) follows from f(c)’” (Wittgenstein, 1974a: 
II, VI, §32). However, the doctrine that the meaning of an arithmetical generali-
zation is given by its proof, as Wittgenstein recognized, gives rise to difficulties. 
For instance, does this mean that none of us understands the unproved state-
ment, “Every even number is the sum of two primes” (known as Goldbach’s 
Conjecture) prior to a proof being provided? Hence in his writing, Wittgenstein 
attempts to make room for the notion of a meaningful but not yet proven ma-
thematical sentence (or conjecture) on a verificationist basis. 

He makes the closely-related assertion that where a proof is laid out as a se-
quence of expressions, the concluding statement gets its sense from the proof 
and it lacks that sense apart from the proof. Thus were Goldbach’s Conjecture to 
be proved, what we would understand at the end of the proof would differ from 
our present understanding. Ambrose (1986b: p. 100) puts his position thus: “an 
expression in the interrogative does not have the sense it has once the answer is 
provided; proof ‘provides it with content’”.  

Elsewhere Wittgenstein (1975: §149, p. 172) slightly modifies his position by 
seemingly making the crucial distinction to be whether or not there is a decision 
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procedure for the problem. He affirms: “Only where there’s a method of solution 
is there a problem (of course that doesn’t mean ‘only when the solution has been 
found is there a problem’)”. Nevertheless one may reasonably ask how a method 
of solution is to be identified which has not so far generated a solution. In the 
absence of a solution what is the criterion for judging it to be such a method? 
Significant points may be drawn out from examples. It must be stressed that here 
one is concerned with what have been termed “open problems”, i.e. outstanding 
problems within the mathematical community, to be sharply distinguished from 
problems we may encounter as individuals, e.g. a difficult long division (Säätelä, 
2011: pp. 164-165). 

3.1. Example: Fermat’s Last Theorem 

Wittgenstein himself refers to what is known as Fermat’s Last Theorem. In in-
terrogative form, it is asked whether, in general, for a given positive integral ex-
ponent n > 2, the equation 

an + bn = cn 

can be solved with positive integers a, b, c. As is well known, Fermat stated that 
the equation is not so solvable in integers, but the elegant proof he had found 
was too long for the margin in which he was writing; he is believed, however, to 
have been mistaken. In respect of the next few centuries, one can perhaps risk 
the assertion that “no method of solution was identified”. Only relatively recent-
ly and since Wittgenstein wrote has an actual proof been provided, by Andrew 
Wiles, which makes use of mathematical induction, but is very long and arduous 
and probably only fully understood by a handful of people. The following ob-
servation rather points against Wittgenstein’s position: the proof of the theorem 
involves establishing the relation between elliptic curves and modular forms 
(Singh, 1997: pp. 183-211) but the statement of the theorem does not incorpo-
rate the associated mathematical concepts.  

This controversy need not, but sometimes does, take a more persona-
lised-sounding form as when one asks: Is what we understand as the theorem 
proved the same as what we understand as the theorem conjectured? A response 
in those terms might make a contrast between the understandings of a handful 
of top mathematicians with those of other members of the trained mathematical 
community who have not, or cannot, follow the proof. However, in sum, it is 
implausible that there is variation within the mathematical community as to the 
meaning of the generalization. This selected example is evidently one where the 
“gulf” between the statement of the theorem and its proof is vast. 

To help make progress Ambrose (1986b: p. 102) draws attention to the possi-
ble ambiguity between proposition or statement as “sentence” or “sense of a 
sentence” and it may be that attention so far has been rather directed at the for-
mer. In this connection, it is worth dwelling on the position prior to the provi-
sion by Wiles of a proof. Fermat and others had conjectured that the theorem 
expressed a truth but no-one knew that it could not be called into question; 
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conceivably a mathematician might have come forward with a counter example. 
The sentence might have expressed a necessary truth or, alternatively, a false-
hood. Wittgenstein would probably wish to assert that a person who did not 
know which of these a sentence expresses did not understand by the sentence 
what he understands when he knows it to be true.  

3.2 Example: The Fundamental Theorem of Algebra 

Let us bear Ambrose’s distinction in mind, while taking another example, see-
mingly relatively favourable to Wittgenstein’s position. It concerns something 
pretty central in mathematics, what is called the Fundamental Theorem of Alge-
bra, but it suffices here to direct attention to an example derived from it (see also 
Ambrose, 1986b: p. 108). The theorem is illustrated by the assertion that the po-
lynomial 

f(x) = x4 − 1 

may be factored into the form 

f(x) = (x − 1)(x − i)(x + i)(x + 1). 

In a related way, one would say that 1, i, −i, −1 are roots of the equation f(x) = 0. 
In this connection, two of the roots are (purely imaginary) complex numbers 
with i2 being −1. 

