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Abstract There appears to be few, if any, limits on what sorts of logical
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provide some plausible necessary conditions on being a relevant connective.
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1 Introduction

Logics come in many varieties. While one can study formal systems for their
own sake, one motivation for studying a particular logic is the philosophical
view associated with it. Take the three-valued logic LP, for example. One of
the things that makes it attractive to many logicians is that it purports to
offer a unified response to the semantic paradoxes.1 Alternatively, consider
intuitionistic logic, J, with its attendant philosophical views of constructivism
and verificationism.2 A logic may have a technically interesting feature but an
attendant ideology can turn an interesting feature into a compelling one. The
fact that some relevant logics lack the contraction axiom may not antecedently
be a draw, but that fact becomes compelling when coupled with the bold vision
laid out by Routley [1980], for example.3

Logics tend to be studied with a narrow assortment of connectives. There
are the old favorites: → (implication/conditional), ∧ (conjunction), ∨ (dis-
junction), and ∼ (negation).4 Depending on the context, one may see some
other connectives, such as ↔ (biconditional), � (necessity), ♦ (possibility),
and ◦ (fusion). There are also constants, or 0-ary connectives, that pop up,
such as > (verum), ⊥ (falsum), and t (Ackermann truth constant). While this
assortment of connectives offers a lot for the curious logician, there is more
logical space out there. Logicians can boldly go where no one has gone before.

Are there any limits to the bounds of where they can go? In a sense, no,
not when any logical principle or rule is open to reconsideration. If everything
is potentially up for grabs, one can surely move the boundary lines. There
is, however, a sense in which limits can be set, and that is by attention to
the philosophical ideology associated with a particular logic. Broadly, one can
use the philosophical views associated with a logic to draw some distinctions
among potential connectives and direct research efforts in different directions.
The process can feed back into the philosophical views, as exploring their con-
sequences for the associated logic can reveal features of the view that require
clarification or revision as well as leading to distinctions in a view that were
not visible before. Revising a philosophical view may in turn have formal con-
sequences, and the cycle can repeat. This sort of reflection need not reach a
stable equilibrium.

There are many places one can go when considering unusual connectives.
To start with a mundane example, there is no problem adding a binary nor
connective, ⇓, to an array of classical connectives. Depending on what other
connectives are in the language, one may even be able to define it using the
other connectives. What about a binary connective t (tonk) that obeys the

1 Priest [1994, 1995]
2 See Dummett [1975] and Prawitz [1977]. See van Atten [2017] for more on the formal

and philosophical development of intuitionistic logic.
3 See Meyer et al. [1979], Routley et al. [1982], Restall [1993a], Rogerson and Restall

[2004], Bimbó [2006], Rogerson [2007], and Shapiro and Beall [2018], among others, for
discussions of contraction.

4 See the table of contents of Humberstone [2011].
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following rules?5

A ` A t B A t B ` B

On one understanding of what it is to be a classical connective, that’s not a
legitimate connective.6 On another understanding, tonk is totally fine.7 We can
see, then, that the philosophical views associated with a logic can determine
what connectives are legitimate.

In this paper, I will explore the question of when connectives cohere with
the philosophical view associated with a logic. The best way into this question
is to look at a relatively clear case, namely classical connectives and classical
logic. In §2 will provide some general background for the paper and then in
§3 I will consider the question of what a classical connective is. I will then
turn, in §4, to consider the question of what an intuitionstic connective is.
The point of these case studies is to see the sorts of issues that are raised,
how they are addressed, and what consequences they have. Following this, in
§5 I will provide some background on relevant logics, which will be the main
target of the paper. In §6, I will present three criteria to be used to start
to address the question of what a relevant connective is and I will draw out
consequences of these criteria. The discussion proceeds without considering
propositional constants, although I will briefly consider some issues they raise
in §7. Following this, I will briefly consider how the question looks with respect
to other sorts of models (§8). Finally, in §9, I will draw out some general morals.

2 Background

This paper will discuss logics and connectives, and in this section I will explain
what those things are. I will begin with connectives. Connectives are items in a
formal language that are used to build new formulas out of existing formulas.
Connectives have a meaning, whether stipulated via verification conditions in
a model, stipulated via valuations, or determined by rules or axioms in a proof
system. This explanation leaves some things open, but for present purposes it
seems acceptable for there to be some vagueness and underspecification in the
notion of a connective.

There are different frameworks for approaching logics over a language L.
Fully addressing the question of whether a connective in some logic is accept-
able or legitimate would seem to require a general setting, such as SET-FMLA
consequence relations or SET-SET generalized consequence relations.8 For the
main sections of this paper, namely §5–6, however, it will be enough to focus

5 This connective was introduced by Prior [1960]. As Wansing [2006] shows, there are con-
nectives that are yet stranger than tonk, against which the standard connectives considered
here will appear more mundane.

6 See Stevenson [1960]. See Belnap [1962] for a different response that does not depend
on classicality but still rules out tonk.

7 Ripley [2015]
8 See ch. 1 of Humberstone [2011] for consequence relations and p. 103 ff. for more on

general frameworks, such as SET-SET.
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on the logical truths, i.e. the framework FMLA. This can be viewed as a special
case of the more general consequence relations.

Having settled the issue of the framework for addressing our questions of
interest, there is the matter of the structure of the language. To keep things
simple, I will focus almost exclusively on propositional languages without any
variable-binding connectives. This will, perhaps, leave out some important
issues, but some omissions are required at this stage, which is setting out the
start of an answer to the question of what a relevant connective is.

Next, there is a general issue of what sort of answer we are after, or could be
after. There are three apparent places to look for formulating answers: models,
proofs, and consequence relations (even in FMLA). The first two have the
benefit of being comparatively concrete. We may be able to specify conditions
on models, or on verification conditions in models, that will distinguish some
connective as legitimate or broadly cohering with the underlying philosophical
viewpoint. Similarly, we may be able to specify features of rules and axioms
in proof systems that will guarantee that connectives whose rules have those
features cohere with the philosophical viewpoint. Both of these options run
the risk of being too presentation-dependent, distracting us from questions
properly about the logic with issues properly about the models or properly
about the proof systems. Ideally, a comprehensive answer to our question will
tell us about the logic, while also addressing features of the models and proof
systems we use to understand and study the logic. Reality may, however, turn
out to be less than ideal, in which case care and caution will be required.

Before getting to some of the responses to the question of when a con-
nective is legitimate, I will look at an area where the question of when a
connective broadly coheres with a philosophical view associated with a logic
comes up regularly, namely in responses to the semantic paradoxes. An ex-
ample is the discussion of revenge phenomena.9 In revenge phenomena, one
typically presents a solution to the semantic paradoxes and a critic of the so-
lution will propose a new connective whose addition to the language reinstates
paradox. The proponent of the view then argues that the proposed connective
is in some way illegitimate. A good response will appeal to reasons apart from
paradox so as not to appear ad hoc. I will briefly consider two examples.

The first example is Boolean negation in the context of Priest’s paracon-
sistent solution to the semantic paradoxes based on the logic LP.10 LP is a
three-valued logic where its negation, de Morgan negation, permits there to
be contradictions, formulas of the form A∧∼A, that take a designated value,
and so de Morgan-contradictions do not imply arbitrary formulas. Boolean
negation, which is not the usual negation of LP, results in contradictions that
cannot take a designated value, and so yield Boolean-contradictions that do
imply arbitrary formulas. Priest [1990] argues that Boolean negation is ille-

9 See the introduction of Beall [2007], for an overview of revenge phenomena in the context
of paradoxes.
10 See Priest [1979] for more on LP.
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gitimate and so there is no problem rejecting that connective. The alleged
problem is, in fact, illusory.

