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S U M M A R Y : The description of data and computer programs with the use of 

numbers is epistemologically valuable, because it allows to identify the limits of 

different types of computations. This applies in particular to discrete (digital) 

computations, which can be described by means of computable numbers in the 

Turing sense. The mathematical fact that there are real numbers of a different 

type, i.e. uncomputable numbers, determines the minimal limitations of digital 

techniques; on the other hand, however, it points to the possibility of the theoret-

ical development and physical implementation of computationally stronger tech-

niques, such as analogue-continuous computation. The analyses presented in this 

article lead to the conclusion that physical implementations of unconventional 

(non-digital) computations require the occurrence of actually infinite quantities in 

nature. Although some arguments of theoretical physics support the physical 

existence of such quantities, they are not definitive. 
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From the point of view adopted in this work, computational objects, 

in particular computer programs, mediate between the mathematical 

sphere of numbers and physical reality. For example: a sound playing 

program operates on numerical representations of acoustic waves, and its 

instructions cause, due to the appropriate design of the computer, real 

physical vibrations of air molecules. What is more, this and any other 

program can be analysed on two levels, i.e. as an object of two types: on 

the one hand as a series of symbols that can be reduced to numbers, and 

on the other—as a strictly defined system of physical states of the ma-

chine (which, after running the program, cause regular changes of its 

subsequent states).2 Due to the indicated correspondence, many comput-

er-related issues can be resolved by referring to the properties of num-

bers—numbers that according to a particular, machine’s specific, model of 

computation (e.g. digital or analogue) correspond to the data, texts and 

results of the programs. 

In this work I shall focus on programs for digital machines. They are 

described theoretically by means of the Turing model of computation 

(universal Turing machine), and speaking “numerically”, using computa-

ble numbers in the sense of Alan Turing. Referring to certain properties 

of computable and uncomputable numbers, in particular the fact that the 

digital representations of uncomputable numbers are actually infinite,  

I shall determine the theoretical reasons for the existence of computation-

al limitations of such programs. I shall also discuss the possibilities of 

overcoming these limitations by means of computational techniques that 

(theoretically) allow the processing of signals described using uncomputa-

ble numbers in the Turing sense. The presented text is for the most part 

a review. However, it contains a number of the author’s interpretations of 

the results of computer science and its mathematical foundations research 

(e.g. results of A. Turing and G. Chaitin), in particular interpretations 

regarding the infinite nature of uncomputable numbers and codes consid-

ered in theoretical computer science. 

 
2 Some philosophers of computer science speak directly—adopting an ontologi-

cal rather than epistemological attitude—about the dual, i.e. abstract-physical, 

nature of computer programs (Moor, 1978; Colburn, 2000; see also Angius  

& Turner, 2013). 
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1. N UMBERS, COMPUTING AND N UMERICAL CODING 

The most important, and oldest, idea that resulted in the creation of 

computers and then computer science is the idea of numerical coding.3 

Behind it is the belief that the world of numbers (maybe even only natu-

ral ones) and relatively simple operations on them (such as comparing, 

adding or dividing) is rich enough to represent various aspects of the real 

world. 

In modern computing, numerical coding, understood as describing da-

ta processed by computers using numbers, 4  is a common and perhaps 

theoretically necessary activity.5 It is already present at the level of initial 

formalization of some tasks, when the objects appearing in these tasks 

(e.g. text, sound or graphic) are described by means of numbers, specially 

selected and included in appropriate structures. For example: characters 

processed by text editors are assigned specific numbers (according to e.g. 

ASCII code), while images displayed on monitors are often coded in the 

form of a sequence of numbers that determine the coordinates and colours 

of points on the raster matrix. At the lowest level of intra-computer 

structures, the relevant codes are created automatically, thanks to spe-

cially designed programs (e.g. compilers). Most importantly, however, in 

 
3 Its oldest manifestation was probably the philosophy of the ancient Pythago-

reans, which postulated reducing all fragments of reality to some kind of numbers 

(summarized in the short slogan that “everything is a number”). In modern philo-

sophical thinking, especially in the context of computer science philosophy, Py-

thagorean ideas are revived, which some call neopythagoreanism. This is due to  

a kind of feedback: Pythagorean ideas contributed to the emergence of computer 

science, and its successes, among others in the field of simulation of physical phe-

nomena by means of operations on computer-represented numbers, strengthen the 

Pythagorean view of the world (Krajewski, 2014). 
4  In the computer science context, the term “describing data processed by 

computers using numbers” usually has a syntactic rather than an abstract sense. 

This means that it is about coding data using symbolic (and physical) representa-

tions of numbers, e.g., zero-one sequences. In the present text I shall also refer to 

the abstract (strictly mathematical) properties of numbers and their sets, such as 

the continuity of a set of real numbers. In the case of insufficient context, however, 

I shall signal whether in the given place it is about the abstract or syntactic di-

mension of the concept of number (writing e.g. that it is about decimal expansion 

of a number). 
5 See the online discussion on the Cafe Aleph blog that resulted from the crea-

tion of this work (Stacewicz, 2018b). 
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mathematical terms, aside from the physical design of the computer and 

the physical processes of signal processing, they can be represented nu-

merically, for example in binary form. 

The last five words of the previous paragraph indicate that I under-

stand the term “numerical coding” widely in this work. In particular,  

I understand it more broadly than the term “digital coding”, which I re-

serve for the way of representing information in digital computers, which 

are machines with discrete states operating on binary signals. I take the 

broad term “numerical coding” to be reasonable, because computer science, 

generally conceived, considers a wider class of machines than the digital. 

