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Abstract

A challenge for relevant logicians is to delimit their area of study. I
propose and explore the definition of a relevant logic as a logic satisfying
a variable-sharing property and closed under detachment and adjunction.
This definition is, I argue, a good definition that captures many familiar
logics and raises interesting new questions concerning relevant logics.

As is familiar to readers of Entailment or Relevant Logics and Their Rivals, the
motivations for relevant logics have a strong intuitive pull. The philosophical pic-
ture put forward by Anderson and Belnap (1975), for example, is compelling and
has led to many fruitful developments. With some practice, one can develop a
feel for what sorts of axioms or rules lead to violations of relevance in standard
relevant logics. These sorts of intuitions only go so far, as some principles that
lead to violations of relevance in stronger logics are compatible with it in weaker
logics. There is a large number of relevant logics, but there is not much discussion
of precise characterizations of the class of relevant logics.1

It is well known that the standard relevant logics avoid C. I. Lewis’s paradoxes
of implication, such asA→ (B→ B) andA→ (B→ A), but avoiding the para-
doxes does not provide an adequate characterization for two reasons. First, it is a
negative characterization that is also open-ended, insofar as the list of paradoxes

*This is a preprint of a paper forthcoming in New Directions in Relevant Logic. There may be
differences with the published version. Please cite published version

1Avron (2014) expresses this concern and provides a characterization, but it is less inclusive
than the one adopted here.
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of implication is open-ended. Second, it is not clearly based on a formal principle.
Lewis’s paradoxes of implication present some counter-intuitive features of the
classical material implication, but it is not clear what formal principles should be
extracted from the intuitions motivating their rejection.

The lack of a general, abstract characterization of the class of relevant logics is
unfortunate, because investigations of relevant logics typically proceed either by
focusing on a particular logic or by presenting a more or less arbitrary selection
of axioms and rules combination of which determine the logics under consider-
ation. Further, while the motivations mentioned above are often compelling, it
is not clear that they succeed in isolating only the proponents’ preferred logics.2

Different logicians have defended different views about relevant logics and these
views may not lead to the same groups of logics. There is, then, a need to recon-
sider foundational aspects of relevant logics, one aspect of which is a principled
delimitation of the area of study.

In contrast to the situation with relevant logics, the (classical) modal logician
has a ready answer to the analogous question “what is a modal logic?” The modal
logician can say that a (normal) modal logic is any logic extending classical logic
with the (K) axiom, 2(A → B) → (2A → 2B), and closed under the rule
(Nec), A ⇒ 2A, to be understood as saying that if A is a logical truth, then
so is 2A.3 Similarly, the paraconsistent logician can delimit their area of study
as those consequence relations where A, ∼A 6` B, for some formulas A and B
and a negation operator ‘∼’. These abstract characterizations allow the modal or
paraconsistent logician to take a broader view of their areas, shifting the focus
from the more or less standard logics, such as K or S4, to more general classes of
logics. So, it seems like an abstract characterization of relevant logics would be
useful.

The question is how to formulate an abstract characterization of relevant log-
ics. There are prominent groups of relevant logics, such as the preferred logics
of Anderson and Belnap, but those are not the only relevant logics. One could
try to give a model-based characterization, such as using the ternary relational
models of Sylvan and Meyer, but the models for relevant logics can also be used
to adequately model logics containingA → (B → B) andA → (B → A). Ad-
ditionally, it would be good to have a model-independent characterization, and

2As an example, see Meyer (1985) or Øgaard (2021b, 2020, 2023), for example.
3This may not be adequate as a definition once other intensional operators are permitted,

such as the actuality operator. If one has contingent logical truths with actuality, as defended by
Nelson and Zalta (2012), the rule of Necessitation can fail in what is intuitively a modal logic. I
thank Ben Blumson for pointing this out.

2



this points us to the basis of the proposal.
A key feature of relevant logics, one of the few that is generally agreed upon,

is that they satisfy Belnap’s variable-sharing criterion:

Definition 1 (Variable-sharing criterion). A logic L satisfies the variable-sharing cri-
terion iff wheneverA→ B is a logical truth, thenA andB share a propositional variable.

It is often said that the variable-sharing criterion is a necessary but not sufficient
condition on being a relevant logic. Indeed, as Anderson and Belnap say,

A formal condition for “common meaning content” becomes almost
obvious once we note that commonality of meaning in propositional
logic is carried by commonality of propositional variables. So we pro-
pose as a necessary, but by no means sufficient, condition for the rel-
evance of A to B in the pure calculus of entailment, that A and B
must share a variable.4

This view is fairly standard, as illustrated by Mares, who says,

The variable sharing principle is only a necessary condition that a
logic must have to count as a relevance logic. It is not sufficient.
Moreover, this principle does not give us a criterion that eliminates
all of the paradoxes and fallacies. Some remain paradoxical or falla-
cious even though they satisfy variable sharing.5

Further examples are not hard to find. The variable-sharing criterion presents a
minimal requirement of formal relevance for implicational logical truths. There
are natural things one can add to it and ways to strengthen it, some of which I
will return to in the final section of this paper, but the basic variable-sharing cri-
terion provides a succinct specification of a minimal level of formal relevance.
While it is commonplace to say that variable-sharing is not sufficient for being
a relevant logic, it is worth considering how things look if we take it to be suffi-
cient, with another minimal condition, seeing what follows from that and what
requires more. The proposal, then, is to say that relevant logics are those that sat-
isfy the variable-sharing criterion, along with two other conditions. I will explore
this proposal, prove some initial results concerning this class of logics, and then
discuss how more familiar families of logics fit into this class. In section 1, I will
present the relevant background and the proposal for a definition of the class of

4Anderson and Belnap (1975, 33).
5Mares (2022).
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relevant logics. In section 2, I explore the proposal, identify some consequences
of the definition, and identify further conditions one might use to identify sub-
classes of logics. In section 3, I relate the proposal to some extant views about
relevant logics and respond to some potential criticisms, closing with a brief dis-
cussion of other forms of variable-sharing that one can consider.