The second example comes from Field [2008, ch. 21-22]. Field considers
several connectives that one might add to his preferred logic for truth, any
one of which results trivializing paradoxes. In Field’s logic, one can define a
determinateness operator, D, that allows one to express a sense in which the
liar λ is defective, which is to say ∼Dλ. The construction of determinateness
operators and liar-like sentences can be iterated to the transfinite. Field con-
siders the objection that one can introduce a super-determinateness operator,
S into the language that “obeys the main laws for determinate truth, but is a
maximal notion.”11 Field shows that S is inconsistent without appeal to the
truth predicate, and that slightly weakened versions of the proposed connec-
tive fail to capture all possible iterations of D. Field then concludes that the
connective should be rejected.

In these examples, we see philosophers arguing against the legitimacy of
connectives. Evaluating these arguments is not the point here. However com-
pelling these arguments might be, neither philosopher sets out criteria by
which to evaluate putative connectives and uses those to reject the connec-
tives. One may be able to reconstruct plausible candidate criteria, and in a
more general discussion, it would be good to have principled criteria by which
to evaluate connectives. In the main part of this paper, §6, I will lead with
criteria and use those to evaluate connectives, primarily to show that different
connectives will need to be rejected by a certain sort of relevant logician. The
sort of relevant logician is one who adopts the “tough relevant position” of
Routley et al. [1982, 376] that connectives that violate relevantist criteria are
not to be countenanced.12

The examples above, from the debates over the semantic paradoxes, can
be multiplied. These sorts of debates are not, however, limited to the semantic
paradoxes. Rather than spend more time on the semantic paradoxes, I will
look at responses to the question of when a connective is legitimate, or broadly
coherent with a view, that arose for three different areas, and then I will turn
to the main topic of this paper, how the relevant logician should response to
this question.

3 What is a classical connective?

We begin with the question of when a putative propositional connective is clas-
sical. This will be a good starting point because there is widespread agreement.
Classical logic is the logic of Boolean valuations in the sense of Humberstone

11 Field [2008, 344]
12 The question of how a relevant logician who adopts a different view, whether the inter-

mediate position of the just cited passage or the extremely permissive view of Meyer and
Routley [1974, 193] that accepts even Boolean negation, should evaluate the connectives
considered below is left to the proponents of such positions. Indeed, the proponents of those
views may feel that the criteria proposed here are overly restrictive, in which case they would
need to propose their own.
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[2011].13 In classical logic, there are exactly two truth values, 0 and 1, and in
a valuation, every formula is assigned exactly one of those two. Classical con-
nectives are extensional and truth-functional. A natural criterion for being a
classical connective is that it be interpretable using a truth table with 2n rows
whose values are from the set {0, 1}, where n is the arity of the connective.14

This is the idea worked out by Gabbay [1978]. Gabbay’s proposal goes beyond
just that, as he was interested in the further question of when a connective
presented via a Hilbert-style axiom system is classical, a question which is not
immediately answered by the truth table proposal.

The condition that for a connective # to be classical, # must be inter-
pretable via a truth table is a plausible starting point. One can, no doubt,
offer refinements, , but for present purposes, it will be enough to use the truth
table criterion as an illustration.

To determine whether a connective # is classical, given a distinguished set
of logical truths using #, one needs to find a truth table that will result in
exactly that set of logical truths lacking counterexamples. Alternatively, if the
verification condition for # was given as a truth table, then we are done. To
show that a connective is not classical, one shows no adequate truth table is
possible.

The truth table criterion includes many familiar connectives, such as the
nor connective, ⇓, and material equivalence, ≡. By design, the criterion ex-
cludes intensional connectives, such as the modal connectives necessity, �,
and possibility, ♦, as well as the intuitionistic implication.15 Although we are
not concerned with variable binding connectives here, notice that first-order
quantifiers do not count as classical on this criterion. One cannot give a truth
table for ∀ that captures exactly the first-order logical truths.

What has been presented here is perhaps best described as the hardline
view of what counts as a classical connective. One might think that the hard-
line view is too stringent and propose various weakenings of it. Such details,
however, will be left to the proponent of classical logic to provide.16

We can see that even in the simplest case, classical propositional logic,
there are some limits to the criterion that do not fit neatly with some common
demarcations. There are natural extensions of the logic that do not satisfy the
criterion. Let us move away from the domain of classical logic to see how the
question is addressed in the setting of intuitionistic logic.

13 Cobreros et al. [2012, 2013] and Ripley [2012, 2013a,b] develop an understanding of
classical logic in terms of sequents. This uses tri-valuations in an important way.
14 To be a little more precise, in a valuation, each connective is interpreted via a row in

that connective’s truth table. This is to rule out connectives whose evaluation appeals to
the entire truth table for its components, such as an operator � such that v(�A) = 1 iff for
every valuation v′, v′(A) = 1. I would like to thank Greg Restall for this point.
15 Some interpretations of � will be permitted, namely those that collapse into truth

functions.
16 The interested reader should consult Gabbay [1978] for some ideas concerning the stan-

dard quantifiers.



What is a relevant connective? 7

4 What is an intuitionistic connective?

Intuitionistic logic, J, is perhaps the best known non-classical logic.17 The
question of what an intuitionistic connective is has received some attention,
and looking at those proposals will be helpful in seeing how to address the
related question regarding relevant connectives.

There are some developed philosophical viewpoints connected with intu-
itionistic logic, particularly in connection with the philosophy of mathemat-
ics.18 An important feature of these viewpoints, for our purposes, is that in-
tuitionistic logic is supposed to be constructive. As Dummett says, “What
everyone who has heard of intuitionism knows is that intuitionists want their
proofs to be constructive.”19 There are different understandings of what, ex-
actly it means for a proof to be constructive. There are two features that
Dummett highlights, the Disjunction and Existence Properties, of which the
former will appear in connection to the criteria of Gabbay [1981] below.

What are legitimate intuitionistic connectives? What are the connectives
that broadly cohere with the philosophical views typically associated with
intuitionism? There has been a lot of interest in these questions, and new con-
nectives have been suggested in many places, such as Humberstone’s strongest
anticipator connective, empirical negation, or intuitionistic actuality.20 One
can see why there would be interest in the question. Unlike with classical logic,
there is no apparent sense in which the standard intuitionistic vocabulary can
be used to define all the plausible intuitionistic connectives. In classical logic,
truth-functional completeness means that any of the usual sets of connectives
will ensure that the plausible options are all definable.

Gabbay [1981, ch. 7.4] made a proposal, presenting five conditions on in-
tuitionistic connectives.21 For the presentation of Gabbay’s conditions, E will
be an extension of the basic intuitionistc language and logic J with some new
connective c.

(G1) E is a conservative extension of J: no new theorems entirely in the old
vocabulary.22

(G2) E has the Disjunction Property: if `E A ∨B then `E A or `E B.
(G3) Adding Peirce’s law to E results in classical logic and formulas using c

are provably equivalent to a formula in the usual classical vocabulary.
(G4) The axioms of E determine c uniquely.
(G5) The connective c is not already definable in J.