The fundamental assertion being made is that a polynomial of fourth degree 
such as the above necessarily has four roots (which may—as in this case—be all 
distinct but could be equal and would, therefore, be “counted twice or more”). 
However, for present purposes, a significant point is that in earlier centuries 
(such as the sixteenth)—prior to the introduction of complex numbers— 
mathematicians would have firmly asserted that the above equation necessarily 
has two roots (1 and −1). We can see clearly now that the apparent contradiction 
arises from the fact that there took place “an extension of the field of real num-
bers”. Therefore, in a way which is supportive of Wittgenstein, one could say 
that in order to understand either one of “the equation necessarily has four 
roots” or “the equation necessarily has two roots” there is a need to understand 
more than either set of words as a sentence. At a minimum, one would be in-
clined to say that there must be an understanding of the context of the field of 
complex numbers or the field of real numbers, either of which would involve 
grasp of the mathematical concept of a field. So also must it be required that 
there be an understanding of what gives rise to the use of the word “necessarily”. 
In this connection, Ambrose (1986b: p. 108) states that the necessity “did not 
derive from already accepted rules for the use of words, but from an extension of 
the use of ‘root’”. Hence there is a discernible tendency for seemingly straightfor-
ward “understanding of a sentence” to “unravel” and the “direction of travel” is 
towards understanding important elements involved in the proof.  

3.3 Example: A Specified Sequence in a Decimal Expansion 

Let us take one further example, of a type considered by Wittgenstein. Suppose it 

https://doi.org/10.4236/ojpp.2020.101005


R. Startup 
 

 

DOI: 10.4236/ojpp.2020.101005 52 Open Journal of Philosophy 
 

is asked: Does the sequence 66 occur in the decimal expansion of 1/7? It must be 
stressed that the decimal expansion fails to terminate, hence it may initially ap-
pear that one is being invited to look for a needle in an infinite haystack, which 
would be an absurd way to proceed.  

Suppose, to make progress, one commences determining the decimal expan-
sion by long division. After say ten or more decimal places one may perhaps no-
tice that a sequence of digits is repeating; in addition, that sequence does not in-
clude the digit six. Hence one begins to lean to the view that one is presented 
with an endlessly recurring set of digits which does not include a six. However, 
the crucial next step is to determine for sure i.e. prove that the particular set of 
digits is indeed endlessly recurring. This would entail either developing an ad 
hoc proof oneself or citing a more general result of which this is a particular in-
stance. The important general mathematical result is that any rational number, 
that is any number which can be expressed in the form p/q, where both p and q 
are integers, can be expressed as a finite or as an infinite recurring decimal. This 
decimal need not be a pure recurring decimal, but after a finite number of digits 
the decimal must recur. Familiarity with this result transforms the situation. Ei-
ther way, there is evidently some substance in Wittgenstein’s idea that the an-
swer to an expression in the interrogative “provides it with content”. This falls 
short, however, of justification for the assertion that one can understand the 
meaning of an expression or result only through understanding of its proof. 

4. The Development of Number and its “Grammar” 

In addition to his concern with the relation of meaning and proof, in his middle 
period Wittgenstein directed a lot of attention to the number concept and, in 
particular, to issues to do with the infinite. Adopting a more argumentative style, 
he is led to challenge aspects of the latter notion as used by mathematicians; es-
pecially what he terms “infinite mathematical extensions”. The intention here is 
to track both the predominant approach of mathematicians and his critical view, 
so as to assist an evaluation. In this connection it is important to direct attention 
both towards the nature of mathematical propositions (or pseudo-propositions) 
and also to the development of the number concept. A good example of change 
in the number concept has in fact already been alluded to, for, in the last section, 
reference is made to the emergence of complex numbers. The issues are perhaps 
best approached via the most basic and even elementary-seeming concerns. 

In his Remarks on the Foundations of Mathematics Wittgenstein situates ma-
thematical verification and relates it to the determination of meaning; this links 
to his doubts about infinite mathematical extensions. True propositions within 
mathematics have that status because they are provable in a calculus. They are 
deductions from axioms by formal rules and are true by virtue of valid applica-
tion of the rules of inference; they owe nothing to the world outside mathemat-
ics. The key point is that a mathematical calculus is a calculus for the transfor-
mation of signs. However, as Goodstein puts it, “mathematics is not a mere 

https://doi.org/10.4236/ojpp.2020.101005


R. Startup 
 

 

DOI: 10.4236/ojpp.2020.101005 53 Open Journal of Philosophy 
 

game, because the natural numbers have a use outside mathematics, and this use 
of numbers in ordinary language is what gives mathematics its meaning”. 
(Goodstein, 1986: p. 282, italics in original)  

In an oft-quoted passage, Wittgenstein says, “it is essential to mathematics 
that its signs are also employed in mufti. It is the use outside mathematics, and 
so the meaning of the signs, that makes the sign-game into mathematics” (Witt-
genstein, 1978: V, p. 257). The equation 2 + 3 = 5 is a derivable consequence of 
the definition of addition in the sign calculus of mathematics; but if the world 
changed so that it ceased to be the case that whenever we placed three eggs in a 
box which already contained two eggs then only four eggs remained instead of 
five, the equation would retain its mathematical validity, but lose its application 
in the world. The failure to find a use for the equation outside of mathematics 
would deprive it of meaning. Mathematics is applied but not verified in the 
world (Goodstein, 1986: pp. 282-283).  