This broader class includes analogue circuits that allow (at least theoreti-

cally) operation on continuous signals described by real numbers,6 as well 

as quantum computers for which the basic unit of information is the q-bit, 

mathematically defined using complex numbers.7 

The concept of numerical coding is closely related to the key computer 

science concept of computing. In the context of problem solving, it means 

the mechanical implementation of the process of determining the value of 

the function, which assigns its specific solutions to the input of the prob-

lem (solutions for specific data).8 If the data are numerically encoded, 

then the arguments and values of this function are those types of num-

bers (e.g. natural or real), which are allowed by the coding method ap-

propriate for a given machine. This is determined by the appropriate 

model of computation (e.g. digital or analogue). Let us also say that the 

computer description, not purely mathematical, of the calculated function 

 
6 See works by Shannon (1941) and Rubel (1993). 
7  I also use the term “numerical coding” in another work (Marciszewski  

& Stacewicz, 2011, pp. 75–77). A similar conceptual convention is found in Kra-

jewski, who does not use the term “numerical coding”, but distinguishes digitiza-

tion as one of the types of coding (although the most common), fundamentally 

different from data coding in analogue circuits processing signals described by real 

numbers (Krajewski, 2014). 
8 Historically, the first mature considerations for solving problems using calcu-

lations (computations), i.e. mechanical operations on physical equivalents of num-

bers, are due to G.W. Leibniz. For the modern concept of computing, the follow-

ing ideas and achievements are particularly important: the design of a calculating 

machine (performing the four basic arithmetic operations), the invention of  

a binary arithmetic system, the design of a machine operating on binary encoded 

numbers, as well as the concept of a universal symbolic language (lingua charac-

teristica) and coupled with it a reliable calculus (calculus ratiocinator). See the 

work by Trzęsicki (2006). 
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is either the program text (if the machine accepts programs written in  

a certain programming language) or the connection diagram between the 

elementary systems of the machine (if the machine is physically pro-

grammed like analogue systems or the first digital computers). 

Since the vast majority of today’s computers perform digital computa-

tions, in the following paragraphs I shall take a closer look at the “numer-

ical” characteristics of the tasks entrusted to them. In particular, I shall 

consider the question as to whether the numerical codes desired in their 

description must be finite, or if sometimes it is necessary to refer to the 

concept of infinite code.9 

At first glance, all the codes involved are finite, and thus reduced to 

natural numbers. This suggests the observation that the data entered into 

the digital computer have a finite representation, and the programs used 

to process them are finite sequences of instructions that, when encoded in 

binary form, can be interpreted as natural numbers. A deeper reflection 

on the functions of digital computers, however, leads to the statement 

that the theoretical analysis of the capabilities of these computers must 

refer to the concept of infinite code (even if such codes cannot be imple-

mented inside real digital machines). Two possible contexts of reference 

should be distinguished. 

First, in the case of many real problems (e.g. in the fields of dynamics 

or mechanics), the results obtained for specific input data can be ex-

pressed in irrational numbers, those with infinite and irregular expansions 

(e.g. decimal). This happens, for example, when a given problem is formu-

 
9 The concept of infinite code—that is, the result of the coding process that 

has (actually) infinite length—is a non-standard concept that goes beyond the 

standard theory of computation, expressed e.g. in terms of Turing machines. 

However, in modern computer science methodology, which also includes some 

non-standard models of computation, this concept is used—e.g. to refer to the 

infinite length of program codes or the infinite tape of the Turing machine, which 

is completely filled with data (Ord, 2002, p. 17; Ord, 2016, p. 146; Mycka & Ol-

szewski, 2015, pp. 58–59). Let us emphasize, however, that this concept makes 

sense when one makes an (even working) assumption of the possibility of going 

beyond the traditional Turing model of computation. The use of the concept of 

infinite code is justified in the present work, because later in it (especially in sec-

tion 4) I shall analyse the possibility of the physical implementation of non-

Turing computations, also those that include infinitistic elements. Regardless of 

this intention, in this section I show how (general) analysis of problems that we 

would like to solve traditionally (i.e. digitally) leads to the necessity of at least  

a critical consideration of non-traditional (i.e. infinite) codes. 
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lated mathematically using a certain equation (e.g. differential) and the 

root of this equation is an irrational number (such as √2, π or e). In this 

case, the result is de facto represented by an infinite number. Let us first 

note, before explaining in more detail in section 3, that the most trouble-

some situation occurs when we deal with this kind of irrational number, 

which is uncomputable in the sense of Turing. Secondly, however, and 

crucial for further analysis, each more complex programming task has an 

infinitystic structure. This means that the set of its initial data, and 

sometimes also the set of its potential results, is unlimited. As a simple 

example, let’s consider the problem of determining the roots of quadratic 

equations ax2 + bx + c = 0, where the range of possible a, b, c coefficients 

to enter is unlimited. In the case of this problem, there is, despite an 

unlimited field, a finite method of finding the x values sought, which is 

the commonly known “delta” algorithm. There is also a finite program 

(many), which for any input data (i.e. a system of coefficients a, b, c) 

allows, in a finite number of steps, the generation of the correct result. 