1 The proposal
Let the language under consideration be made from countably many proposi-
tional variables, p, q, r, . . ., and the connectives {∧,∨, ∼,→}, with A ↔ B de-
fined, as usual, as (A→ B)∧ (B→ A).6 To facilitate comparisons, we will take
classical logic to be formulated in this vocabulary and to include (A → B) ↔
(∼A∨B) as a theorem. The language can be pared back, but the key thing is that
there is an implication connective,→, in the language. The other connectives are
optional. We will, for this paper, focus just on logical truths, as relevant logics are
most often studied under that guise. Indeed, the logical truths seem to be the key
to distinguishing relevant logics.7 We will assume some familiarity with relevant
logics, but only the better known ones, such as R, T, and B.8

We will treat logics as sets of formulas closed under uniform substitution.9

A substitution is a function σ from propositional variable to formulas that is ex-
tended to the a function σ+ on the whole language such that

• σ+(p) = σ(p), for p a propositional variable,

• σ+(∼A) = ∼σ+(A), and

• σ+(A ? B) = σ+(A) ? σ+(B), for ? ∈ {∧,∨,→}.
6A comment on the language is in order. The Ackermann and Church truth constants, t and

>, are excluded from the language. The primary reason is that for formulas that contain them,
the variable-sharing criterion does not apply. See Yang (2013) or Øgaard (2021a) for discussion
of variable-sharing in the presence of truth constants. The formulation of a general definition of
relevant logics that includes the truth constants, or at least the Ackermann constant, is left as an
open problem.

We have omitted fusion from the language, but we can add it, making some minor changes
below.

7Avron (1992, 2014) looks at consequence relations and contains an alternative, less inclusive,
characterization of relevant logics.

8For axiomatic presentations of these logics, see Brady (1984b). For a general overview of rel-
evant logics, see Read (1988), Dunn and Restall (2002), Bimbó (2007), or Mares (2022).

9This is the framework Fmla of Humberstone (2011, ch. 1.2).
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With that definition in hand, we can define logics.

Definition 2 (Logics). A set of formulasX is a logic iff for any substitutionσ and formula
A, ifA ∈ X, then σ+(A) ∈ X

A logic L is a sublogic of another logic M iff L ⊆ M.

Throughout the paper, I will use formula schemes to present various princi-
ples, where the instances of the scheme are obtained by replacing the displayed
letters with arbitrary formulas. When presenting an instance of a scheme, I will
use a specific formula displaying the propositional variables. A logic includes a
formula scheme iff it includes every instance of that scheme. A logic excludes a
scheme iff there is an instance of the scheme it does not contain.

Before I get to the main definition, I will present two preliminary definitions
of classes logics.

Definition 3 (Proto-relevant logics). A logic L is a proto-relevant logic iff L satisfies the
variable-sharing criterion.

The class of proto-relevant logics captures an important feature of relevant
logics, but below we will argue that a little bit more should be added. For the next
definition, it will be useful to introduce the notation for rules: A logic L is closed
under a rule, X⇒ A, iff for all substitutions σ, if σ+(B) ∈ L, for all B ∈ X, then
σ+(A) ∈ L.

Definition 4 (DA-logics). A logic L is a DA-logic iff both

(1) it is closed under detachment, also known as modus ponens,A,A→ B⇒ B, and

(2) it is closed under adjunction,A,B⇒ A∧ B.

If one wants to consider only the →-fragment of logics, then condition (2) can
be dropped. DA-logics include many familiar logics, such as classical logic, intu-
itionistic logic, and R. As should be clear from the examples, some DA-logics are
not proto-relevant logics.

The two classes of logics, proto-relevant logics and DA-logics, are brought to-
gether in our main definition.

Definition 5 (Relevant logics). A logic L is a relevant logic iff L is a proto-relevant logic
and is a DA-logic.
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I claim that this definition provides a good delimitation of the area of relevant
logics, and I will explore and defend this definition in the remaining sections of
this paper. I will begin by commenting on the parts of the definition 5.

First, being a proto-relevant logic immediately guarantees that every relevant
logic will satisfy Belnap’s variable-sharing criterion. It immediately rules out log-
ics that include some of the implicational paradoxes, such as A → (B → B).
These are, on their face, incompatible with being a relevant logic.10

The proto-relevant logics include many logics that are non-transitive, in the
sense thatA→ B andB→ C are logical truths butA→ C is not.11 The implica-
tional form of the steps of C. I. Lewis’s argument for explosion will do.

• (A∧ ∼A) → (∼A∧ (A∨ B))

• (∼A∧ (A∨ B)) → B

• (A∧ ∼A) → B

The first two are cleared by the variable-sharing criterion but not the third. While
non-transitive logics are not unheard of, they are also typically excluded from the
family of relevant logics.12 As Anderson and Belnap (1975, 154) say,

And what this shows is that connection of meaning, though neces-
sary, is not a sufficient condition for entailment, since the latter re-
lation is transitive. Any criterion according to which entailment is
non-transitive, is ipso facto wrong. It seems in fact incredible that
anyone should admit thatB follows fromA, and thatC follows from
B, but feel that some further argument was required to establish that
A entailsC. What better evidence forA→ C could one want?

The proto-relevant logics include many logics that are not transitive, and so, ar-
guably, are not logics of entailment. Even the logics taken to be central relevant
logics include some that are not logics of entailment, such as R. So, there does
not seem to be an essential conflict between being a relevant logic and being non-
transitive. This is a point of agreement with the criticisms of Copeland (1980, 331),

10Even the well known relevant logics, such as R and B, contain some instances of the scheme
A → (B → B), e.g. (p → p) → (p → p). The important thing is that they exclude the scheme
by omitting some instances, such as p→ (q→ q). I would like to thank Lloyd Humberstone for
highlighting this point.

11Szmuc (2021).
12See Smiley (1959), Ripley (2013), or Weir (2013), for examples of non-transitive logics.
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which doubts that non-transitive logics should be excluded from consideration
as relevant logics.