17 See van Atten [2017] and Moschovakis [2018] for overviews of intuitionistic logic.
18 See Iemhoff [2020].
19 Dummett [2000, 6]
20 For the first, see Humberstone [2001]. For the second, see Solomon and DeVidi [2006].

For the third, see Niki and Omori [2020].
21 Gabbay [1977] includes a sixth condition, but that drops out in the later presentation.
22 I will note one complication for the question of what an intuitionistic connective regard-

ing this condition. There are connectives that are conservative over the propositional logic
that are not conservative over first-order intuitionistic logic. See López-Escobar [1985] and
Humberstone [2011, 547, 626] for examples.
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Some of the conditions, such as (G1) and (G4), are pretty standard in dis-
cussions of introducing new connectives, echoing the proposal of Belnap [1962]
for explaining what is wrong with tonk. Condition (G3) is an outlier in the
sense that the proponent of intuitionistic logic may plausibly reject it. It is
not clear why the stated connection to classical logic should be a constraint
on connectives in this non-classical logic. Indeed, a particularly revolutionary
proponent of intuitionistic logic, such as Brouwer himself, would think that
classical logic gets things fundamentally wrong in freely appealing to excluded
middle or double negation elimination. While the revolutionary intuitionist
may find it interesting whether formulas using the new connectives collapse
into classical formulas, there is no need for them to take this as a requirement
on their connectives any more than it should be a requirement that intuition-
istic mathematical theories collapse into familiar classical theories with the
addition of Peirce’s law.23,24

There are some other proposals and additions out there. Humberstone
[2011, 615,1233] proposes the condition that new connectives should preserve
synonymy according to the base logic in the sense that if A↔ B is valid in the
logic prior to the extension, then for any formula context C(·) in the extended
language, C(A) is equivalent to C(B). A new connective should not allow one
to distinguish formulas that were previously indistinguishable from the point
of view of the logic. Humberstone [2011, 1236] points out that strong negation,
a connective often discussed in the context of intuitionistic logic, violates this
condition, along with condition (G3).

Kaminski [1988] argued that Gabbay’s conditions were not correct. Among
other things, Kaminski took issue with (G4), arguing that the condition rules
out the possibility of modal operators.25 Kaminski provides alternative criteria
that involve both models and proof systems.

We have, so far, looked at answers to the question of what connectives are
legitimate, from three different points of view, classical logic, (classically based)
modal logic, and intuitionistic logic. In each case we saw that some particular
philosophical views were operative in answering the question. Even in the
straightforward case of classical logic, there was still room for disagreement
and competitors to, or developments of, the hardline view presented in §3.
When one moves to modal and intuitionistic logics, one finds more room for
competing answers to the question. One would expect that the situation with
relevant logics would be more similar to that of intuitionistic logic than that
of classical logic. As such, I will be presenting the start of the answer to the

23 See Shapiro [2014, ch. 3] for some discussion of consistent intuitionsitic theories that
become inconsistent with the addition of Peirce’s law.
24 Caicedo and Cignoli [2001] show that all connectives that satisfy Gabbay’s conditions

apart from (G3) satisfy (G3) as well. Thus, the revolutionary proponent of intuitionistic
logic can reject (G3) without issue. Indeed, that position appears to be an intensional
improvement on Gabbay’s that is extensionally equivalent.
25 See Božić and Došen [1984], Došen [1985], Ewald [1986], Bierman and de Paiva [2000],

and Braüner and de Paiva [2006] for some work on modal extensions of intuitionistic logic.
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question, a fuller answer needing more development than can be given here.
We will next turn to the main area of interest for this paper, relevant logics.

5 What is a relevant logic?

Relevant logics are a family of non-classical logics.26 The distinguishing mark
of a relevant logic, for our purposes, is the logical behavior of its implication
connective, which requires a strong connection between the antecedent and
consequent of valid implications. This idea motivates rejecting many familiar
axioms, principal among them the axiom of weakening, A→ (B → A).

A central idea of relevant logics is that if A → B is a logical truth, there
has to be a substantive connection between A and B. The nature of this
substantive connection gets spelled out in different ways by different relevant
logicians. Anderson and Belnap [1975] explain the connection in terms of the
Use Criterion, which says that one must really use A in obtaining B in order
to conclude that A → B. Routley [1980] explains the connection in terms
of absolute sufficiency, which says that the truth of the antecedent must be
sufficient for the truth of the consequent, no matter what the possibilities are.
Brady [2006] explains the connection as one of meaning containment, according
to which the validity of A → B requires that the meaning of B be contained
in the meaning of A. As this brief overview of different views indicate, the
connection at issue is one that is understood in terms of different primitive
concepts by different relevant logicians.

While there is much disagreement even among relevant logicians, there is
something everyone in the area agrees upon, Belnap’s variable sharing crite-
rion: if A→ B is a logical truth, then A and B share a propositional variable.27

The variable sharing criterion is taken as a necessary condition for a logic to
be a relevant logic.28 It is clear that both classical logic and intuitionistic logic,
J, violate the variable sharing criterion and so are not relevant logics.

There is a family of relevant logics, and I will need to demarcate the extent
of the family. For the purposes of this paper, relevant logics will be any logic
containing B and contained in R, both of which will be presented below.29 This
demarcation excludes some weak logics that might reasonably be included,
those lacking some of the B principles or Brady’s non-distributive logic MC.30

26 Dunn and Restall [2002] and Bimbó [2007] provide accessible overviews of the field.
27 See Anderson and Belnap [1975, 252-254], Robles and Méndez [2011, 2012], and Logan

[2021, 2022] for more on the variable sharing criterion.
28 Other criteria have been proposed. See Øgaard [2020] for a discussion of a less accepted

criterion, suppression freedom, and its relation to the variable sharing criterion.
29 Avron [2014] provides two different accounts of what a relevant logic is, both of which

differ from the present demarcation. The first of Avron’s accounts excludes many of the
logics considered here, requiring the logic extend the implicational fragment of RW, and the
second account excludes most of those considered here, as the {→,∼} fragment of R is the
minimal relevant logic on that account.
30 Brady and Meinander [2013] argue for modifying Brady’s logic DJ, defended by Brady

[2006], by rejecting distribution. DJ does fall within the demarcation proposed, while MC
falls outside it.
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It also excludes some stronger logics that might reasonably be included, such
as some logics extended with the mingle axiom, A→ (A→ A), or the logic of
the semilattice frames of Urquhart [1972].31

It will be useful to have the axioms and rules for B and R for reference.

(A1) A→ A
(A2) (A ∧B)→ A, (A ∧B)→ B
(A3) ((A→ B)∧(A→ C))→ (A→

(B ∧ C))
(A4) A→ (A ∨B), B → (A ∨B)
(A5) ((A → C) ∧ (B → C)) →

((A ∨B → C))
(A6) (A∧(B∨C))→ ((A∧B)∨(A∧

C))
(A7) ∼∼A→ A

(B1) A,A→B⇒B
(B2) A,B⇒A ∧B
(B3) A → B ⇒ (C → A) → (C →

B)
(B4) A → B ⇒ (B → C) → (A →

C)
(B5) A→ ∼B⇒B → ∼A
(B6) A→ (B → C)⇒ (A ◦B)→ C
(B7) (A ◦B)→ C⇒A→ (B → C)

Those are the axioms and rules for the logic B. To obtain R, one adds to
the above axioms and rules the following.32

(C1) (A→ (B → C))→ (B → (A→ C))
(C2) (A→ (A→ B))→ (A→ B)
(C3) (A→ B)→ ((B → C)→ (A→ C))
(C4) (A→ B)→ ((C → A)→ (C → B))
(C5) (A→ ∼B)→ (B → ∼A)

Later it will be useful to discuss stronger and weaker relevant logics, as groups.
For the purposes of this paper, the stronger logics will be ones that include
(C3), (C4), and (C5) as well as either (C2) or (A ∧ (A → B)) → B. This
definition is somewhat arbitrary, but it marks out a boundary, namely the
logic C discussed by Routley et al. [1982], a slight weakening of Anderson and
Belnap’s logic T.33

Relevant logics have a frame semantics based on ternary relational frames,
also known as Routley-Meyer frames.