This program must be treated as a general (computer) solution to the 

problem posed, a solution which corresponds to the finite numerical code 

of the program (in short: a certain number).10 

Unfortunately, for other problems with an unlimited input data do-

main, the numerical code of the general solution—which is a digital rec-

ord of all possible pairs <INPUT, RESULT>, or in other words, the 

function that assigns the results—must remain infinite. This happens 

when there is no finite program to solve the problem. If such a program 

exists, it is a form of encoding the set of the given pairs in the shape of  

a procedure that generates correct results (for all possible input data) 

which is “intelligible” for a digital machine. The code of such a procedure 

corresponds to a natural number (written e.g. as a sequence of zeros and 

ones). If such a program does not exist, it must be assumed that the 

overall solution to the problem corresponds to some uncomputable num-

ber in the Turing sense (i.e. a certain special irrational number with infi-

 
10 Let us emphasize here that, although the question of the infinite domain of 

input data may be irrelevant from the point of view of solving the algorithmic 

task, the fact that this solution applies to an unlimited number of input data 

determines its strength. It is in a way a universal solution (similar to mathemati-

cal theorems, it applies to an infinite number of special cases). In some situations, 

however, the infinite field can lead to trouble—more on this in the main text (see 

also Stacewicz, 2015). 
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nite expansion, which no digital machine can calculate; see further in 

section 2). 

In the context of solving problems by computing that interests us here, 

infinite numerical codes can, therefore, occur at two levels: 1) at the code 

level of the exact individual result, 2) at the code level of the overall 

problem solution. In both cases, it may happen that the appropriate code 

is in the form of an uncomputable number, and then—as we shall see in 

section 3—the method sought to solve the problem lies beyond the limits 

of the possibilities of digital coding (which does not, however, exclude the 

existence of such a method that would be implemented on machines of 

types other than digital). 

2. UNCOM PUTABLE N UM BERS IN  THE TURING SENSE 

The uncomputable numbers highlighted in the title of this article were 

defined by Alan Turing in his work from 1936 entitled On Computable 

Numbers, with an Application to the Entscheidungsproblem. He defined 

them as such irrational numbers, whose decimal representation cannot be 

determined with any given accuracy, by any system for mechanical calcu-

lations, today called the Turing machine.11 In the modern style, we would 

say that these numbers are indeterminate by means of algorithms for 

digital machines, and therefore those for which there are no finite com-

puter programs that allow step by step calculation of the subsequent 

digits of their decimal or other representations (although such representa-

tions are strictly defined, see Stacewicz, 2012). For example: the irrational 

number e does not have the above properties, because it is relatively easy 

to generate successive digits of its expansion by means of a program cal-

culating successive subtotals of the appropriate series (remember that 
 

            ). Therefore, it is not an uncomputable number, alt- 
 

hough it is characterized by irrationality.  

Unlike the irrational number e, uncomputable quantities in the Turing 

sense are defined in a way that excludes the possibility of their successive 

approximation using Turing machines or equivalent computational mech-

 
11 It is worth adding that Turing first gave the exact definition of a set of 

computable numbers (numbers whose decimal notation can be determined defini-

tively or with any given accuracy using a finite program for a Turing machine), 

and then proved the existence of real numbers of another type (see further in 

main text), or uncomputable numbers (Turing, 1936). 
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anisms. This is determined by Turing’s original reasoning, which, after 

defining computable numbers, proved that there are real numbers of an-

other type, and then specified a set of non-computable numbers as the 

complement to the set of computable numbers in the set of real numbers. 

I shall present this reasoning in a sketchy and demonstrative way—

limiting it to real numbers in the range (0,1).12 The starting point of the 

argument is that the result of the operation of each Turing machine for 

specific input data—a machine generating series of digits from the set 

{0,1, ..., 9}—is clearly represented by a certain real number from the 

interval (0,1). It is such a number whose decimal expansion is the same as 

the finite or infinite sequence of digits generated by the machine. 

Due to the fact that each machine, together with the input data, un-

ambiguously defines a unique string of symbols (representing its program 

and the initial content of the tape), each of them can be assigned  

a unique number, and all machines can be set into an infinitely countable 

sequence. According to the order in this sequence, you can then set all 

digit sequences generated by subsequent machines. These sequences form 

an infinite countable set and unambiguously designate concrete computa-

ble numbers in the range (0,1). These are numbers with decimal expan-

sions identical to the subsequent sequences.  

Having the above-mentioned sequence list, one can ask if there is such 

a sequence S on it, that its n-th digit differs (e.g. by 1) from the n-th 

digit of the n-th sequence on the list (if the n-th sequence is long enough). 

The postulated S sequence cannot appear in the list because it differs (by 

at least one number) from each of the sequences in the string. Therefore, 

it differs from any sequence generated by any machine. Therefore, this 

sequence must specify a number from the range (0,1) that no machine can 

generate, i.e. a real uncomputable number (Turing, 1936; Marciszewski  

& Stacewicz, 2011).13 

 
12 In the presented reasoning, Turing skilfully used the diagonal technique, 

which was used for the first time by G. Cantor in proof of the uncountability of 

the set of real numbers. 
13 Let us also note that the procedure of determining the S sequence proposed 

above is inefficient (although theoretically allowed), because due to the insolvabil-

ity of the Turing machine halting problem (in the quoted Turing work we will 

find the appropriate proof), we do not know which of the machines generating the 

sequences on the list stops, and which does not (moreover: in the second case we 

do not know whether the machine head will not “turn” in any cycle and will not 
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The first exact definition of uncomputable numbers of some kind was 

given by the modern mathematician, Gregory Chaitin. These are Omega 

numbers, which for a universal Turing machine of a given type (i.e. ma-

chines with a certain number of states and symbols of the alphabet) de-

termine the probability that a randomly selected program of operation of 

such a machine will stop.14 Let us also clarify that by the program of 

operation is meant here the initial content of the universal machine tape, 

which consists of a properly coded program of the simulated machine and 

its initial data.15 It refers, therefore, to the input data of the universal 

machine, which however strictly define its subsequent activities (the uni-

versal machine implements the program of the concrete machine for the 

specific data). Since the construction given by Chaitin is quite complex 

and serves to determine the formula for the mentioned probability 

(Chaitin, 1993; Chaitin, 2005), I propose here a conceptually simpler defi-

nition of another uncomputable number. I shall keep Chaitin’s original 

idea, which refers to the issue of the halting of Turing machines.16 

The starting point of the definition is to prepare an ordered list of 

programs for the universal Turing machine of certain type. As in the case 

of Chaitin’s construction, by program I understand the initial content of 

the universal machine tape (including the program code of a specific ma-

chine and its input data). Since the aforementioned list is countably infi-

nite,17 the programs on it (with data) can be numbered as p1, p2, p3 etc. 