Requiring closure under detachment seems like a reasonable condition for
a connective being an implication connective. Together with satisfying variable-
sharing, it excludes many of the remaining paradoxes of implication, in particu-
larA→ (B→ A).

Theorem 6. No relevant logic containsA→ (B→ A).

Proof. To see this, let C be p → (q → p) and let D be r → (s → r). Suppose
thatA → (B → A) is a logical truth. Then C → (D → C) and C will be logical
truths, as they are instances of the scheme and soD→ Cwill be as well, but that
violates variable-sharing.

Another paradox that is excluded is A → (∼A → B). Let C be p → (∼p → q)
and letD be r→ (∼r→ s). ThenC→ (∼C→ D) andC are both in the logic, so
by detachment, ∼C→ D is as well, but∼C andD do not share a variable. Indeed,
a reason not to claim that the proto-relevant logics should be the target class of
logics for the relevant logician is that the logic consisting of every instance of
A→ (B→ A) satisfies variable-sharing, while violating the condition of closure
under detachment.

Being a DA-logic ensures that all relevant logics are theories.

Definition 7 (Theory). A theory is a set X of formulas such that (i) ifA → B ∈ X and
A ∈ X, thenB ∈ X and (ii) ifA ∈ X andB ∈ X, thenA∧ B ∈ X.

Theories are typically defined with respect to a particular background logic under
whose implications the theory is supposed to be closed, but since all the sets of
formulas we are considering are supposed to be logics, the definition requires
closure under their own implications. Theories are important in the development
of models for relevant logics, and being a theory is a natural constraint on being
a logic. Nonetheless, it is not clear that being a theory is an essential feature of
being a relevant logic, so one could adopt a broader definition of relevant logics
as those proto-relevant logics closed under detachment but not necessarily closed
under adjunction.

2 Exploring the proposal
Let us explore the proposed definition of relevant logics, definition 5, in order
to help justify the claim that this is a good definition. At the outset, I noted that
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modal logicians have a snappy definition of a normal modal logic. That defini-
tion sets a baseline, minimal condition. There is a minimal (normal) modal logic,
namely the logicK. Any extension ofK is a modal logic. On definition 5, there is a
unique, minimal relevant logic, namely the empty logic, which will appear again
later. Unlike the situation with modal logics, there are extensions of the minimal
logic that are not relevant logics. With the relevant logics, the interest is more on
the upper bounds for relevant logics. The two parts of the definition do different
jobs. Being a DA-logic forces certain formulas to be in the logic, given that others
are. Being a proto-relevant logic, by contrast, does not require the inclusion of
anything, but rather states that certain formulas cannot be in the logic.

Given that the upper bounds of the class of relevant logics is the point of in-
terest, the natural question is whether there is a unique, strongest relevant logic.
There is not, but before getting to this theorem and its proof, I need to briefly ex-
plain a connection between matrices and logics. A matrix is a non-empty set of
values, V , a set of operations on V under which V is closed, and a non-empty set
D ⊆ V , which is set of designated values.13 An assignment on a matrix assigns
values from V to atoms and it is extended to the whole language using the set
of operations. Matrices are are often used to show that a logic has the variable-
sharing property. For example, Belnap’s matrix M0 and Meyer’s crystal lattice
can be used to demonstrate variable-sharing.14 A matrix can be used to define a
logic as the set of formulas that take designated values on all assignments based
on that matrix. We will call the logics of the crystal lattice andM0, respectively,
CL andM0. Swirydowicz (1999) has shown that there are two maximal extensions
of R that satisfy variable-sharing. These are, in fact, CL and M0, the logics of the
crystal lattice andM0. With that in mind, we turn to the theorem.

Theorem 8. There is not a strongest relevant logic, ordered by the sublogic relation

Proof. CL and M0 both satisfy conditions on being a DA-logic. Their union, when
closed under detachment and adjunction, does not satisfy the variable-sharing
criterion.

A natural question that arises at this point is how to characterize the maximal
relevant logics. As shown by Robles and Méndez (2011, 2012), there is a general
sufficient condition on a matrix that can be used to show variable-sharing. The
key feature, for our purposes, is that there are two disjoint sets of values, X and
Y such that each is closed under the operations of the matrix and for x ∈ X and

13See Dunn and Hardegree (2001, ch. 7) for more on matrices.
14See, respectively, Anderson and Belnap (1975, 252ff.) and Routley et al. (1982, §3.6).
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y ∈ Y, x → y is not a designated value. There are some matrices that can be
used to show variable-sharing that do not yield maximal relevant logics. As an
example, the product matrix ofM0 with the crystal lattice yields a relevant logic,
which is to say a DA-logic that satisfies variable-sharing, but is not maximal.

Before proceeding to further investigate the proposed definition of relevant
logic, I want to pause to consider an alternative proposed demarcation that is
sharp, albeit less snappy. Since R is often viewed as the strongest standard rele-
vant logic, one might be tempted to define relevant logics as logics that are sublog-
ics, or rather sublogics that are also DA-logics, of CL and M0. While this class
would not have a greatest logic, it would have exactly two maximal logics. It has,
however, a major problem: It would exclude some logics that have a strong claim
to being in the relevant logic family. One example is TM, the logic T with the ad-
dition of the mingle axiom,A → (A → A). As is well known, RM, the result of
adding mingle to R, violates variable-sharing, as ∼(A → A) → (B → B) is a
logical truth of RM. TM, however, maintains variable-sharing.15 TM is not, how-
ever, a sublogic of R or its two maximal extensions with variable-sharing. The
proposed definition in terms of CL and M0 is, then, inadequate, so I will return
to the main proposal.

A virtue of the proposal of definition 5 is that it is presentation-independent. It
does not involve presenting a proof system. Nor does it rely on having a class of
models or frames. Rather, it isolates some properties of a logic, and uses those to
characterize the broad area. This approach to logic, while perhaps not the most
common, is in fact well-known and useful. It lets us ask general and abstract
questions about logics and relations between logics, such as whether a given logic
is identical to the intersection of two others, as Anderson and Belnap asked about
their logic E in relation to R and S4.16 We can ask about operations under which
classes of logics are closed.