31 While RM, which is R plus the mingle axiom, violates the variable sharing criterion,
some nearby logics with the mingle axiom satisfy the criterion, as shown by Robles et al.
[2010] and Méndez et al. [2012]. The logic BN4 of Brady [1982] violates the variable sharing
criterion but does satisfy the same semi-relevance criterion as RM, for which see Anderson
and Belnap [1975, 448]. Since neither of those logics satisfy the variable sharing property,
they are excluded from further consideration here. Some of the logics studied by Robles
and Méndez [2020] do have the variable sharing property, but they are not contained in R,
which will exclude them. Semilattice logic was shown to have the variable sharing property
by Weiss [2019].
32 For non-redundant axiomatizations of R and many other logics in the family, see Brady

[1984b].
33 C is of interest because it is the weakest relevant logic shown to be complete with

respect to its reduced frames by the methods of Routley et al. [1982]. Slaney [1987] showed
how to obtain completeness results for weaker logics. Standefer [2021] shows that many
natural modal extensions of C, and stronger logics, are incomplete with respect to their
reduced frames, and Standefer [202x] shows that many modal extensions of sublogics of C
are complete with respect to their reduced frames.
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Definition 1 A Routley-Meyer frame F is a 4-tuple 〈K,N,R,∗ 〉, where K 6=
∅, N ⊆ K, ∗ : K 7→ K, R ⊆ K3, a ≤ b =Df ∃x ∈ N,Rxab, and the following
conditions are satisfied.

– a ≤ b⇒ b∗ ≤ a∗
– a∗∗ = a
– ≤ is a partial order

– If a ≤ b and a ∈ N, then b ∈ N
– If d ≤ a, e ≤ b, c ≤ f , and Rabc,

then Rdef

Definition 2 A Routley-Meyer model M is a frame F with a valuation V
such that if V (p, a) = 1 and a ≤ b then V (p, b) = 1. M is said to be a model
on the frame F .

A valuation extends to a verification relation for the whole language as
follows.

a  p iff V (p, a) = 1
a  ∼B iff a∗ 6 B
a  B ∧ C iff a  B and a  C
a  B ∨ C iff a  B or a  C
a  B → C iff ∀b, c(Rabc and b  B⇒ c  C)
a  B ◦ C iff ∃b, c(Rbca and b  B and c  C)

With the definition of a model, we can define validity.

Definition 3 A formula A holds in a model iff for all a ∈ N , a  A.

A formula A is valid on a frame F iff A holds in all models on F .

A formula A is valid in a class of frames C iff A is valid on all frames
F ∈ C.

There is a feature of holding and validity on which I will comment. Holding
requires that a formula is verified on all the normal points, which may fall short
of being all the points. Consequently, validity does not require that the formula
be verified at all points. This is in contrast to usual definitions of validity on
Kripke frames for classically based modal logic, which is to say modal logic over
a classical base logic.34 Below, I will show that some formulas are verified at
all points in all models, which may not seem remarkable to the modal logician
working with classical logic as the base logic. I flag it here to underscore that
that is not the usual way of proceeding for the relevant logician. Rather, one
expects that once one ventures outside of the normal points, any formula might
fail somewhere.35

The logic B is sound and complete with respect to the class of all Routley-
Meyer frames. One can obtain classes of frames appropriate for stronger logics

34 See Blackburn et al. [2002, 24].
35 Copeland [1979, 1980, 1983] criticized many aspects of the Routley-Meyer frames, in-

cluding the distinction between normal and non-normal points. The discussion of ubiquitous
formulas below indicates some of the limitations of the distinction. I would like to thank a
referee for suggesting Copeland’s critical work in this regard.
Friends of the relevant logic enterprise have been critical of the use of Routley-Meyer frames,
as well. Objections have been raised by Girard and Weber [2015] and Brady [2017b], for
example. They might view the results of this paper in a different light.
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by imposing frame conditions. For this paper, I will focus on the class of all
frames, so there will be no need to consider the additional conditions.36

There are two standard lemmas that will be implicitly appealed to in what
follows, the Heredity and Verification Lemmas.
Lemma 4 (Heredity) If a  A and a ≤ b, then b  A.
This is proved by an induction on the complexity of A.
Lemma 5 (Verification) B → C holds in a model M iff for all a ∈ KM , if
a  B then a  C.
This is a corollary of the Heredity Lemma. In the next section, I will appeal to
the right-to-left direction in showing that a given conditional B → C holds in
a model. The argumentation showing that B → C holds in a model, appealing
to the Verification Lemma, is importantly different from the argumentation
showing that the conditional holds at all points in the model. For the former,
one assumes B holds at an arbitrary point and shows that C also holds at that
point. This does not establish that the conditional holds at all points in the
model. To show that, one assumes, for arbitrary points, a, b, c ∈ K, Rabc and
b  B and one shows that c  C. I flag this distinction because in relevant
logics, one does not often show that a certain conditional holds at all points
in a model, as holding in a model suffices for most standard purposes.

With that background in place, I will turn to the criteria for relevant
connectives and discussion.

6 What is a relevant connective?

In the previous section I gave an overview of the Hilbert-style axiom systems
for B and R and the model theory for B. In this section, I will provide an
initial answer to the question of what a relevant connective is. I will provide
two main criteria that are framed in terms of the logic. The investigation
will proceed primarily by appeal to the frame theory, so I will need a third
condition involving models to make things work.

The following three criteria provide an initial answer to the question of
when a connective is a relevant connective.

– New connectives do not lead to violations of variable sharing: |= A→ B
only if A and B share a variable.

– New connectives do not generate valid weakening-like formulas, C(A) →
(B → D(A)), where C(·) and D(·) are formula contexts and none of C(·),
D(·), and A share a propositional variable with B

– Formulas using the new connectives must obey Heredity: a  A and a ≤ b
implies b  A.

Some comments are in order.
The first condition requires that new connectives do not lead to violations

of Belnap’s variable sharing criterion. This seems to get at an essential feature

36 The interested reader should see Routley et al. [1982, ch. 4], Restall [2000, ch. 11], or
Goldblatt and Kane [2009], among others, for surveys of conditions and logics.
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of what it is to be a relevant logic. This condition could be refined. In particu-
lar, there are strengthened versions of Belnap’s variable sharing criterion one
could opt for, such as Brady’s depth relevance condition.37 Depth relevance
requires that not only do the antecedent and consequent share a propositional
variable, but, further, each has a common variable at the same depth, that is,
nested under the same number of conditionals. The depth relevance condition
is satisfied by many of the weaker relevant logics but not by the stronger ones.
For this paper, I will work with Belnap’s criterion rather than Brady’s.