 
change the above-mentioned nth digit). We shall refer to the issue of halting 

further by defining an uncomputable number L. 
14 The subject literature often mentions one Omega number (see, e.g., Trzęsic-

ki, 2006a, pp. 125–126). However, this is confusing, because for each universal 

Turing machine (there are infinitely many such machines) there is a separate 

Omega number, having a different symbolic representation. 
15 In addition to the program thus understood, each universal machine has its 

unique (defining it) “executive” program, which determines the way of implementa-

tion of each program placed on the tape (it regulates, among other things, how the 

machine head moves between the simulated machine program code and its input). 
16 Remember that this issue is expressed by the question about the existence of 

such a (diagnostic) Turing machine, which for each other Turing machine and each 

of its input data would be able to unequivocally decide whether this particular 

machine will stop working for this particular input or whether it will work forever. 
17 It is infinite, because due to the infinite length of the universal machine 

tape, there are infinitely many input data that can be put on it (despite the finite 

number of alphabet symbols and the finite number of states of the simulated 

specific machines). 
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Referring to this list, one can define the following binary number L in the 

range (0,1) : L = 0, b1b2b3 ..., where bit bi = 1 if the pi program stops, and 

bi = 0 if the pi program does not stop (where i ∈ N).18 

Note that the number L is strictly defined—because programs that de-

fine its subsequent bits either stop or fail. However, it is not computable, 

i.e. algorithmically determinable—because determining the values of sub-

sequent bits the issue of halting cannot be algorithmically resolved in 

finite time. This example again shows that Turing’s uncomputability is 

strongly associated with infinity. The number L has an infinite expansion, 

which is indeterminate by the finite program (indeterminate in the sense 

that the calculation of some of its digits would take infinitely long).  

Developing the “infinity thread” in a more general context, it must be 

stated that all numbers that are uncomputable in the Turing sense are 

characterised by actual infinity (not potential19). Each of their symbolic 

representations (e.g. decimal) contains an infinite number of digits, which 

must be understood as an infinite whole, impossible to gradually generate, 

digit by digit, using any finite program (for a digital machine).20  

 
18 As Chaitin notes, the issue of choosing the right list, i.e. how to order the 

set of programs, is extremely important. It should be emphasized that it is im-

portant not only in the case of defining Omega numbers (in their case Chaitin 

gave a special way to specify the list), but also in the definition of another type of 

uncomputable numbers (Chaitin, 1993). One of the anonymous reviewers of this 

paper rightly stated that the type of the number L specified in the main text 

(computable or non-computable) depends on how the pi program set is ordered 

(i.e. how the list is compiled). In particular: computable numbers (such as 2/3) 

can be obtained for certain orders. To solve this problem, the above-mentioned 

definition of Chaitin’s list can be adopted. Notwithstanding the above explana-

tions, it should be emphasized, however, that the number L is defined in such  

a way that even if the list in its definition causes its computability, this definition 

alone does not allow one to state that computability on the basis of any opera-

tions implemented by Turing machines. This is because the basis of the definition 

is the halting problem, and its undecidability makes it impossible to determine (in 

advance) which programs on the list stop and which do not. In short: perhaps for 

a certain list of programs the number L is computable, but we, using only the 

Turing machine operations, are unable to determine it. 
19 For the distinction between potential and actual infinity, see Murawski (2014). 

Also worth noting is the text by Witold Marciszewski on infinity (2012). 
20 The actual infinity of an uncomputable number is well illustrated by the 

following metaphor: if some super-algorithmic Divine Mind wanted to share with 

us the knowledge of an uncomputable number X, it would have to reveal it to us 



 UNCOMPUTABLE NUMBERS AND THE LIMITS OF CODING… 117 

 

 

Let us finish by explaining that the class of uncomputable numbers in 

the sense of Turing is extremely extensive, because it has the cardinality 

of the c o n t i nuum , and therefore is equinumerous with the set of real 

numbers. In contrast to it, the class of computable numbers, i.e. those 

that are algorithmically determinable using Turing machines, has the 

cardinality a l e ph - nu l l , i.e. is equinumerous with the set of natural 

numbers.21 This disproportion between the infinities of sets of computable 

and uncomputable numbers seems surprising: everything that Turing 

machines can generate turns out to be “a drop in the ocean of uncomput-

ability.” 

3. M IN IM UM  LIM ITATIONS OF REAL D IGITAL CODES 

By r e a l  d i g i t a l  c od e s  I understand here the numerical codes of 

the actual programs that can be physically implement-

ed, which programs in a finite way represent functions that associate 

input data and results of computations. Due to the computational equiva-

lence of (idealized) digital computers and Turing machines,22 the results 

of these computations are always digital representations of some comput-

able numbers in the Turing sense (or fragments of them, if the number 

has an infinite expansion). 