Some Developmental Stages for Number 

Moving next to the overall developmental picture for number—particularly as 
this is understood by mathematicians—one may perhaps say that the concept 
has “evolved” where this is meant in the original sense of “unfolding”. Originat-
ing with the natural numbers, systematic development has occurred subject to 
the principle of generalisation; at the same time, the discipline of mathematics 
has been integrated by the coming together of algebra and geometry within ana-
lytical geometry. There is a perceptible passage towards “completeness” the source 
of which becomes clear as particular stages are briefly adumbrated.  

In the arithmetic of the natural numbers one can always carry out the two 
fundamental operations of addition and multiplication, but the “inverse opera-
tions” of subtraction and division are not always possible. The steps towards 
removing the restriction were taken when the symbol 0 and the symbols for 
negative numbers were introduced. This ensures that subtraction may be per-
formed without restriction in the domain of positive and negative integers. It is 
necessary in this connection to define operations in such a way that the original 
rules of arithmetical operations are preserved. Thus the initially strange-seeming 
rule (−1)(−1) = +1 is a consequence of the desire to preserve the distributive law 
of multiplication a(b + c) = ab + ac. 

What has just been said may be contrasted with elements of Wittgenstein’s 
distinctive perspective. He would have been aware that when negative numbers 
first made an appearance—to handle debits as well as credits—as numbers they 
were greeted with the same abhorrence as were “imaginary” numbers later on; 
that abhorrence arises from violation of the existing syntax or “grammar” asso-
ciated with natural numbers. In the natural number system it makes no sense to 
subtract a larger from a smaller number. The integers constitute a new number 
system and it is misleading to consider that as an expansion of an old number 
system. Associated with a new numerical series is a new grammatical system 
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which is such that analogues of previously unintelligible questions acquire 
meaning and become soluble. What happens is that a new system “extends the 
family of systems gathered under the concept of ‘number’” (Shanker, 1986: p. 9).  

One may briefly track the further development of number: the introduction of 
fractions removes the analogous arithmetical obstacle to division; rational num-
bers are provided with a geometrical interpretation enabling the magnitudes of 
line segments to be compared; analytical geometry enables every geometrical 
object and operation to be referred to the realm of numbers. Each of these sys-
tems has its associated grammar. A further development concerns the definition 
of the real number system and irrational numbers. Since this last is a focus of 
many of Wittgenstein’s comments slightly more detail is provided here. 

Numbers may be expressed to any whole number base greater than one but 
the reader will be familiar with the fact that we customarily express numbers to 
base ten and also use place value. Furthermore one can cover the number axis 
with those numbers which originate by subdivision of each unit interval into 10, 
then 100, 1000, etc. equal segments. The points so obtained correspond to “de-
cimal fractions” and give rise to the familiar representation of a number in the 
decimal system by the abbreviated symbol z.a1a2a3 … an. Informally, one then 
proceeds to define the continuum of real numbers or real number system (“real” 
in contrast to “complex” numbers referred to earlier) as the totality of infinite 
decimals. As indicated in an earlier section all rational numbers are either finite 
or periodic decimals. The irrational numbers are the non-periodic decimals.  
(In a more formal development of the topic an irrational point on the number 
axis may be defined as a symbol for a certain sequence of nested rational inter-
vals with lengths tending to zero. There are other equivalent approaches to that 
definition including the use of “Dedekind cuts” mentioned below.) 

5. Infinity and Irrational Numbers 

A key difference between the early and middle Wittgenstein is that, at the later 
stage, he rejects quantification over an infinite domain. Strategically important 
in this connection are his conception of mathematics as a human invention and 
the notion that mathematical calculi are exclusively made up of what he terms 
“intensions” and “extensions”. His usage is unconventional: by “extensions” he 
means such items as symbols, axioms, propositions, and finite sequences, while 
by “intensions” he has in mind rules of differing kinds, such as rules of infe-
rence.  

Wittgenstein (1975: §144, p. 164) casts doubt on the idea of actual infinite sets: 
“The infinite number series is only the infinite possibility of finite series of 
numbers. It is senseless to speak of the whole infinite number series, as if it, too, 
were an extension”. Additional comments of his bear upon the distinction be-
tween the actual and the potential infinite. He argues more directly against the 
existence of infinite sets as follows: 

Let’s imagine a man whose life goes back for an infinite time and who says 
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to us: “I’m just writing down the last digit of π and it’s a 2.” Every day of his 
life he has written down a digit, without ever having begun; he has just fi-
nished. 

This seems utter nonsense, and a reduction ad absurdum of the concept of 
an infinite totality (1975: §145, p. 166). 