Lemma 9. The class of DA-logics is closed under intersection.

Proof. Let L and K be DA-logics. SupposeA andA→ B are in both. By condition
(1) of definition 4, both are closed under detachment, so L ∩ K contains B. Next,
suppose thatA andB are in both. By condition (2) of definition 4, then,A∧B ∈
L ∩ K.

Lemma 10. LetL be a proto-relevant logic. LetK be a logic. Then, L∩K satisfies variable-
sharing, which is to say that it is a proto-relevant logic.

15Méndez et al. (2012).
16For the interested reader, see Anderson and Belnap (1975, §8.10).
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Proof. SupposeLbe a proto-relevant logic. LetAandBbe arbitrary formulas such
thatA→ B ∈ L∩K. It follows thatA→ B ∈ L, soA→ B share a propositional
variable. Since A and B were arbitrary, it follows that L ∩ K satisfies variable-
sharing.

The following theorem is then a corollary of the previous two lemmas.

Theorem 11. The class of relevant logics is closed under intersection.

Proof. Let L and K be relevant logics. By lemma 9, L ∩ K is a DA-logic. By lemma
10, it is also a proto-relevant logic.

We can also ask about operations under which classes of logics are not closed.

Lemma 12. The class of DA-logics is not closed under union.

Proof. LetLbe the least DA-logic containing all substitution instances of excluded
middle, A ∨ ∼A. Let K be the least DA-logic containing A → A. L ∪ K is not a
DA-logic. To see this, note that (p ∨ ∼p) ∧ (q → q) 6∈ L ∪ K. This conjunction
is neither in L, as L contains no formulas whose main connective is →, nor in K,
as K contains no formulas whose main connective is disjunction.

Rather than simple union, the DA-logics are closed under the operation∪, where
L∪K is defined as the least DA-logic containingL∪K. The DA-logics form a lattice
with ∩ as meet and ∪ as join.

In contrast to the DA-logics, the proto-relevant logics are closed under ∪.

Lemma 13. The proto-relevant logics are closed under union.

Proof. Let L and K be proto-relevant logics. Let A → B ∈ L ∪ K. Then either
A → B ∈ L or A → B ∈ K. In both cases, A and B share a propositional
variable.

This lemma, combined with lemma 10, tells us that that the proto-relevant
logics form a lattice with ∩ and ∪ as meet and join, respectively. The proto-
relevant logics, however, are not closed under the ∪ operation that acts as join
for the lattice of DA-logics.

Lemma 14. The proto-relevant logics are not closed under∪.

Proof. The logic CL∪M0 violates variable-sharing.
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Many examples provide alternative proofs of the preceding lemma, such asTM∪R.
Lemma 14 and theorem 11 have the following corollary, given that the empty logic
is a relevant logic.

Corollary 15. The class of relevant logics is not a sublattice of the lattice of DA-logics, with
∩ as meet and∪ as join.

Corollary 16. The class of relevant logics is a meet semi-lattice with a bottom element,
where∩ is the meet and ∅ is the bottom element.

While the class of proto-relevant logics is closed downwards under the sublogic
relation, the class of DA-logics, and so the class of relevant logics, is not. The rea-
son is that closure under adjunction, as well as closure under detachment, need
not be preserved by sublogics. The appropriate ordering for considering relevant
logics is, rather, the ordering defined by the meet operation of the semi-lattice,
L ≤ K iff L ∩ K = L. Lemma 14 has the following as a corollary.

Corollary 17. There is no greatest relevant logic according to the semi-lattice ordering,≤.

Next, I will comment upon some logics that are, on this definition, relevant
logics. First, all the standard relevant logics in the literature, roughly those con-
tained between R and B, are relevant logics, in the sense of definition 5. They are
all theories and they all satisfy variable-sharing.

Second, lattice R, linear logic, and Brady’s logic MC count, even though they
fail to extendB, seeing as they lack the distribution axiom, (A∧(B∨C)) → ((A∧
B)∨(A∧C)).17 Since they fail to extendB, the standard ternary relational models
cannot model them adequately. Despite this, these logics have many affinities
with the more familiar relevant logics, and they are naturally included with them.

Third, many logics of analytic containment, studied by Parry and others, will
be relevant.18 As with the non-distributive logics, the analytic containment logics
do not extend B. Nonetheless, they have many affinities with relevant logics, and
they are often presented with similar ends.

Fourth, the set of classical tautologies in the vocabulary {∧,∨, ∼}, closed un-
der substitutions, is a relevant logic, as it contains no implications as theorems.19

17See Thistlewaite et al. (1988), Restall (2000), and Brady and Meinander (2013), respectively.
Note that by ‘linear logic’, I here mean MALL, multiplicative-additive linear logic. The exponen-
tials are not included. The reason is that the exponentials bring with them violations of variable-
sharing.

18See Ferguson (2017, 7–8). See also Szmuc and Rubin (2022).
19To be more precise, one takes the set of formulas in the vocabulary {∧,∨, ∼} that are classi-

cal tautologies and closes that under substitutions from the vocabulary {∧,∨, ∼,→}, so that the
result is a logic in the full vocabulary.
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This is a degenerate case of the definition, much like the empty logic, as it con-
tains no implications. In fact, any logic lacking implications will qualify as a rel-
evant logic under definition 5. While there may be much about these logics to
dissatisfied with, the dissatisfaction would have to be based on something apart
from considerations of relevance, as expressed by the implication.20 For exam-
ple, one might object to such logics on the basis of having bad principles for the
truth-functional connectives, but this is not a matter solely of relevance. In prac-
tice, one typically wants to consider a relevant logic that contains at least some
implications, so these edge cases do not seem to tell against the definition.