Due to this equivalence, the general limitations of real digital codes—

limitations that must be met by all programs for all digital machines—

 
in its entirety, an infinite whole, but would not be able to provide a concise algo-

rithmic rule describing it in a finite way. This is a casual paraphrase of Chaitin’s 

remarks (Chaitin, 1998, pp. 54–55). I write more about the difference between the 

types of infinity of the computable numbers (potential infinity) and the uncom-

putable numbers (actual infinity) in another work (Stacewicz, 2018a, pp. 180–181). 
21 This is due to the fact that all machines that generate unique strings of 

symbols that make up symbolic representations of computable numbers can be 

numbered and set into an infinite string. The set of uncomputable numbers must 

have the cardinality of the continuum, because it is defined as the difference of 

the set ℝ (with the cardinality of the continuum) and the set of computable 

numbers (with the cardinality aleph-null). 
22 More precisely, each program of a certain digital machine (regardless of the 

technical details of its design) can be translated into the Turing machine program, 

in particular the universal machine program. Despite this, due to the purely phys-

ical limitations of real digital machines (not ideal, but real), not all tasks “feasible” 

for a UTM are feasible for them. This topic will be developed further in the main 

text of this section. 
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can be determined within the Turing model of computation, which is in 

the form of an abstract universal machine, called the universal Turing 

machine (UTM).23 More precisely, if the solution to a certain problem 

cannot be coded in the form of a program for a UTM, it also cannot be 

considered an executable procedure for a certain digital machine.24 Which 

does not mean—we must add—that it cannot be specified in the form of 

a procedure for a machine of another type, e.g. analogue. 

From the point of view of these considerations, the key role here is 

played by the issue of determining uncomputable numbers, and more 

precisely their subsequent digits, which constitute their symbolic repre-

sentations. Such numbers have correct definitions, their subsequent digits 

(e.g. 0 and 1) are precisely defined, and yet there is no program for the 

Turing machine that would allow such numbers to be determined in any 

finite length of time. Thus, the functions corresponding to individual un-

computable numbers—functions that bind the given accuracy (e.g., the 

number of the last desired digit of the decimal number expansion) to the 

corresponding fragment of the number—determine the limits of the digi-

tal coding. If the general solution to a given problem is reduced to this 

kind of function, then this solution cannot be digitally coded. To put it 

another way: if, for a certain problem P, each numerical code of a func-

tion that binds its input data and results corresponds to a certain uncom-

putable number, then this problem lies (then and only then) beyond the 

limits of the possibilities of digital coding. In this way, i.e. by explaining 

“numerically” the issue of computational unsolvability of some problems, 

we gain some new insight into both the reasons for, and the hypothetical 

possibilities of, overcoming Turing’s uncomputability. 

Limitations set by uncomputable numbers, and more precisely by the 

functions associated with them, generating their symbolic representations, 

should be treated as minimum limits, independent of the physical charac-

teristics of digital machines. This statement results from the fact that the 

UTM machine is computationally equivalent not to physical digital ma-

chines, but to theoretical computers, with infinite memory resources and 

 
23 Let us remind that a universal Turing machine is a machine that, thanks to 

a specially selected program defining it, is able to simulate the operation of any 

particular Turing machine (Harel, 2000, p. 252). 
24 A wide range of uncomputable problems in the Turing model are described, 

for example, by Harel (2000, pp. 201–224). Gödel also mentions some important 

meta-mathematical problems of this type (1995/2018, p. 13). 
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an arbitrarily long, although finite, operating time. 25  It means that  

a UTM machine is able to “perform” more tasks than physical digital 

machines of a certain type (e.g. machines with a maximum RAM of  

8 MB). Hence the conclusion that the limitations of real physical comput-

ers and the digital codes controlling them are in fact greater than the 

limitations of idealized machines, i.e. Turing machines. The limitations of 

the latter are therefore the “mathematical minimum”, covering all digital 

computers. 

Let’s return to the properties of uncomputable numbers. Remember 

from section 2 that all representations of such numbers are characterized 

by infinity. These representations are in fact infinite wholes—that is, 

infinite sequences of symbols, which are not determined by any finite rule, 

having the form of a finite program for a Turing machine. From this per-

spective, the actual infinity of the numbers that would have to code the 

solutions of some problems should be considered the mathematical “cause” 

of Turing’s uncomputability of these problems. 

Due to the previously indicated correspondences between specific 

numbers of this type and digitally uncomputable problems (e.g. the pre-

viously determined number L corresponds to the halting problem), and 

the fact that the set of uncomputable numbers has the cardinality of the 

c on t i nuum , the conclusion is that uncomputable problems in the Turing 

sense are infinitely many, and moreover, that there are many more than 

there are computable ones (whose set, like the set of computable numbers, 

has the cardinality aleph-null). This is a conclusion, not a supposition, 

because each uncomputable number has at least one unsolvable problem, 

consisting in determining any fragment of its digital representation. 

It can, of course, be argued that the infinite continuum of digitally un-

computable problems contains a relatively small number of practically 

relevant issues. For example, even the halting problem—as it concerns all 

Turing machines, and not just some of their highlighted subsets—can be 

considered too wide and thus insignificant from a practical point of view. 

However, the extremely practical point of view seems illusory. It is diffi-

cult to be sure that solutions to problems that do not translate directly 

into applications do not conceal practically significant consequences 

 
25 In the UTM model, an infinite tape is responsible for the potentially infinite 

memory resources and potentially infinite operating time (Stacewicz, 2018a). 
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(which at a given stage of the development of science and technology we 

do not yet know).26 

Before moving on to the next section, devoted to alternative tech-

niques to Turing computations, it is worth paying attention to one more 

feature of uncomputable numbers. In relation to the set of numbers avail-

able for Turing machines, i.e. computable ones, they are elements that, 

going beyond this set, allow it to be “expanded” to the form of a set of 

real numbers. This in turn suggests that there may be such computation-

al techniques that refer to the theory of real numbers (and further: to 

some results of mathematical analysis), and, in the implementation layer, 

allow for operation on the physical equivalents of some or all real num-

bers. We’ll look at the possibilities of such techniques in the next section. 