Taken literally this is unsatisfactory since π is irrational (known since the 
eighteenth century), its decimal expansion does not terminate, so it has no last 
digit. To say that the expansion “has no last digit” is a clear idea which has 
nothing to do with time. Therefore its clarity cannot be challenged by way of an 
imaginary exercise involving performance in time. 

There are indeed several points in his writings where Wittgenstein appears to 
query the actual infinite (Wittgenstein, 1978: V, §21) and infinite mathematical 
extensions, which has given rise to discussion as to whether his approach may 
fairly be characterised as “finitist”. Indicative is his claim that, “[t]he concepts of 
infinite decimals in mathematical propositions are not concepts of series, but of 
the unlimited technique of expansion of series” (Wittgenstein, 1978: V, §19). He 
also affirms that, “[t]he extensional definitions of functions, of real numbers etc. 
pass over—although they presuppose—everything intensional…” (Wittgenstein, 
1978: V, §35). He asserts that irrational numbers are rules for constructing finite 
expansions, not infinite mathematical extensions. Alluding to the method of de-
fining irrational numbers by the use of “Dedekind cuts”, he queries whether we 
are “led to √2 by way of the concept of a cut” and characterises the cut as “an 
extensional image” (1978: V, §34). Of critical importance is his claim that there 
is no rule, no systematic means of defining each and every irrational number in-
tensionally, which leads him to question whether there is a criterion “for the ir-
rational numbers being complete” (1975: §181, p. 223). 

Irrational Numbers: Definition; Examples; A Criterion for  
Completeness 

What Wittgenstein appears to mean by defining an irrational number “inten-
sionally” is illustrated by the definition of 2  as the length of the diagonal of a 
unit square, and π as the length of the circumference of a circle of unit diameter. 
Both definitions are geometrical on their face, but one must bear in mind the 
geometrical interpretation of number noted earlier. On the other hand, what 
Wittgenstein has in mind by a “mathematical extension” would appear to be il-
lustrated in the present context by the representation of a quarter by 0.25; where 
the two digits after the decimal point are specified and ordered. What he would 
appear to be objecting to in an “infinite mathematical extension” such as the re-
presentation of 2  as 1.414… is that only some of the digits are individually 
identified and ordered. Part of the response is to say that, if anyone cares to spe-
cify any arbitrary whole number (such as a hundred), a further extension may in 
principle be provided to reveal further digits up to the specified whole number 
of decimal places. The other part of the response is to say that it is not possible 
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to specify a last digit because there is no last digit.  
It is important to make more precise what is being said about 2  and π. The 

basic assertion is that each gives rise to an indefinitely extended decimal fraction. 
In the first case no explicit formula is known to determine the digits but one 
may calculate as many as one wishes. In the second case there are formulas 
which enable π to be expressed as an infinite series, from which its decimal ex-
pansion may be determined to any required degree of accuracy. Thus each may 
be shown as an indefinitely extended decimal fraction of the form z.a1a2a3 …, 
where the dots indicate that the decimal fraction may be extended “indefinitely”. 
This implies that were someone to require an extension to an arbitrary whole 
number of decimal places it could in principle be provided. 2  and π are irra-
tional numbers, but it is pertinent to add that many rational numbers give rise to 
an indefinitely extended decimal expansion albeit one which is periodic, the 
most familiar being the expression for a third as 0.333… Thus there is a perfectly 
clear sense in which the real numbers—or the “real number continuum”—may 
be considered as “complete”, and within that context, 2  and π belong to the 
irrationals—the non-periodic decimals—which may also be considered as com-
plete. 

Wittgenstein is critical of a tendency to employ metaphors deriving from 
geography e.g. the claim that irrational points fill the “gaps” on a line left by the 
rational points, just as we might claim that certain sediments fill the gaps in a 
rock left by igneous material. No responsible mathematician would do this, 
however: for one thing a “gap” would be a measurable interval, while an indefi-
nitely large number of rational numbers is found within any interval, however 
small. Again, he writes: “We are surprised to find that ‘between the everywhere 
dense rational points’ there is still room for the irrationals. (What balderdash!)” 
(Wittgenstein, 1974a: p. 460; also §§ 40-1) No-one is claiming, however, that any 
“room”—or interval—is either needed or available to “accommodate” irration-
als: as noted above, each is being defined as the “limit” of an indefinitely large 
sequence of rationals (or of a sequence of nested intervals with rational end- 
points). In the latter connection, there may well be employment of such formal 
phraseology as “the limit as n tends to infinity” but this is used rather as a “term 
of art” (c.f. legal terminology): it carries absolutely no implication that infinity is 
to be treated like a natural number. 