The first condition is primary. The second, in a sense, depends upon the
first. In the implicational fragment of the logic, Anderson and Belnap [1975]
note that the axiom of weakening, A → (B → A), should be rejected in a
relevant logic. Clearly, the extension of the logic with a new connective should
not result in weakening becoming available. Say that a formula is weakening-
like if it is of the form C(A)→ (B → D(A)), where C(·) and D(·) are formula
contexts and none of C(·), D(·), and A share a propositional variable with
B.38 In weakening-like formulas, B is merely along for the ride, so to speak.39

Examples of weakening-like formulas are C(A) → (B → C(A)) or C(A) →
(B → A), where C(·) is a formula context and neither C(·) nor A contain any
propositional variables in common with B.

In some work on relevant logics, logicians will point to valid instances of
weakening-like as being uncomfortably close to weakening, which everyone in
the area agrees is to be avoided.40 Valid weakening-like formulas loosen the
connection between antecedent and consequent of valid implications a bit too
much, so they should be avoided.

Different logics in the relevant family handle weakening-like contexts dif-
ferently. For logics that contain both

– (A→ B)→ (∼B → ∼A) and
– (A→ (A→ B))→ (A→ B),

the weakening-like validities lead to violations of variable sharing. From C(A)→
(B → D(A)), we get C(A) → (∼D(A) → ∼B), and then we get C(A) ∧
∼D(A) → ∼B. Logics that contain (A → (B → C)) → (B → (A → C))
also lead to violations of variable sharing, since C(A)→ (B → D(A)) leads to
B → (C(A)→ D(A)). A proponent of, say, R has strong reason to reject con-
nectives that produce weakening-like validities, while the proponent of B need
not have these reasons. The proponent of B may find such validities distasteful,
but they may not lead to violations of the variable sharing criterion.

37 See Brady [1984a] Robles and Méndez [2014b,a], Salto et al. [2018], and Logan [2022]
for some discussion of depth relevance.
38 Note that any propositional variable occurring in A will occur in C(A) and in D(A).
39 Cf. the “no loose pieces” idea of Anderson and Belnap [1975, 254-255], which is discussed

by Robles and Méndez [2012]. A condition banning the generation of loose pieces in validities
would be a natural addition to the conditions above, since it seems to get at a different idea
than the three conditions above. I would like to thank an anonymous referee for pressing
this point.
40 See Dunn [1987], Mares [1992], and Kremer [1999], for example.



14 Shawn Standefer

There are two views one might take to what a relevant connective is. One
is based on how the criteria play out amongst the whole family, everything
between B and R, inclusive. The other view is to identify a distinguished logic
or subfamily of logics and say that the connectives will be evaluated according
to the criteria only with respect to that logic or that subfamily. The distinction
matters for weakening-like validities, because the weaker logics may be able to
incorporate them without resulting violations of variable sharing. This leads to
a distinction among connectives. Say that a connective C is strongly relevant
iff the addition of C does not lead to violations of variable sharing and does not
generate weakening-like validities. Say that a connective C is weakly relevant
iff the addition of C does not lead to violations of variable sharing but does
generate weakening-like validities. For many of the stronger logics, there will be
no weakly relevant connectives, as weakening-like validities entail violations of
variable sharing. The distinction is of interest when the focus is on the weaker
relevant logics.

The third condition, and the only one dealing with models, is a Heredity
condition, named after the standard lemma from the meta-theory of frame
semantics. The usual relevant logical vocabulary has the property encapsulated
in the third condition. That fact is, it turns out, important for the study of
frame semantics for relevant logics. Since the models do not work well without
that condition, it makes sense to require it as long as we are using models
in our investigation. If we were proceeding via proof theory, or an alternative
frame theory, that condition could be dropped. Towards the end of this paper,
I will briefly comment on alternative frame theories, a feature of which is that
the third condition can be dropped without loss.

It is worth noting that Brady [2006, 34-39] discusses some connectives to
explain why he does or does not include them in his study. This discussion
appeals to a project of formalizing natural language. Brady rejects the connec-
tives that he concludes do not have a natural language interpretation, which
connectives include fusion, taken here as among the basic connectives. Fusion
is admitted as offering technical uses. In his discussion, Brady does appeal to
a violation of relevance, which presumably means variable sharing, although
that is used to argue that a certain connective should be rejected because
it would mean that natural language entailment would not have the features
Brady takes it to have. Brady, then, is answering a similar question to the
one being addressed, but his scope is narrower and his criteria are bound
up with his particular philosophical project of developing a logic of meaning
containment.41

Before moving on to the consequences of these criteria, I will note that one
could try to adapt Gabbay’s conditions for intuitionistic connectives directly to
a relevant logical key. The results, however, are not terribly compelling, as one

41 Mares [2021, §6] discusses barring connectives on informational grounds for logics similar
to those Brady is interested in, although the reasons are not the same as Brady’s.
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might expect since those conditions were specified with an eye to intuitionistic
logic, which has a different philosophical background view.42

The analog of condition (G3), which requires a collapse to classical logic
under certain conditions, is particularly uncompelling and should be rejected
by the relevant logician. It is an important part of the views of most relevant
logicians that classical logic goes wrong in incorporating the paradoxes of
material implication.43 This is so even for proponents of relevant logics, like
Anderson and Belnap, who concessively note that their preferred logics contain
all classical tautologies in the vocabulary {∧,∨,∼}. It is hard to see why the
die-hard relevantist should care whether formulas using the new connective
collapse into classical formulas upon the addition of many axioms they regard
as fundamentally flawed.44 The relevant logician has less reason to adopt the
analog of (G3) than the intuitionistic logician.

Analogs of Gabbay’s conditions for relevant logics are not particularly at-
tractive, so they will not be considered further. I will, then, proceed to consider
some connectives using the three criteria presented at the start of this section.
I will begin with one connective that should be out, if anything is, namely
Boolean negation.

Boolean negation, ¬, has the following verification condition.

– a  ¬A iff a 6 A

According to my criteria, this is not acceptable, as it leads to violations of
variable sharing. It is easy to see that p ∨ ¬p will be true at every point in
every model, so q → p ∨ ¬p will come out valid.

The star connective must also be rejected.45

– a  A∗ iff a∗  A

This connective can be used with de Morgan negation to define Boolean nega-
tion, so it must be rejected.

a  (∼A)∗ iff a∗  ∼A iff a∗∗ 6 A iff a 6 A

To get Heredity, one must postulate that a ≤ b implies a∗ ≤ b∗. Given the other
conditions on Routley-Meyer frames, this requires that ≤ be identity. While
requiring that ≤ be identity is not a standard condition on Routley-Meyer
frames, it is a condition that will appear a few more times below.