4. CAN THERE BE EFFECTIVE IM PLEMENTATION OF  

N ON -D IGITAL CODES? 

Due to the properties of digital computers,27 all codes representing da-

ta, programs and the results of these devices are subject to certain mini-

mum restrictions, determined within the Turing model of computation. In 

fact, these restrictions consist in the inability to “go beyond” a set of 

computable numbers in the sense of Turing. 

In connection with the above, the question arises as to whether there 

are any computing machines, other than digital, that would be able to 

operate on real, non-computable codes, i.e. certain physical representa-

tions of non-computable numbers in the Turing sense. If such machines 

actually existed, they could, firstly, solve problems whose only available 

general solutions are encoded with uncomputable numbers, and secondly, 

they could generate results that are such numbers (or represented by 

them). The computing power of such machines would, therefore, be great-

er than the power of digital devices. 

 
26 To justify the belief in the practical significance of any uncomputable prob-

lems, one can rely on somewhat breakneck but suggestive reasoning by analogy. 

Well, just as in the set of real numbers, you cannot omit (without prejudice to 

their mathematical utility) uncomputable numbers (because their existence gives 

the set R the property of continuity), so in the set of all problems you cannot 

miss out the set of uncomputable problems. This reasoning would require further 

development, which is why we only signal it in the footnote. 
27 Remember that this is about computational equivalence of (idealized) digi-

tal computers and Turing machines. 
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From the point of view of pure theory, such machines exist, and the 

general principles of their operation are determined by various models of 

h y pe r c ompu ta t i o n —so-called because of their proper potential for 

expanding the capabilities of the UTM machine (Copeland, 2002). These 

include, among others: infinity models—allowing for an infinite number of 

operations (computations) in a finite time (Shagrir, 2004); non-

deterministic models—describing computations initiated and/or randomly 

controlled (Deutsch, 1985); and a na l o g ue—allowing processing of con-

tinuous signals, mathematically described using real numbers from a spe-

cific range (Mycka & Piekarz, 2004). It is worth emphasizing that the 

idea of non-digital coding manifests itself most fully in the case of compu-

tations of the last type, i.e. analogue, because their theory gives the op-

portunity to operate on quantities (codes) from the entire continuum 

(and not on codes described by specific uncomputable numbers).28 

Theoretical proposals of computations of one or another type obvious-

ly do not prejudge the issue of their physical feasibility. This issue is neg-

atively resolved by the C hu r c h -Tu r i ng  hy po t h e s i s , which in one 

version states that “a function is effectively computable if and only if it is 

computable using the universal Turing machine” (Harel, 2000, p. 240).29 

In the context of coding, this wording can be interpreted so that the only 

effectively processable codes are data acceptable to, and possible to gen-

erate by, the UTM machine, i.e. digital (discrete) codes. From this per-

spective, therefore, all codes, regardless of their theoretical description, 

are practically reducible to digital codes—which depends on, among other 

things, the fact that there is always the possibility of approximating them 

using digital equivalents. Considering the fact that the UTM model is 

theoretical and defines more computational constraints than their real 

possibilities, the conclusion of the hypothesis can be described in a differ-

ent way. The UTM model sets absolutely minimal coding limitations in 

computer science.30 In other words: all real computations—regardless of 

 
28 It is also worth adding that analogue techniques remain the closest to the 

practice of computer science—both for historical reasons (because analogue ma-

chines were already being constructed in the 1930s) and from the perspective of 

modern research (Mycka & Piekarz, 2004; Shannon, 1941). 
29  I treat the quoted wording as a hypothesis, because I do not prejudge 

whether only Turing computations (implemented in practice by digital machines) 

are effectively physically feasible. 
30 In the previous section, in the fourth paragraph, I also explained that these 

are the minimum theoretical limitations of digital techniques. 
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the theoretical model that describes them—must be subject to the re-

strictions set out in this very close to model practice (i.e. UTM). The 

limitations of alternative designs, e.g., analogue models, are simply broader. 

The most serious arguments for the truth of the Church-Turing thesis, 

and therefore also for the existence of the above restrictions, refer to the 

concept of infinity. The basic issue is the fact that uncomputable num-

bers—corresponding to solutions to certain problems—are characterized 

by actual infinity. Remember that it concerns their endless, irregular 

expansions, impossible to gradually generate, which as an infinite whole 

represent (digitally) a given number. 

The determination of such representations, and thus the resolution of 

the corresponding problems, must require the use of physical, uncomput-

able quantities existing in nature. Embedding such natural carriers of 

uncomputability in a machine is necessary because it is known that the 

overall representations of uncomputable numbers cannot be coded or 

determined in a traditional way, i.e. using minimally “nature engaging” 

binary codes and operations.31 In particular, all effective implementations 

of the abovementioned analogue techniques require the use of uncomput-

able physical quantities. This is due to the fact that both the specificity 

and strength of these techniques (i.e. their greater computing power than 

digital techniques) rely on the possibility of processing and generating 

quantities from a certain continuum (Mycka & Piekarz, 2004). This, how-

ever, would not be continuous were it not for the uncomputable quanti-

ties filling it.32 

Therefore, the real problem of the existence of carriers of uncomputa-

bility in nature arises. Remember that their most problematic feature is 

their having physical, but in accordance with the theoretical properties of 

 
31 Binary codes and operations must also be physically implemented using one 

or other natural quantities (e.g. electrical pulses); the thing is, however, that in 

their case it is enough to use any physical quantities that are easily distinguisha-

ble (or even one recognizable quantity and the lack thereof). Thus, the degree of 

“engagement” of nature is minimal in their case. 
32 The same fact can be expressed by referring to the properties of real num-

bers, which are the mathematical equivalent of processed continuous analogue 

signals. Well, without uncomputable numbers, each range of real numbers (equiv-

alent to the physical domain of analogue signals) has the cardinality aleph-null, so 

it is equivalent to a discrete set of natural numbers. 
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uncomputable numbers, actual infinity.33 If such carriers existed, the set 

of practical computational codes would go beyond the set of digital codes. 