In seeking to identify a criterion for the irrational numbers being complete 
Wittgenstein argues as follows:  

Suppose we had the totality of all irrational numbers with one single excep-
tion. How would we feel the lack of this one? And if it were to be added, 
how would it fill the gap? Suppose that it’s π. If an irrational number is 
given through the totality of its approximations, then up to any point taken 
at random there is a series coinciding with that of π… And so if I have the 
totality of all irrational numbers except π, and now insert π, I cannot cite a 
point at which π is now really needed. At every point it has a companion 
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agreeing with it from the beginning on. This shows clearly that an irrational 
number isn’t the extension of an infinite decimal fraction, that it’s a law. 

Our answer to the question above must be “If π were an extension, we 
would never feel the lack of it”, i.e. it would be impossible for us to observe 
a gap. If someone were to ask us, “But have you then an infinite decimal 
expansion with m in the r-th place and n in the s-th place, etc.?” we could 
always oblige him (Wittgenstein, 1975: XVII, § 181, p. 223). 

So Wittgenstein’s argument centres upon whether we would feel the lack of a 
particular irrational number such as π. As indicated earlier, however, it is quite 
inappropriate to speak as though π “fills a gap” because a gap is a measurable 
interval. Nevertheless, since an irrational number is defined as the limit of an in-
finite series of rational numbers, it follows directly that, as indicated by Witt-
genstein, one could supply an infinite decimal expansion which coincides with 
that of π up to a specified point. However, it would also be the case that pre-
sented with any such infinite decimal expansion, one could shows its divergence 
from that of π at some subsequent point. This could be done because, as indi-
cated earlier, the expansion of π is given by a formula and hence its decimal ex-
pansion may be extended to any required degree. It may be worth adding that 
the digits in that expansion exhibit no pattern: in a certain sense, they have a 
random character. Hence, no clear sense may be given to the notion of law in 
respect of that decimal expansion. Yet the very fact that there are formulae giv-
ing its value to any required number of decimal places identifies and secures its 
unique place within the decimal expansions of irrational numbers.  

Given that the real numbers are closed with respect to the rational operations, 
a further twist may be given to the argument. Suppose we take the infinite series 
which sums to the value of π and simply delete the first term. Then the sum of 
the residual series would sum to an irrational number with a value different 
from that of π. In addition, the deleted term, as a rational number, would give 
rise to a further decimal expansion. Suppose these two decimal expansions are 
now summed then the resultant is the value of the decimal expansion of π. 
Hence if the latter decimal expansion were considered as absent, we would feel 
the lack of it because there would be a violation of the rule that the real numbers 
are closed under addition. Hence it is the rule concerning closure under the ra-
tional operations that underlies the claim that the irrational numbers are com-
plete. 

Particularly given Wittgenstein’s sensitivity to applications, it may be won-
dered whether irrational numbers are of use outside mathematics. Doubts may 
be raised because it is impossible to determine by any physical operation wheth-
er a given length is rational or irrational. What is true, though, is that, from a 
physical point of view, the definition of a real number by a convergent series of 
rational numbers corresponds to the determination of the value of some ob-
servable quantity by a sequence of measurements of greater and greater accura-
cy. Therefore, as Courant and Robbins (1958: p.71) argue, “the real advantage 
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which the introduction of irrational numbers brings to the mathematical de-
scription of physical phenomena is that the description is enormously simplified 
by the free use of the limit concept, for which the number continuum is the ba-
sis”.  

6. Transfinite Numbers and the “Excluded Middle” 

Wittgenstein addresses issues concerning infinity and denumerability which are 
probably more readily appreciated given a (necessarily brief) presentation of 
context. Now considering the infinite class of the natural numbers 

1 2 3 4 5 6 … n …     

one can set up a one-to-one (“biunique”) correspondence between these num-
bers and the series obtained by doubling each of them: 

2 4 6 8 10 12 … 2n … 

Following Cantor, one defines an infinite class as one which can—as in this 
case—be put into one-to-one correspondence with a part (or proper subset) of 
itself. In addition, if two infinite classes are such that a one-to-one correspon-
dence can be set up between their members, then it is said that the two classes 
have the same transfinite number of members. Where a class has the same trans-
finite number as that of the natural numbers one says that it is denumerable or 
countable. Cantor went on to establish some further surprising results. He 
showed—by a constructive and systematic method—that the class of all positive 
rational numbers is countable. On the other hand, by an indirect method—and 
using a “diagonal process”—he showed that the class of all real numbers between 
0 and 1 is not denumerable. This leads on to the assertion that the transfinite 
number of the latter class is greater than that of the class of natural numbers. 
Importantly for present purposes Cantor’s indirect method is a proof by reduc-
tion ad absurdum i.e. it proceeds by assuming the contrary and then showing 
that this leads to a contradiction. The school of intuitionists does not accept 
proofs of that type and Wittgenstein is far from being impressed by it (Moore, 
2019a). 