42 The analog of condition (G2), that the extended logic has the Disjunction Property,
may be appealing to proponents of weaker relevant logics that are metacomplete, since
those base logics do have the disjunction property. The relevant logical justification, due
to Slaney [1984, 161], is that for certain metacomplete relevant logics, all logical truths
are fundamentally implicational, and so they can be seen as recording a valid inference.
This is a different justification for the Disjunction Property than we saw with intuitionistic
logic, where the appeal was due to the constructive nature of disjunction. For more on the
technique of metavaluations, see Brady [2017a].
43 See Anderson and Belnap [1975], Routley et al. [1982], or Read [1988], for example.
44 Perhaps Routley [1980] or Brady [2006] would count as die-hard relevantists.
45 This connective is considered by Meyer and Routley [1973].
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At this point, it is worth pausing to note that Meyer and Routley [1973,
1974] present Boolean negation as being a natural and important part of the
relevant logical vocabulary. The latter paper ends with, “But the case is now
pretty strong that ¬ was just left out of Anderson-Belnap formulations of
their logics, and evidence is building that the entire project of relevant logic is
unified and simplified when the semantic ¬, with a different function from the
deduction-theoretic [∼] that has been present from the start, is added. This
paper is part of that evidence.”46 While the presentation of R extended with
Boolean negation in those papers is, indeed, simplified, it is not clear that it is
the way that relevant logics should be developed. On the view suggested here,
Meyer, who likely authored those lines, has gone astray from the relevant logic
project in giving up on Belnap’s variable sharing criterion. Of course, Meyer
was a self-avowed non-relevantist, so this may not be a surprising evaluation.47

If one is, like Meyer, open to Boolean negation, then one will need to adopt
alternative criteria for what is a relevant connective, and, arguably, what is
distinctive about relevant logics, as many of their interesting features fall by
the wayside in the presence of Boolean negation.

As goes Boolean negation, so goes “material implication”, ⊃, given the
following verification condition.

– a  A⊃B iff a 6 A or a  B.

Note that this connective is not the defined material implication that is some-
times seen in work on relevant logics. That connective is defined as ∼A ∨ B,
and its addition does not upset the usual variable sharing criterion. As with
Boolean negation, we will, for the time being, impose the condition that for
the frames, ≤ is identity. With that assumption in place, the Heredity condi-
tion is trivialized. We can see that a  A ⊃ A will hold for all a ∈ K. It will
then be the case that p→ (A⊃ A) will be true at all points in in all models.
Selecting an atom that is not in A will result in a violation of variable sharing.

Some reflection on the problem with Boolean negation brings out general
lessons regarding putative relevant connectives. The formula p ∨ ¬p ends up
verified everywhere, so one cannot find any counterexamples to a conditional
with it as consequent. Fuhrmann [1990, 509], using a suggestion attributed
to Humberstone, says that a formula is ubiquitously true in a model iff it
is verified at all points in the model. Similarly, we can say that a formula
is ubiquitously false in a model iff it is not verified at any point in a model.
Formulas that are either ubiquitously true or ubiquitously false in a model will
simply be called ubiquitous. It is immediate that if A is ubiquitously true in a
model, then so is p→ A, and so if A is ubiquitously true in all models, p→ A
will be valid. It does not matter which atom is chosen for the antecedent, so
violations of variable sharing are readily available. In model-theoretic terms,
connectives that generate ubiquitous truths in every model must be rejected.
The same point holds for ubiquitous falsehoods, as the ubiquitous falsity of A
in all models will yield the validity of A→ p.

46 Meyer and Routley [1974, 193], emphasis in the original.
47 See Meyer [1985].
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We can step back and consider some conditions on connectives, satisfaction
of which will mean that they violate the earlier criteria, in particular the
variable sharing criterion. A connective whose verification condition does not
display the point of evaluation will lead to ubiquitous truths. One way to
generate such connectives is to use verification conditions that do not display
any unbound points in K, in particular the point of evaluation.

– a  ZA iff φ, where no unbound point appears in φ.

To see that these connectives will obey heredity, we can argue as follows.
a  ZA iff φ iff b  ZA. The result is that either ZA is ubiquitously true
or it is ubiquitously false. These formulas whose main connective is Z will
satisfy the Heredity criterion, as their assumed truth will imply their truth
everywhere, including further up the ≤-ordering.

Such a connective will generate formulas that are ubiquitously true or ubiq-
uitously false in a model. They will generate formulas that are ubiquitously
true in all models or ubiquitously false in all models as well. For an exam-
ple involving implication, consider ZA → ZA. From the preceding argument,
we see that ZA is either ubiquitously true or ubiquitously false in a given
model. Suppose it is ubiquitously true. Then ZA → ZA is also ubiquitously
true as there are no counterexamples. Suppose, on the other hand, that ZA
is ubiquitously false. Then ZA → ZA is ubiquitously true, as there are no
counterexamples, which require a point where the antecedent is true. For an
example not involving implication, consider ZA∧∼ZA, which is ubiquitously
false in all models. To see this, suppose that a  ZA. Then, a∗  ZA, from
which it follows that a 6 ∼ZA. Therefore, the conjunction is false at every
point. Similarly, ZA ∨∼ZA is ubiquitously true. If ZA ∧∼ZA is ubiquitously
false, then ∼(ZA ∧ ∼ZA) is ubiquitously true, so by de Morgan equivalences,
ZA ∨ ∼ZA is ubiquitously true.

Sticking a formula that is ubiquitously true in all models into the conse-
quent of a conditional will result in violations of variable sharing. Similarly,
sticking a formula that is ubiquitously false in all models into the antecedent
of a conditional will result in violation of variable sharing. Therefore, the rel-
evant logician has reason to reject any connective that generates ubiquitous
truths or ubiquitous falsehoods in too many models. Let us consider some
connectives that have this feature.

Take the universal modality:

– a  UA iff ∀b ∈ K, b  A.

The verification condition does not use the initial point of evaluation, instead
containing only bound variables over points. A formula of the form UA is either
ubiquitously true or ubiquitously false in a model. Therefore, extensions with
U result in violations of variable sharing. Therefore, the relevant logician has
reason to reject the universal modality.48

48 For further exploration of the universal modality in the context of relevant logics, see
Standefer [2022b].
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Instead of looking at truth at all points in a model, one could instead look
at truth at a single, distinguished point in the model. For the next connective,
augment each frame with a distinguished point g ∈ K. We can add a connective
A whose verification condition is that of the actuality connective of classically
based two-dimensional modal logic.

– a  AB iff g  B

This connective yields validities that violate variable sharing, such as ∼AB ∧
AB → p and q → (AB → AB). That the relevant logician should reject
this connective, which is a simple-minded version of the actuality operator,
may be surprising. All is not lost with respect to actuality, however, as the
relevant logician has options for adding an actuality connective, options which
are explored by Standefer [2020].

The universal modality and the actuality operator are two connectives that
yield violations of variable sharing. In fact, any connective whose verification
condition is stated purely in terms of set-theoretic relations among sets of
points will yield violations of variable sharing. There will be many such con-
nectives, a few of which I will list. I will use the notation |B|M for the set
{a ∈ KM : a  B}.

– a  A⇒B iff |A|M ⊆ |B|M .
– a  A

.
= B iff |A|M = |B|M .

– a  A ./ B iff |A|M ∩ |B|M = ∅.
– a  #A iff |A|M 6= ∅.
– a  XA iff ∀x ∈ X,x  A, where X ⊆ K is a distinguished set.
– a  NA iff N ⊆ |A|M .

It is straightforward to see that these generate ubiquitous truths and ubiqui-
tous falsehoods. The last two on this list deserve some further comment.

The penultimate connective, X, is studied by Pietruszczak [2009] and Pietruszczak
et al. [2020] as the box operator of some simplified frames for some modal log-
ics.49 Those frames have the form 〈K,X〉, using a distinguished subset X to
interpret the modal, rather than using a binary accessibility relation. While
modal extensions of relevant logics can satisfy the variable sharing criterion,
frames for those extensions use a binary accessibility relation rather than a
distinguished subset of points. While the distinction does not have serious
consequences in the classically based setting, it marks a deep divide when
considering extensions of relevant logics.