It is worth pausing for a moment to consider the much-loved system, FDE,
as it is not a logic in our sense.21 As defined by Anderson and Belnap (1975), the
axiomatic form of FDE is a set of formulasA → B, where neitherA nor B con-
tain any implications. This set of formulas is not a logic, in our sense, as it isn’t
closed under substitutions. We can obtain a logic from FDE by taking the set of
formulas and closing it under substitutions. Let us call this system FDE+. FDE+

contains theorems, such as (p ∧ (p → q)) → p, which FDE does not, however
it treats the embedded implications the same as atoms. FDE+ is a logic, and in
fact it is a sublogic of E and B, since FDE is contained in B and B is closed under
substitutions.22

Some salient subclasses of relevant logics are easy to specify. This is paral-
lel to the situation in modal logics. As noted above, the modal logician has an
easy answer to the question “What is a modal logic?”23 A simple answer is that
a modal logic is a logic containing all classical tautologies, the (K) axiom, and
closed under detachment and the rule (Nec). This identifies a large class of logics,
but the necessity operators of those logics may, in some cases, be thought to be
too strong. The modal logician can broaden the definition, following Segerberg
(1971), and others. The definition just given is for a normal modal logic. A mono-
tonic modal logic is a logic containing all classical tautologies, closed under de-
tachment and the rule (Mono),A→ B⇒2A→ 2B. A congruential modal logic
is a logic containing all classical tautologies, closed under detachment and the
rule (Cong), A ↔ B⇒ 2A ↔ 2B. This gives the modal logician clear areas of
study, at least when considering singulary necessity operators. Further refine-
ments of these classes can be obtained by placing some conditions on the classes.

20I would like to thank an anonymous referee for pressing this issue.
21See Omori and Wansing (2017) for a nice overview of this system.
22I would like to thank an anonymous referee for raising questions about the status of FDE.
23Segerberg (1982) notes that this question presents some difficulties, but we will set those

aside for the time being.
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Much as the modal logician can broaden the characterization of a modal logic
to permit weaker and weaker modal logics, the relevant logician can add some
conditions to constrain the upper bounds of their areas of interest. For example,
one way to avoid the degenerate logic of all the classical tautologies in the vocab-
ulary {∧,∨, ∼} is to require that some implicationA→ B be in the logic. Relevant
logics containing an implicational logical truth we can call the implicational log-
ics.24

We might be interested in the lattice relevant logics, those that contain the fol-
lowing logical truths.

(L1) A∧ B→ A,A∧ B→ B

(L2) ((A→ B)∧ (A→ C)) → (A→ (B∧ C))

(L3) A→ A∨ B, B→ A∨ B

(L4) ((B→ A)∧ (C→ A)) → ((B∨ C) → A)

These are the logics in which conjunction and disjunction behave in the more
or less familiar lattice-connective fashion. The distributive relevant logics are the
lattice relevant logics that contain

(L5) (A∧ (B∨ C)) → ((A∧ B)∨ (A∧ C)).

While lattice R, linear logic, and MC are all lattice relevant logics, they fail to be
distributive. Most of the standard relevant logics fall into the class of distributive
relevant logics, but distribution seems like an optional extra.

Above I noted that the class of relevant logics permits there to be non-transitive
relevant logics in the sense that a logic could contain A → B and B → C but
lack A → C. The implication of such logics does not express a sufficiency re-
lation or entailment, whereas expressing entailment was central to the project
of Anderson and Belnap. To that end, it is natural to consider the class of tran-
sitive logics, those closed under the rule A → B,B → C ⇒ A → C. Alterna-
tively, one might consider the class of affixing logics, those closed under the rules
A→ B⇒ (B→ C) → (A→ C) andA→ B⇒ (C→ A) → (C→ B).

Let us say that the γ-relevant logics are those that are closed under the rule γ,
also known as disjunctive syllogism,A, ∼A∨ B⇒ B. The question of whether a
logic is a member of this class has played an important role in the development of

24The implicational logics would include the logic S of Martin and Meyer (1982), modifying the
definition of DA-logic in the absence of conjunction.
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the technical apparatus of relevant logics. Many of the standard relevant logics
are γ-relevant logics, the verification of which fact was much celebrated.25

Anderson and Belnap were interested in logics that contained all the tautolo-
gies of classical logic in the vocabulary {∧,∨, ∼}. As we have set things up, their
logics are sublogics of classical logic, although this does not seem to be essen-
tial to the study of relevant logics. One might want to consider relevant logics
that are contra-classical, in the sense that they have logical truths that classical
logic lacks. One example is (the →-fragment of) Abelian logic, which contains
((A → B) → B) → A as a distinguishing principle.26 Another example is the
family of connexive logics, which contain principles such as ∼(A → ∼A) and
∼(∼A → A).27 There are relevant logics that contain the connexive principles,
although those logics cannot be as strong as R.28 Including some contra-classical
logics in the family of relevant logics seems like another virtue of the proposal.

One further thing that speaks in favor of the utility of a presentation-independent
definition of relevant logic is that it combines neatly with additional criteria used
for extensions of the language. For example, at the outset we provided a charac-
terization of normal modal logics for classical logic. We can specify that a normal
modal relevant logic is a relevant logic that contains the (K) axiom, is closed un-
der the rule (Nec), and also contains the (2∧) axiom, (2A∧2B) → 2(A∧B).
A more appropriate definition for the relevant logic context is that a modal rele-
vant logic is a relevant logic closed under the rule (Mono),A→ B⇒ 2A→ 2B,
and containing the (2∧) axiom. It is, I think, a virtue of the proposal that a spec-
ification of relevant modal logics can be provided using it, in a manner similar to
that of normal modal logics in the case of classical logic.