Importantly, Wittgenstein (1974b: p. 124) tells us: “Philosophy may in no way 
interfere with the actual use of language”, “it can in the end only describe it… It 
leaves everything as it is. It also leaves mathematics as it is”. Yet in challenging 
the terms in which mathematical results are formulated, he sometimes seems to 
challenge the results themselves (Moore, 2011: p. 117). Thus Wittgenstein (1975: 
§ 141, p. 161) queries whether the relation m = 2n can be used to correlate the 
set of natural numbers with one of its own proper subsets, in the way just indi-
cated. Again, he writes: “one pretends to compare the ‘set’ of real numbers in 
magnitude with that of cardinal numbers… I believe, and hope, that a future 
generation will laugh at this hocus pocus” (Wittgenstein, 1978: II, § 22).  

Those—such as Wittgenstein—who object to the type of non-constructive 
reasoning employed by Cantor focus inter alia on its character as an essentially 
indirect proof. As above, the form of an indirect proof follows this pattern: to 
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establish the truth of a statement, one makes the provisional assumption that its 
contrary is true. Then by a chain of reasoning one produces a contradiction to 
the contrary statement, thus demonstrating its absurdity. Then on the basis of 
the logical principle of the “excluded middle” the absurdity of the contrary 
statement is taken to establish the truth of the original statement.  

Now Wittgenstein is conscious of ways in which mathematicians may import 
conceptual confusion into their discipline, for instance, as Moore (2011: p. 118) 
puts it, by their “unthinking commitment …to the law of the excluded mid-
dle…another symptom of an unwarranted realism”. Importantly, one must note 
that in mathematics there are examples where an indirect proof can be converted 
into a direct proof, but there are also theorems—such as Cantor’s as given earlier 
on real numbers—for which direct constructive proofs could not possibly be given 
even in principle. There is little doubt that the complete banishment from mathe-
matics of non-constructive proofs would constrict the growth of the subject. 

Wittgenstein is particularly helpful when directing critical attention to Can-
tor’s claim that the transfinite cardinals constitute, “an extension of the concept 
of number” (quoted Shanker, 1986: p. 5). As Shanker notes, this phrase may be 
interpreted in either of two ways: an extension of the number concept in itself; 
an extension of the domain of the natural numbers. Wittgenstein would find the 
first claim acceptable since he viewed number as a “family resemblance” con-
cept. The second interpretation is much more dubious. While in conventional 
terms, there is sense to the notion that the domain of the natural numbers may 
be extended into that of positive and negative integers and on into the real 
numbers, the notion that transfinite numbers derive from a similar extension is 
untenable. In the former case the extensions are all to do with preserving and 
extending the use of the rational operations, but in the latter case there is no 
such preservation of operations. Just about the only “operations” which are spe-
cified for Cantor’s transfinite numbers are “equal to” and “greater than” (and the 
latter hardly works in the same manner as 2 > 1): you cannot multiply or divide 
with them!  

As already noted, for Wittgenstein suitable application is the hall-mark of 
meaningful mathematical activity. This particular arrow could be targeted on 
transfinite mathematics which has virtually no use in non-mathematical con-
texts. Nevertheless, as Moore (2011: p. 119) points out, one may ask such ques-
tions as: Why need the application be external to mathematics? Why may not 
the development of its application lie in the future (as complex numbers found 
application in alternating current theory of electricity)? Even lacking application, 
might it not usefully systematize other parts of mathematics? One must be sure 
never to underrate the complexity of both the internal and external connections 
of branches of mathematics. 

7. Rules within Arithmetic and Geometry 

The contrast with empirical propositions is again foregrounded in Wittgens-
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tein’s middle period writings. Motivated by an analogy with those propositions, 
people are inclined to ask, “What are mathematical propositions about?”, but 
against this tendency Wittgenstein forwards the suggestion that arithmetical 
propositions (or pseudo-propositions) are not about numbers, nor are geometric 
propositions about geometrical figures. According to him, we would do well to 
direct our attention away from what they are about and towards the use which 
we make of them. Furthermore, in a key point which Ambrose (1986a: p. 26) 
draws from his work, where we allow nothing to count against a proposition, the 
expression for the proposition is being assigned a special role in the language, as 
a rule for the application of certain words.  

This may be illustrated by our orientation in the familiar type of tiling situa-
tion. Suppose one multiplies 13 by 12 to find out the number of unit squares 
needed to exactly cover a rectangle 13 units long by 12 units wide. Were one to 
find upon counting that the number of tiles needed is other than 156, the result 
obtained by multiplication according to the rules, one could conceivably re-
spond in two different ways. Were one to say “13 × 12 = 156 is false”, one would 
be treating it as a proposition testable by experience. On the other hand, were 
one to say that the multiplication is correct regardless of the number of unit 
squares counted, one would be using it as a criterion as to the correctness of the 
count, and hence independent of experience (Ambrose, 1986a: p. 26). The 
second is our established, common linguistic practice. 