The last one on this list deserves comment, since it is close to something
more familiar from relevant logics. Define the Ackermann constant, t, as fol-
lows.

– a  t iff a ∈ N

It turns out that NA is not the same as t → A. The latter holds at a point
a iff for all b, c such that Rabc and b ∈ N , c  A, or c ∈ |A|. Note that this

49 Humberstone [2016, 205-208] calls these frames “semi-simplified”.
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verification condition displays the point of evaluation in the initial ternary re-
lation, Rabc, whereas the verification condition for N does not. As one would
expect given the ubiquity reasoning, q → N(p→ p) is ubiquitously true in all
models while q → (t → (p → p)) is not.50 The addition of t to the language
complicates the notion of variable sharing, since t lacks propositional variables
while having widespread implication connections to other theorems. I will re-
turn to constants, including t, in §7. The addition of N, on the other hand,
provides simple violations of variable sharing, since the formulas it attaches
to will contain propositional variables.

No connectives whose verification conditions are only set-theoretic relations
between points will be acceptable by lights of my criteria. Instead of mining
those connectives for more examples, let us turn to connectives that do display
the point of evaluation to eliminate the suspicion that the problems can be
pinned simply on that feature of the verification conditions. To begin, let us
look at connectives I will call projections. Consider the following connectives

– a  LA iff ∃b, c(Rbca and b  A)
– a MA iff ∃b, c(Rbca and c  A)

These are projections of fusion, which requires that both of its fuse-juncts
be verified at related points. Both of these connectives yield violations of
the criteria, although not the same violations. The first connective yields a
weakening-like validity, namely p → (q → Lp). The second results in a for-
mula ubiquitously true in all models, p→Mp. To see this, suppose there is a
point a in a model such that a 6 p→Mp. Then there are points b, c such that
Rabc, b  p, and c 6Mp. The last of these requires that there be no points d, e
such that Rdec and e  p, which contradicts the assumptions. This suffices for
the claimed ubiquity. It then follows that q → (p → Mp) is ubiquitously true
in all models.

For some logics, such as R, L and M will be equivalent. For some, they will
not be equivalent but they will both violate the initial criteria. Proponents of
some weaker logics may be able to accept L, assuming there are no other routes
to violations of variable sharing, but rejecting M pushes against accepting L
on symmetry grounds.

There are other connectives in the area of the projections that one might
consider.

– a  OA iff ∀b, c(Rabc⇒ c  A)

This satisfies Heredity. This yields weakening-like validities, such as OA →
(p→ A). To see this, suppose a  OA. To establish a  p→ A, suppose Rabc
and b  p. From the initial assumption, we have that c  A, which suffices for
the desired conclusion.

Another connective in the vicinity of the projections is the following, whose
verification condition adds a small permutation to that of O.

– a  JA iff ∀b, c(Rbac⇒ c  A)

50 To see that the latter is invalid, it is recommended that the reader use John Slaney’s
program MaGIC to generate a falsifying model.
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This satisfies Heredity. It also generates violations of variable sharing. As an
illustration, suppose that Rabc and b  JA. From the verification condition,
c  A, which suffices to establish a  JA → A. This means the conditional
JA → A is ubiquitously true in all models, from which violations of variable
sharing follow right away.

To complicate the picture a bit, let us consider a connective with a higher-
order verification condition. Define the following notation: Rac =Df a ≤ c,
Rabcd=Df ∃x(Rabx ∧Rxcd), Rabcde=Df ∃x(Rabcx ∧Rxde), and so on. We
can use this notation to define an R-chain connective, whose intuitive gloss is
that the given formula holds no matter how many steps down the R-relation
one goes.

– a  RA iff for all 〈c1, . . . , cn〉, with n ≥ 1, if Rac1, . . . , cn, then cn  A.

This obeys Heredity. It generates weakening-like validities. For example, we
get the following as valid: Rp → (q → p) and Rp → (q → Rp). Further,
for some logics, it generates ubiquitous truths, in particular, for logics whose
frames obey the permutation condition Rabc⇒ Rbac, such as R. To see this,
suppose that Rabc and b  Rp. It then follows by permutation that Rbac, so by
the verification condition for R, c  p. Therefore, a  Rp → p, for all points
a ∈ K. By the usual reasoning, q → (Rp → p) is valid on such frames. In
contrast, Rp → p is valid, although not necessarily ubiquitous, on all frames.
This follows from the fact that a ≤ a, or Raa, so if a  Rp, then a  p.

The connective R looks down the R-relation in the same direction as in the
verification condition for the implication. One might ask about the connective
that stands in the analogous relation to fusion, looking backwards down the
R-relation.

– a  QA iff there is 〈c1, . . . , cn〉, with n ≥ 1 such that Rcn, . . . , c1a, and
cn  A

This generates formulas ubiquitously true in all models. To see this, note that
for all a ∈ K, there are b, c ∈ N such that Rbaa and Rcbb, in light of the fact
that a ≤ a and b ≤ b. It then follows that Rcbaa. As c ∈ N , c  p → p, so
Q(p→ p) is ubiquitously true.

A notable feature of L,M,O,R, and Q not shared by some of the earlier
connectives is that their verification conditions use the point of evaluation in a
substantive way. That was something that we did not see with U, for example.
The verification conditions for each of these connectives involves the ternary
relation as well, although in two of the cases, not all the points feature in the
condition in a substantive way. In the other two cases, there are higher-order
quantifications, namely quantification over sequences of points. Both of these
features weaken the force of the ternary relation.

Next, consider a connective from the model theory of intuitionistic logic.51

– a ↓ A iff ∃b ≤ a, b 6 A

51 This connective is discussed by López-Escobar [1985].
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This connective satisfies Heredity. It is worth examining the argument that
it does so, in particular the salient case of the usual inductive argument. For
that, suppose that a ↓ A and a ≤ b. From the initial assumption, there is
a c ≤ a such that c 6 A. As c ≤ a and a ≤ b, we have that c ≤ b, whence
b ↓ A. The connective satisfies Heredity, but the argument did not appeal
to the inductive hypothesis. The reader may be concerned that being able to
establish Heredity without appeal to the inductive hypothesis indicates that
there may be problems lurking. While such arguments do not always indicate
a problem, as showing that the conditional obeys Heredity appeals to a frame
condition rather than the inductive hypothesis, in this case such concerns are
justified. The connective also generates ubiquitous truths, such as p∨ ↓ p. To
see this, suppose that a 6 p. As a ≤ a, a ↓ p. Thus, we can obtain a violation
of variable sharing. One might wonder about connectives that look forwards
down the ≤-relation. As far as I can tell, these either are unremarkable or do
not satisfy the Heredity criterion.

Finally, one might consider alternative approaches to negation. One promi-
nent alternative replaces the Routley star with a binary compatibility relation,
C, obeying the condition that if a ≤ c, b ≤ d, and cCd, then aCb.52 The veri-
fication conditions for negation using compatibility are

– a  ∼A iff ∀b(aCb⇒ b 6 A).

Without further conditions, the resulting negation is weaker than the de Mor-
gan negation obtained from the Routley star. One can obtain Boolean negation
by adopting the condition aCa, for all a ∈ K. Just as the ∗ connective gen-
erated ubiquitous truths when paired with de Morgan negation under certain
conditions, namely that both are interpreted using the Routley star on points
and the heredity relation is identity, so can one generate ubiquitous truths
with natural connectives paired with negation interpreted using compatibility,
with heredity as identity. Define + using the following verification condition.