It would include codes that have direct roots in nature. Some of their 

components, at least, would simply be “calls” to natural phenomena that 

would return some uncomputable quantities directly and in whole. In 

particular, the theory of analogue-continuous computation initiated by 

Claude Shannon (Shannon, 1941) states that a complex analogue code 

may include elementary integration operations, whose continuous results 

(implemented in real time) must be obtained by measuring phenomena 

occurring in special physical systems (e.g. electronic integrators). And as  

I wrote above, for the continuity of the result set it is necessary for it to 

contain uncomputable quantities.  

The existence of uncomputable natural phenomena—that is, those that 

cannot be described in terms of computable numbers and functions im-

plemented by Turing machines—postulates certain physical theories. One 

particularly cited example is from Pour-El and Richards (1989). Accord-

ing to it, the three-dimensional wave described by a certain differential 

equation can obtain that can be expressed only by means of uncomputa-

ble numbers. John Doyle’s proposals which indicate the inability to de-

scribe the processes of achieving equilibrium occurring in nature (e.g. 

thermodynamic) using computable functions fall into the same category 

(Copeland, 2002, p. 470). These and other examples seem to indicate the 

real existence of phenomena that we could treat as natural carriers of 

uncomputability. Let us remember, however, that empirical tests are 

responsible for the compatibility of physical theories with reality, which 

no finite number (again, an infinity problem!) can ever confirm with 100% 

certainty. 

Suppose, however, regardless of the above objection of an epistemolog-

ical nature, that physical carriers of uncomputable codes exist and can be 

used as part of one or other natural computations.34 Despite this assump-

 
33 The philosophical argument for the existence of infinite quantities in nature 

is contained in Amor Infiniti. What philosophical intuitions lead to it? (Mar-

ciszewski, 2012). 
34 I am thinking of computation designed by man, but involving significantly 

substrates and/or natural processes (e.g. quantum calculations or those performed 

using DNA molecules). The class of natural computation in a broader sense also 

includes: 1) computation inspired by observation of nature (e.g. implemented by 

artificial neural networks) and 2) processes occurring in nature, described in com-
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tion, another problem arises concerning the possibility of reading, and 

thus knowing the obtained result. The problem is that in order to know 

the result, infinite accuracy in reading the entire uncomputable quantity 

is necessary.35 It is necessary, because finite accuracy, which, after all, 

characterizes all real measuring instruments, would bring the uncomputa-

ble number desired in a given situation to the level of a finite computable 

quantity. Therefore, we would lose the expected effect of overcoming the 

limitations of digital computing. It can be argued that for some problems, 

it is enough for uncomputable quantities to be simply processed and not 

read—because the solution to the problem is some specific finite value 

that can be read (Stannett, 2003, pp. 121–123). The approach considered 

here is, however, about knowing the general solution to the problem  

(a function that associates all possible input data with the corresponding 

results), and this type of solution is encoded by an entire number that is 

uncomputable with actually infinite expansion. Therefore, the epistemic 

problem remains: without infinite accuracy of reading we cannot know 

such a solution. 

To conclude: the actual infinity of uncomputable numbers means that 

the limitations of computational techniques suggested by the Church-

Turing thesis—techniques that require the physical implementation of 

certain computational codes—can be overcome under at least two condi-

tions: 1) the occurrence of infinite quantities in nature that can be rec-

orded and processed, 2) the existence of a mental disposition for insight 

into actually infinite objects and their relations and methods (e.g. meth-

ods of defining). The second condition must be considered fulfilled—as 

evidenced by the actual infinity theories created by people, including 

theoretical models of computing on actually infinite quantities. The possi-

bility of meeting the first condition seems, at least, problematic. 

 

 

 

 

 

 
putational categories (e.g. intracerebral processes; see Kari & Rozenberg, 2008; 

Rozenberg, Back, & Kok, 2012). 
35 Such accuracy is necessary in the case of analogue techniques, which by def-

inition operate on continuous quantities (two quantities in the continuous domain 

may differ from each other by any small amount). 



 UNCOMPUTABLE NUMBERS AND THE LIMITS OF CODING… 125 

 

 

REFERENCES 

 

Angius, N., Turner, R. (2017). Philosophy of Computer Science. Stanford 

Encyclopedia of Philosophy. Retrieved from: 

https://plato.stanford.edu/entries/computer-science/  

Chaitin, G. J. (1993). Randomness in Arithmetic and the Decline and 

Fall of Reductionism in Pure Mathematics. Bulletin of the European 

Association for Theoretical Computer Science, 50, 314–328. 

Chaitin, G. J. (1998). The Limits of Mathematics. Singapore: Springer. 

Chaitin, G. J. (2005). Omega and Why Maths Has No TOEs. Retrieved 

from: https://plus.maths.org/content/os/issue37/features/omega 

Colburn, T. R. (2000). Philosophy and Computer Science. Armonk, NY: 

M.E. Sharpe. 

Copeland, J. (2002). Hypercomputation. Mind and Machines, 12(4), 461–

502. 