As Ambrose (1986a: p. 28) explains, Wittgenstein’s account helpfully bears 
upon the familiar puzzle, that people sometimes seem to discover a fact of expe-
rience which they then go on to prove must be so. This would seem to give a 
matter of fact an a priori demonstration. The assertion that there are only five 
regular polyhedra would be a case in point; this proposition was believed centu-
ries before it was actually proved. However, according to Wittgenstein, what is 
happening is that an empirical proposition arising out of experience is converted 
into a proposition which no experience would lead us to give up. As Ambrose 
(1986a: p. 30) puts it, “…arithmetical propositions, though independent of expe-
rience, are in two ways dependent upon experience: in being suggested by expe-
rience, and in having their special function rest on common linguistic habits”. 
Furthermore, consideration of the relation between mathematical proof and ex-
perience rather dramatises Wittgenstein’s conception of mathematical proofs as 
paradigms. 

There would, however, seem to be a significant difference between arithmetic 
and pure geometry in relevant respects. In the latter case, but not in the former, 
there is a discernible tendency of linguistic practice to assert that something is 
true of “ideal” elements—such as geometrical lines and circles; it is implied that 
it may not precisely be the case, for instance, for lines or circles drawn on paper. 
Thus in pure geometry, the proposition treated as independent of experience is 
that contained within the abstracted axiomatised system. Pure geometry 
proceeds against the background of continued understanding that there is a gulf 
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between the world of experience and the abstracted model, even given the illu-
mination that each provides of the other. It is that understanding which even-
tually opens the way to the substantive question as to whether Euclidean or 
non-Euclidean geometry is to be preferred as a description of the geometry of 
the physical world. 

Wittgenstein was fascinated by proofs of impossibility, for instance, those di-
rected at problems in ancient Greek geometry concerning the straightedge and 
compass trisection of an angle, squaring of the circle, and construction of a reg-
ular heptagon. In the last two centuries, the impossibility of each of these con-
structions has been demonstrated by algebraic methods. However, within the 
framework of geometrical straightedge and compass construction itself, no such 
demonstration of impossibility could be provided. It is only within a radically 
different algebraic setting that the problem can be properly posed and solved. 
Wittgenstein is firm on the point that it makes no sense to talk of the non- 
existence of a construction, in the context of constructions. Modern algebra and 
algebraic geometry provide a new grammatical system and associated rules 
within which questions unintelligible within the system of ancient Greek geo-
metry acquire meaning and become soluble. 

8. The Rule-Following Argument 

Particularly well-known—and notoriously difficult satisfactorily to rebut—is 
Wittgenstein’s “rule-following argument”, to the effect that each time we apply a 
rule there is in some sense an indeterminacy as to what “applying the rule” 
amounts to on this occasion. An example taken for consideration is where an 
individual appears to be “successively adding two” but then in their determina-
tions, they suddenly diverge from what an observer expects. It is relevant to say 
that given a mathematical series more than one rule may generate its early 
members but then give different values at a later point. As presented, Wittgens-
tein’s argument is entirely general, so any sense of context tends to be lost. Is it 
helpful—one may wonder—to consider a young child learning to count, or the 
limited arithmetic of a tribal society, or present day higher mathematics?  

In fact, further to the discussion of the solutions of quartic equations above, 
one can even construct an imaginary example from higher mathematics which 
may be illustrative. Suppose, as a twenty-first century mathematician, one is 
overlooking the work of a sixteenth century mathematician who is seemingly 
recording the number of roots of a series of quartic equations (making due al-
lowance for repeated roots). He records an extended series of fours and we may 
be led to expect this to continue but then—all of a sudden—he records a two.  

Where an individual says they are following a rule which they may or may not 
identify explicitly, or where they appear to be following a rule, and they then act 
in an unexpected way, one may seek “to go behind it”—by asking them to ex-
plain their choice or decision, or by investigating it indirectly. In the example 
just given it might thereby be quickly revealed that only “real” roots are being 
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counted. Again, supposing the context is of a young child learning to count, one 
might have recourse to the use of counting beads or Cuisenaire Rods. Impor-
tantly, there is nothing in Wittgenstein’s example that prevents an individual 
subsequently being led to (or independently arriving at) an alternative choice or 
the genuinely-held judgment that they had previously “made a mistake”; but ar-
guably, there is also nothing that compels them to do so either. Again, while 
taking Wittgenstein’s (1975, §164, p. 198) point regarding “the unbridgeable gulf 
between rule and application, or law and special case” little or nothing follows 
from it regarding the extent to which, or contexts within which, unresolvable is-
sues of that type may be expected to be encountered in practice.  

In connection with arithmetic or any other part of mathematics what is cru-
cial is not that we are capable of coming to differing judgements or assessments 
(as when we repeatedly check bank statements) but the recognition that there is 
an objectively given criterion as to the correctness of the count, the sum or the 
relevant calculus. Significantly, the use of such objective criteria enters into the 
design of the aids we employ such as calculators and computers, which therefore 
serve to discipline our behaviour. The nature of Wittgenstein’s “unbridgeable 
gulf” could be such that the majority of a population fails to recognise a standard 
of correctness and/or their own regular departure from it. That this is not the 
case and that we recognise the possibility of our own mistakes and struggle to 
correct them lies at the heart of the institution of mathematics within society. 
Mathematical rules can only be said to function where they are sustained within 
common linguistic practice: happily the position in society today.  