The definition excludes many logics, as it should. Classical logic (with ‘→’
in the vocabulary), intuitionistic logic,29 and RM all fail to be relevant logics.30

Further, the addition of Boolean negation to some familiar relevant logics result
in a non-relevant logic.31

25Meyer and Dunn (1969).
26See Meyer and Slaney (1989), Butchart and Rogerson (2014), and Paoli et al. (2008).
27Omori and Wansing (2019), Francez (2019).
28Routley et al. (1982, 343).
29Since the logical truths of Tennant’s (2017) core logic are those of intuitionistic logic, that will

fail to be a relevant logic on this definition.
30 It is worth noting that the addition of the mingle axiom,A→ (A→ A), to the implicational

fragment of R, results in an implicational logic, RM0, that has variable-sharing. See Anderson
and Belnap (1975, 148) or Humberstone (2011, 333,363) for details and discussion. I would like to
thank Lloyd Humberstone for pointing this out to me.

31See Meyer and Routley (1973, 1974). I’d like to thank Tore Fjeltand Øgaard for this suggestion.
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Smiley (1959) defines an entailment relation via substitutions. We can adapt
this definition for a kind of implication connective, by sayingA → B is valid iff
for some substitution σ and formulasC,D, σ+(C→ D) = A→ B, whereC→
D is a classical tautology but neither ∼C nor D is a classical tautology. Smiley
presents this as an alternative account of entailment toE. Smiley’s logic, however,
fails to be a relevant logic, on the present criterion. The reason is that it fails to be
closed under detachment. To see this, note that (r → r) → (s → (r → r)) is a
substitution of p→ (q→ p) and neither ∼p nor q→ p is a tautology. Further,
r → r is a a substitution of p → p, and neither ∼p nor p is a tautology. To see
that s → (r → r) is not valid on Smiley’s criterion, we consider the options for
substitution: p, p → q, p → (q → q), and p → (q → r). Of these, only the
third is a tautology, but its consequent is itself a tautology.32

As noted in this section, definition 5 includes many logics that it should and
it excludes many as well. It includes many relevant logics beyond the usual sus-
pects. In the next section, I will discuss this feature, along with other conse-
quences of the definition and some objections.

3 Discussion
I will begin with a comment on the proposal and its relation to extant work on
relevant logics. The proposed definition is not an attempt to provide a formal
criterion that captures Anderson and Belnap’s philosophical motivations for rel-
evant logics. Nor is it meant to capture the philosophical views of other relevant
logicians, such as Sylvan, Meyer, or Brady. The proposal, instead, offers a for-
mal criterion that includes all the standard relevant logics, as well as many of
their close neighbors, and that uses only a concept that is widely agreed to be
central to the study of relevant logics, namely variable-sharing. The philosophi-
cal reasons behind the importance of variable sharing, whether they rely on use,
suppression-avoidance, meaning containment, or something else, may vary, but
relevant logicians, by and large, have taken variable-sharing to be a feature of rel-
evant logics. The suggestion is to take variable-sharing, along with being a DA-
logic, as sufficient as well as necessary for being a relevant logic, with additional

32An alternative way of adapting Smiley’s definition for an implication connective is to fo-
cus on the implications between formulas in the {∼,∧,∨} vocabulary and substitution instances
of those. Adding to this all the substitution instances of classical tautologies in the vocabulary
{∼,∧,∨} results in a relevant logic, as defined above.

For further discussion of these logics defined by substitution in this manner, see Dunn (1980).
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conditions imposed to reach one’s preferred logic or class of logics.
It is plausible that the sentiment that variable-sharing is only necessary, not

sufficient, for pinning down the relevant logics remains when closure under de-
tachment and adjunction is added. One reason for this sentiment is, I think, that
variable-sharing is not sufficient for pinning down R and its major sublogics,
roughly the standardly studied relevant logics. When Anderson and Belnap were
developing relevant logics, they had identified E and R, along with some of their
neighbors. These logics are, in many ways, special: They are all transitive and
they have important connections to combinatory logic and the structural rules
of sequent systems.33 These logics can be adequately modeled using classes of
Routley-Meyer ternary relational frames.34 Variable-sharing is not sufficient to
isolate these logics.

The class of relevant logics, in the sense of definition 5, includes logics stronger
than R and some incomparable with R. From our perspective, standing on the
shoulders of giants, we can see that the class of relevant logics naturally extends
beyond and around R. Yet, one might ask how the current definition relates to
what Anderson and Belnap were doing. One approach to this question is to pro-
vide an additional condition to isolate a subclass of logics ofR. It seems like some-
thing like this is operative in the Use Criterion of Anderson and Belnap, which
highlights R, E, and some other logics as salient relevant logics. If this is right,
then it is natural to view those logics as combining two features, relevance as
variable-sharing and use, specified in a proof-theoretic way.35 Similarly, the log-
ics motivated by the sufficiency view of Routley (2019) or the meaning contain-
ment view of Brady (2006) are special in many ways, but they can plausibly be
isolated by imposing additional constraints on being a relevant logic.36

It is a perhaps surprising fact about the proposal that none of the standard
relevant logics, namely those discussed in depth in any of the surveys of the area,
really stand out as distinctive. For example, neither B nor R is natural stopping
points according to the definition.37 They may feature prominently in certain

33For more on combinatory logic, see Bimbó (2009, 2011). For more on structural rules, see
Restall (2000) and Bimbó (2014), among others.

34See Routley et al. (1982, ch. 4).
35That the Use Criterion and variable-sharing were distinct, separable aspects of relevant logics

was raised, as a criticism, by Copeland (1980).
36Philosophically, it isn’t correct to view either of their views as combining relevance with an-

other element, sufficiency or meaning containment, as they see relevance as arising from the
other element. Formally, there is not a problem with proceeding in this way.

37Avron (2014) highlights R as distinctive of relevant logics.
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subclasses of logics, e.g. those that are complete with respect to a class of Routley-
Meyer frames, but there are many subclasses of logics in which they do not mark
a minimal or maximal logic. From an abstract point of view, they are not partic-
ularly special. This is not to say that they are not special. Indeed, the attention
that they, and their neighbors, have received is because they have many qualities,
formal and philosophical, that mark them off as distinctive.