Deutsch, D. (1985). Quantum Theory, the Church-Turing Principle and 

the Universal Quantum Computer. Proceedings of The Royal Society 

of London A, 400, 97–117. 

Etesi, G., Nemeti, I. (2002). Non-Turing Computations via Malament-

Hogarth Space-Times. International Journal of Theoretic Physics, 

41(2), 341–370. 

Gödel, K. (1995/2018). O pewnych zasadniczych twierdzeniach dotyczą-

cych podstaw matematyki i wnioskach z nich płynących. Studia Se-

miotyczne, 32(2), 9–32. 

Harel, D. (2000). Rzecz o istocie informatyki. Algorytmika. Warsaw: Wy-

dawnictwa Naukowo-Techniczne. 

Kari, L., Rozenberg, G. (2008). The Many Facets of Natural Computing, 

Communications of the ACM, 51(10), 72–83. 

Krajewski, S. (2014). Neopitagoreizm współczesny: uwagi o żywotności 

pitagoreizmu. In: M. Heller, S. Krajewski (Eds.), Czy fizyka i matema-

tyka to nauki humanistyczne? (pp. 348–366). Kraków: Copernicus 

Center Press. 

Leibniz, G. W. (1890). Philosophische Schriften (Vol. VII). Berlin: 

Weidmann. 

Marciszewski, W. (2012). Amor Infiniti. Jakie doń prowadzą intuicje filo-

zoficzne? Retrieved from: http://marciszewski.eu/?p=2955 

Marciszewski, W., Stacewicz, P. (2011). Umysł-Komputer-Świat. O za-

gadce umysłu z informatycznego punktu widzenia. Warsaw: Akade-

micka Oficyna Wydawnicza EXIT. 



126 PAWEŁ STACEWICZ  

 

Moor, J. H. (1978). Three Myths of Computer Science, The British Jour-

nal for the Philosophy of Science, 29(3), 213–222. 

Murawski, R. (2014). Nieskończoność w matematyce. Zmagania z po-

trzebnym, acz kłopotliwym pojęciem. Zagadnienia Filozoficzne w Nau-

ce, 55(2), 5–42. 

Mycka, J. M., Piekarz, M. (2004). Przegląd zagadnień obliczalności ana-

logowej. In: S. Grzegórski, M. Miłosz, P. Muryjas (Eds.), Algorytmy, 

metody i programy naukowe (pp. 125–132). Lublin: Polskie Towarzy-

stwo Informatyczne. 

Mycka, J. M., Olszewski A. (2015). Czy teza Churcha ma jeszcze jakieś 

znaczenie dla informatyki? In: P. Stacewicz (Ed.), Informatyka a filo-

zofia. Od informatyki i jej zastosowań do światopoglądu informatycz-

nego (pp. 53–74). Warsaw: Oficyna Wydawnicza Politechniki War-

szawskiej. 

Ord, T. (2002). Hypercomputation: Computing More Than the Turing 

Machine. Retrieved from: https://arxiv.org/ftp/math/papers/0209/ 

0209332.pdf 

Ord, T. (2006). The many forms of hypercomputation. Applied Mathe-

matics and Computation, 178(1), 8–24. 

Pour-El, M. B., Richards, J. I. (1989). Computability in Analysis and 

Physics. Berlin: Springer.  

Rozenberg, G., Back, T., Kok, J. N. (2012). Handbook of Natural Compu-

ting. Berlin-Heidelberg: Springer. 

Rubel, L. (1993). The Extended Analog Computer. Advances in Applied 

Mathematics, 14(1), 39–50. 

Shagrir, O. (2004). Super-Tasks, Accelerating Turing Machines and Un-

computability. Theoretical Computer Science, 317(1–3), 105–114. 

Shannon, C. (1941). Mathematical Theory of the Differential Analyzer. 

Journal of Mathematics and Physics. 20(1–4), 337–354. 

Stacewicz, P. (2012). Co łączy umysł z teorią liczb? Filozofia Nauki, 

79(3), 111–126. 

Stacewicz. P. (2015). Informatyczne kłopoty z nieskończonością. In: R. 

Murawski (Ed.), Filozofia matematyki i informatyki (pp. 310–327). 

Kraków: Copernicus Center Press. 

Stacewicz, P. (2018a). Czy informatykom musi wystarczyć nieskończoność 

potencjalna? In: R. Murawski, J. Woleński (Eds.), Problemy filozofii 

matematyki i informatyki (pp. 177–190). Poznań: Wydawnictwo Nau-

kowe Uniwersytetu im. Adama Mickiewicza w Poznaniu. 



 UNCOMPUTABLE NUMBERS AND THE LIMITS OF CODING… 127 

 

 

Stacewicz, P. (2018b). O teoretycznej (nie)zbędności kategorii liczby w 

informatyce i jej metodologii. Retrieved from: http://marciszewski.eu/ 

?p=999 

Stannett, M. (2003). Computation and Hypercomputation. Minds and 

Machines, 13(1), 115–153.  

Trzęsicki, K. (2006). From the Idea of Decidability to the Number Omega. 

Studies in Logic, Grammar and Rhetoric, 22(1), 73–142. 

Trzęsicki, K. (2006). Leibnizjańskie inspiracje informatyki. Filozofia Nau-

ki, 55(3), 21–48. 

Turing, A. M. (1936). On Computable Numbers, with an Application to 

the Entscheidungsproblem. Proceedings of the London Mathematical 

Society, 2– 42(1), 230–265. 

 

Originally published as “Liczby nieobliczalne a granice kodowania w 

informatyce”. Studia Semiotyczne, 32(2), 131–152, DOI: 

10.26333/sts.xxxii2.08. Translated by Martin Hinton. 