9. Concluding Remarks 

In a strikingly impressive way the Tractatus lays bare the essentials in terms of 
abstraction and generality. Within the account, Wittgenstein characterises and 
situates mathematical propositions (or pseudo-propositions) while departing 
from Russell’s and Frege’s versions of logicism. However, given that important 
work’s character and aspirations, one is entitled to ask whether in its own 
gnomic terms it “does justice” to mathematics. Doubts in this respect centre on 
narrowness in its characterisation of the subject matter given a focus on the ma-
thematical equation. The reader is rather left wondering how Wittgenstein 
would situate not just the inequalities cited by Ramsey, but a variety of other 
propositions. An extension of Wittgenstein’s analysis to incorporate the wider 
structure of mathematical reasoning might well lead one back towards a logicist 
account.  

With the help of examples, the relation between the meaning of an arithmeti-
cal generalization and its inductive proof has been explored, but one is unable to 
conclude that the former consists of the latter. To be fair to Wittgenstein it may 
be that his doctrine is to be interpreted narrowly—as being solely concerned 
with mathematical induction—and does not even extend to include the funda-
mental theorem of algebra considered here; but there is considerable interest in 
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examining the relation more generally within mathematics. In marked contrast 
in relevant respects to Fermat’s Last Theorem is the Fundamental Theorem of 
(Integral) Calculus. In that case, extended study is needed to gain understanding 
of the context, preliminaries and formulation of the theorem, but the increment 
of understanding then needed to grasp the (perhaps two sentence) proof is rela-
tively slight (Apostol, 1957: p. 215): meaning of general proposition and of its 
proof are evidently close. 

The attempt is made here to meet directly some of Wittgenstein’s objections 
to the mathematical treatment of infinity and irrational numbers (Moore, 
2019a). Infinite processes play a central role in the subject, particularly in diffe-
rential and integral calculus, its “crowning glory”. It is agreed among mathema-
ticians that the analytical work of the nineteenth century—by Weierstrass and 
others—provides a perfectly sound basis, yet it is of the essence that only a finite 
number of steps are taken in that analytical reasoning. As Wittgenstein (1974a: 
p. 483) reminds us: “Let us not forget: mathematicians’ discussions of the infi-
nite are clearly finite discussions. By which I mean, they come to an end” (see 
Moore, 2019a, 2019b). To challenge their approach would simply require a chal-
lenge to one or more of a finite number of steps; but no such challenge is evi-
dently forthcoming. There is thus a sense in which the infinite is satisfactorily 
addressed by the finite; yet, emphatically, this need not involve adherence to a 
doctrine of “finitism”.  

Wittgenstein’s comments on the place of transfinite numbers within mathe-
matics are informed by considerations similar to those he judges to apply to 
more elementary-seeming extensions of the number concept, for instance, that 
from the natural numbers to the integers. His view is that we are presented with 
a further extension of the family of systems subsumed under the concept of 
number. There is an important difference to note, however. The extensions from 
natural numbers through to the real number continuum are all to do with ex-
tending the use of the rational operations while preserving the rules. (The exten-
sion to complex numbers similarly preserves operations and rules while syste-
matising and completing the solutions of algebraic equations.) Any supposed 
“extension” to transfinite numbers is, however, of an entirely different order, 
partly because there is no preservation of rational operations and the associated 
rules. Hence a challenge to the claim that the introduction of transfinite num-
bers extends the domain of the natural or the real number systems is well- 
founded. 

Wittgenstein surely rightly values absolute clarity and also, in a not unfamiliar 
way, sees merit in the potentially creative perspective of the young child: 

Philosophical clarity will have the same effect on the growth of mathematics 
as sunlight has on the growth of potato shoots (In a dark cellar they grow 
yards long).  
A mathematician is bound to be horrified by my mathematical comments, 
since he has always been trained to avoid indulging in thoughts and doubts 
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of the kind I develop…I trot out all the problems that a child learning 
arithmetic, etc. finds difficult, the problems that education represses with-
out solving. I say to those repressed doubts: you are correct, go on asking, 
demand clarification! (Wittgenstein, 1974a: pp. 381-382). 

While sympathising with the general sentiment, one is bound to say, further 
to the above discussion of the “unfolding” concept of number, that the child may 
not experience accurate answers as particularly satisfying. For instance, everyone 
finds initially strange the rule (−1)(−1) = +1, but to be told that “this is true by 
definition” or “is a rule needed to preserve the distributive law of multiplication” 
is unlikely to bring comfort to the budding mind. The combination of simplici-
ties and complexities within the evident richness of mathematics is pretty unfa-
thomable to us all. 
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