The fact that the proposal does not highlight or privilege the standard rele-
vant logics should be viewed as a virtue. The reason is that it underlines a sense
in which the net of relevant logics has been cast too narrowly. This shift of fo-
cus will, I think, help to isolate the aspects of relevant logics that are philosoph-
ically important, as proponents of a particular logic or family of logics will have
the burden of articulating the additional philosophical features and their formal
counterparts that exclude the undesired relevant logics. This process of making
explicit intuitive criteria may help to clarify the philosophical positions that sup-
port various relevant logics, such as R and B.38

The next topic to discuss concerns principles that are, or are not, ruled out by
the proposal. On that score, it is worth emphasizing an important point, namely
that whether a particular axiom can be in a relevant logic is something that can-
not, in general, be read off the axiom. An example is the mingle axiom, A →
(A→ A). Its antecedent and consequent share a variable. Adding it to R results
in a violation of variable-sharing. On the other hand, adding it to T allows one to
stay within the class of relevant logics. The axiom form ofγ, (A∧(∼A∨B)) → B,
has a variable shared between its antecedent and consequent, but it cannot be
added to any transitive, distributive relevant logic.39 Even the weakening axiom,
A → (B → A), shares a variable between antecedent and consequent while
leading to immediate failures of variable-sharing.

A natural question is whether the proposal picks out only logics that exclude
all the standard paradoxes of implication. As we saw above, two of the positive
Lewis paradoxes,A → (B → A) andA → (B → B), are both ruled out. There
are some paradoxes involving other connectives that will be excluded from the
class of relevant logics, just in virtue of their form, such as (A ∧ ∼A) → B and
A → (B ∨ ∼B). It makes no difference what principles govern ∨, ∧, and ∼ in
these cases, as those violate variable-sharing on their face.

Other putative paradoxes will depend on the principles of the logic. Two ex-
38Brandom (1994)
39See Øgaard (2021b,c) for discussion of γ, in rule and axiom form, in the context of relevant

logics.
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amples of such are

• Dummett’s axiom, (A→ B)∨ (B→ A), and

• A∨ (A→ B).

Robles and Méndez (2012) have provided a matrix whose logic satisfies variable-
sharing while also containing Dummett’s axiom. In a similar vein, the logic CL
contains the second formula,A∨(A→ B). While neither of these principles is, I
think, particularly compelling from a relevant logical point of view, their unattrac-
tiveness is somewhat lessened by keeping in mind that logics containing them
will, typically, not be prime, where a logic is prime iff whenever it contains a dis-
junction, it contains at least one disjunct. Typically when either of these axioms
is in a logic, the logic will fail to be prime, and so containing one does not en-
tail that either of its disjuncts is valid. Further, neither of the particular logics
containing the above axioms is closed under γ, so the consequences the disjunc-
tive principles above are more restricted than one might expect.40 The logic con-
taining Dummett’s axiom has fairly strong principles, and the second formula
above is valid in an extension of R. So, worries about their potential for under-
mining variable-sharing should be somewhat tempered by the fact that they can
be combined with comparatively strong logical principles without resulting in vi-
olations of variable-sharing. One might have philosophical reasons for wanting
to exclude the above paradoxes from consideration, but they will go beyond the
minimal sense of relevance of definition 5.

Another example of an axiom that can be added to some, but not all, relevant
logics is ∼A → (A → B) In these logics, one may not have any logical truths
whose main connective is a negation. One such example is the least DA-logic
containing ∼A→ (A→ B). In such a logic, every implicational logical truth has
a variable shared between antecedent and consequent. If in the logic, negation
obeys the plausible principle,A→ ∼∼A, or evenA→ ∼kA, where k ≥ 1 and ‘∼k’
is a k-long sequence of ‘∼’s, then ∼A → (A → B) will be excluded. As proof, let
us suppose A → ∼kA is in the logic, k = m + 1, and let C be ∼p → (p → q).
ThenC is a theorem, as is∼∼mC→ (∼mC→ B). From the assumptions,∼∼mC is

40 As a witness to the failure of γ in the Robles and Mendez’s logic with Dummett’s axiom,
∼((p → p) → ∼(q → q)) and ((p → p) → ∼(q → q)) ∨ (∼(q → q) → (p → p)) are
theorems, but ∼(q → q) → (p → p) is not, on pain of violating variable-sharing. As a witness
to the failure of γ in the logic of the crystal lattice, ∼∼(p→ p) and ∼(p→ p)∨ (∼(p→ p) → q)
are both theorems, but ∼(p → p) → q is not, on pain of violating variable-sharing. I would like
to thank Tore Fjetland Øgaard for raising this issue with me.
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a theorem, so then ∼mC→ B is as well. AsB can be any formula, we can suppose
that it contains only the atom r, so we have a violation of variable sharing.

Reflecting on two of the negative Lewis paradoxes, namelyA → (∼A → B)
and ∼A→ (A→ B), we can pull out a general lesson about variable-sharing and
singulary connectives.

Theorem 18. Let # be a singulary connective. Then no relevant logic can include the the-
oremA → (#A → B). Further, no relevant logic can have as theorems, for all formulas
A andB and formula contextsC, bothA→ #C(A), and #A→ (A→ B).

Proof. For the first part, let D be p → (#p → q). Then, D is a theorem and so
is D → (#D → r). Thus, #D → r is a theorem as well, which is a violation
of variable sharing. For the second, let A be #p → (p → q) and let B contain
no atoms in C(A). It follows from the assumptions that #C(A) is a theorem.
As #C(A) → (C(A) → B) is a theorem, it then follows by detachment that
C(A) → B is a theorem, which is a violation of variable sharing.

Although the negative Lewis paradoxes feature negation, their relevance-violating
features do not depend on features specific to negation at all. Rather, they pro-
vide a lesson about connectives obeying certain principles being compatible with
relevance.41

Definition 5 casts a wide net, and some may worry that the net is cast too
widely. As noted, some of the paradoxes of implication are excluded from the
class of relevant logics at the outset and some are excluded from subclasses that
contain plausible principles governing certain connectives. Some relevant log-
ics, on our definition, can contain some odd or surprising principles, such as the
following.42

(i) (A→ B) → (B→ A)

(ii) ∼(A→ A) → (A→ B)

(iii) (A→ B) → (B∧ C)

(iv) (A∨ ∼A) → A

41See Standefer (2022) for a general discussion of relevant connectives.
42I thank an anonymous referee for raising this issue and supplying some example axioms to

consider.
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One obtains a relevant logic by taking exactly one of (i)–(iv) as the sole axiom and
closing under detachment and adjunction. Those four logics, however, have very
few principles governing their connectives, and so their logical behavior may di-
verge from the usual understanding of the connectives. It should be no surprise
that in extremely weak logics, some odd looking axioms are compatible with vari-
able sharing. When some plausible principles are added, variable sharing may be
violated. For example, axiom (i) and (iii) lead to violations of variable sharing
in the presence of the axiom (L1) and transitivity rules, axiom (iv) immediately
yields violations of variable sharing in any logic with excluded middle, and ax-
iom (ii) violates variable sharing in logics with permutation, (A→ (B→ C)) →
(B→ (A→ C)).43 For principles that are compatible with variable-sharing and
many plausible principles, it is up to their critics to formulate the reasons, formal
and philosophical, that they should be excluded.

I will close with a short discussion of variable-sharing. The form of variable-
sharing used in definition 3 can be called simple variable-sharing. There are stronger
forms of variable-sharing that one might consider for isolating classes of logics.

One of the stronger, more refined forms of variable-sharing is known as strong
variable-sharing.44 For strong variable-sharing, each formula is assigned a polar-
ity, positive or negative, based on its place a formula.45 In A → B, A is nega-
tive andB is positive. Being in consequent position, being a conjunct, and being
a disjunct all maintain polarity, whereas being in antecedent position or being
negated changes polarity. Strong variable-sharing says that if A → B is a logi-
cal truth, thenA and B share a variable with the same polarity. Belnap’s original
proof of variable-sharing actually demonstrated strong variable-sharing. Strong
variable-sharing would be sufficient to rule out ∼A → (A → B), which as we
saw above was not ruled out by simple variable-sharing.

Another stronger form of variable-sharing is Avron’s strong variable-sharing
property, which I will call basic variable-sharing, as the property of the previous
paragraph is well established with the name ‘strong variable-sharing’.46 The basic

43Judgments of plausibility vary, and some have found excluded middle and permutation to be
implausibly strong. See Slaney (1989), for example.

44See Anderson and Belnap (1975), where the variable-sharing theorem establishes strong
variable-sharing. Similarly, Robles and Méndez (2011, 2012) also discuss strong variable-sharing.

45The terminology ‘consequent part’ and ‘antecedent part’, or ‘cp’ and ‘ap’, is commonly used
in this context.

46Avron (2022) presents his basic relevance property for consequence relations, and he pro-
poses an implicational form, what is here being called the ‘basic variable-sharing property’. Under
fairly minimal conditions, the consequence relation and implicational properties are equivalent.
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variable-sharing property says that if (i) `L (A∧ B) → C and (ii)A and B→ C

do not share a propositional variable, then `L B→ C. Avron shows that, un-
der fairly minimal conditions, having the basic variable-sharing property entails
having the simple variable-sharing property. This is a compelling principle, but
it requires conjunction as well as implication to state, so we have not adopted it
for the main definition of variable-sharing.

Another form of variable-sharing, proposed by Brady (1984a), is known as
depth relevance.47 The depth of an occurrence of a propositional variable in a for-
mula is, roughly, the number of implications it is under in the formulas parse
tree. For example, in p → (p → q), the leftmost p has depth 1, whereas the
rightmost p has depth 2. The depth relevance criterion requires that ifA→ B is
a logical truth, then A and B share a variable at the same depth. Clearly ∼A →
(A→ B) is ruled out by the depth relevance criterion.

Finally, strong variable-sharing and depth relevance can be combined into the
strong depth relevance criterion, as studied by Logan (2021, 2022). The strong depth
relevance criterion says that if A → B is a logical truth, then A and B share a
propositional variable at the same depth with the same polarity.

These stronger variable-sharing criteria isolate what seem to be interesting
and natural classes of relevant logics.48 They capture stronger senses of connec-
tion than is required by (simple) variable-sharing. For purposes of identifying
the area of relevant logics, taking the broader definition as provided in section 1,
seems the most natural. The stronger criteria all require additional specification
that goes beyond the core of the simple connection idea found in the variable-
sharing criterion.

To conclude I will take stock of what has been done. I have motivated and
presented a definition of the class of relevant logics as those logics (i) all of whose
implicational logical truths share a variable between antecedent and consequent,
and (ii) that are closed under detachment and adjunction. Some notable con-
sequences of this definition is that there is no greatest relevant logic and many
of Lewis’s paradoxes of implication are excluded from relevant logics. All of the
standard relevant logics and many of their close neighbors are included in the
class of relevant logics, in the sense of definition 5. I noted that we can see the
work of Anderson and Belnap as isolating a subclass of relevant logics, implicitly
using some additional conditions for being a relevant logic, and I responded to

47See also Robles and Méndez (2014a,b) and Salto et al. (2018).
48There are further properties one might want to consider as well. One example is the “no loose

pieces” principle discussed by Robles and Méndez (2012). Another example is the Ackermann
property, discussed by Anderson and Belnap (1975, 243).
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the objection that the definition is too inclusive. Finally, I noted some alternative
forms of variable-sharing that could be used to identify interesting subclasses of
logics. As noted, the definition of relevant logics given by definition 5 general-
izes neatly to include relevant modal logics, and, as demonstrated by theorem 18,
it can be useful in proving limitative results about what sorts of connectives can
or cannot be included in relevant logics. Further investigation along these lines
will be pursued in future work, and it will, I hope, prove useful in clarifying the
foundations of relevant logics.
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Bimbó, K. (2007). Relevance logics. In Jacquette, D., editor, Philosophy of Logic,
volume 5 of Handbook of the Philosophy of Science, pages 723–789. Elsevier.
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