– a  +A iff ∃b(aCb and b  A)

One then obtains a formula, +B∨∼B, that is ubiquitously true in all models.
This pair of connectives falls short of defining Boolean negation, but that
is not needed for the current point. Requiring that the heredity relation be
identity is, of course, a strong condition. One can obtain similarly problematic
connectives, on the assumption that compatibility relation is serial, ∀a∃b(aCb).
Define P using the following verification condition.

– a  PA iff ∀b(aCb and b  A)

This connective satisfies Heredity, independent of the assumption of serial-
ity. Given seriality, however,, one then obtains a formula, PB ∧ ∼B, that is
ubiquitously false in all models.

There is a connective that generates the same problems without the as-
sumption of seriality. Let ↑ be defined via the following verification condition.

52 See Dunn [1993], Restall [1999, 2000], Berto [2015], and Berto and Restall [2019].
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– a ↑ B iff ∀b(a ≤ b⇒ ∃c(bCc and c  B))

This connective obeys Heredity.53 The formula ↑ B ∧∼B is ubiquitously false
in all models. If we suppose that there is a model with a point a such that
a ↑ B ∧∼B, it follows that for all b such that aCb, b 6 B. Since a ≤ a, there
is a c such that aCc and c  B, which is a contradiction.

One can use conditions on compatibility to obtain an intuitionistic-type
negation, which will generate violations of the variable sharing criterion. As
Robles and Méndez [2018] show, there is an alternative way to modify the
Routley-Meyer frames, minus the Routley star, to obtain intuitionistic-type
negations that do satisfy the variable sharing criterion.54 One can impose con-
ditions on those frames to force violations of variable sharing. Indeed, one can
add conditions on the Routley star or on compatibility to force violations of
variable sharing. It would be enlightening to have some general characteriza-
tion of what sorts of frame conditions on relations used to interpret connectives
are compatible with variable sharing, at least, but that will have to wait for
future work.

The criteria set out at the start of this section were motivated by ideas from
the philosophy of relevant logics. They do not appear to be overly demanding.
Despite this, they have some important consequences. Many connectives that
one might consider, or that have arisen in other logical contexts, are ruled out.
A few connectives have arisen incidentally above, propositional constants. I will
now discuss them briefly.

7 What about constants?

The variable sharing criterion is most intuitive in the context of proposi-
tional logic without any constants. At the quantificational level, there is not
widespread agreement on how it should be adapted. The presence of proposi-
tional constants, or 0-ary connectives, muddies the water at the propositional
level.

There are three main constants to consider, although they are not the only
constants one might want to consider.

– a  t iff a ∈ N
– a  > iff a ∈ K
– a  ⊥ iff a 6∈ K

The constants > and ⊥ have the feature of being ubiquitous, being so by defini-
tion. They generate many validities that violate the variable sharing criterion,
such as q → (p→ >) or ⊥ → p, as neither formula has a variable occurring in
its consequent occurring also in its antecedent. One response to this problem
is treat the constants as containing all propositional variables, so that both of

53 Proof: Suppose a ↑ B, a ≤ b, and b 6↑ B. It follows that for some c such that b ≤ c,
for all d such that cCd, d 6 B. Since b ≤ c and a ≤ b, a ≤ c. As a ↑ B, for some e, cCe
and e  B, which is a contradiction.
54 I would like to thank an anonymous referee for pointing this out.
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the displayed formulas satisfy variable sharing. This response is motivated by
providing an infinitary gloss on the constants, with t being the “conjunction”
of all logical truths, > being the “disjunction” of all formulas, and ⊥ being
the “conjunction” of all formulas. Note that, as the language is not infinitary,
these glosses provide only suggestive ideas, not syntactic descriptions. The
looser understanding of the relation between propositional variables and the
constants just outlined provides a way of seeing the constants as satisfying the
variable sharing criterion, albeit by trivializing it for formulas that contain
constants.55

One can use > to define some of the problematic connectives of the previous
section, such as O, L, and M. The defined versions, unlike their primitive
counterparts, will not violate variable sharing on the view just described. Since
MA would be defined as > ◦ A, q → (p → Mp) would in fact satisfy variable
sharing, as every variable occurs, in the looser sense, in the consequent. Note
that while some of the problematic connectives could be defined using these
constants, not all of them can be. The connectives that cannot be defined in
terms of constants generate ubiquitous that still violate variable sharing, and
so there will still be reason to reject those connectives.

Do the criteria say anything about > or ⊥? Those constants do generate
weakening-like validities, such as > → (p → >). That criterion, however,
is dependent on the variable sharing criterion, which does not clearly cut
against the constants. Some other concerns from relevant logic may be able
to motivate a rejection of these constants. These constants are, by definition,
ubiquitous. It is a feature of the constant-free language that for every formula,
there is some point in some model at which it fails. This is an important
feature of ternary relational models. Logical truths are not ubiquitously true
in all models, although they are valid. This idea, that every formula fails
somewhere, provides a reason to reject these constants. It is a rejection of
ubiquitous formulas at the propositional level.

One might think that in the models, the constants > and ⊥ are too natural
to omit, much as Meyer thought about Boolean negation. Unlike Boolean
negation, it seems that there is room for relevant logicians to differ regarding
the constants > and ⊥. The die-hard relevantist would deny that there should
be truths ubiquitous in all models. It is the nature of the content assigned to
formulas that every formula must fail somewhere or other, so the constants
should be rejected as illegitimate.56 The more accepting relevant logician would

55 Yang [2013] provides a detailed discussion of the variable sharing property, there called
“the relevance principle”, in the presence of the propositional constants. Yang’s preferred
formulation of the property is that if A → B is a theorem, then either A and B explicitly
share a propositional atom or they implicitly share an atom in virtue of the infinitary glosses
on the constants as conjunctions or disjunctions of certain kinds. I thank an anonymous
referee for suggesting Yang’s work on this topic.
56 Propositional quantifiers have been a part of the relevant logic tradition for a long time,

with Anderson et al. [1992] opening with a study of propositional quantifiers and, more
recently, Goldblatt and Kane [2009] providing adequate models for a range of relevant logics
with propositional quantifiers. The constants > and ⊥ can be defined using propositional
quantifiers. What should the die-hard relevantist say about propositional quantification?
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permit the constants, and the defined versions of some of the problematic
connectives, adopting the more permissive conception of variable sharing to
accommodate the constants. Note that even if the constants are accepted, the
primitive versions of, say, M would still be out, as it leads to violations of
variable sharing, even on the more permissive understanding of the notion.

Let us turn briefly to the other constant, the Ackermann constant, t. This
constant does not generate ubiquitous truths. It does, however, muddy the
waters of the variable sharing criterion. To make it so that, for example,
t → (p → p) is acceptable, one must say that t counts as containing every
propositional variable. It does, after all, entail every theorem, and so can be
viewed as a kind of infinitary conjunction.57 It is less straightforward to see how
even a die-hard relevantist would object to t. One might deny that any formula
bears substantive connections to formulas with a disjoint set of propositional
variables, at least connections substantive enough to support valid implica-
tions, while insisting that the Ackermann constant contains no propositional
variables. I will leave defense of such a notion of substantive connection to
relevant logicians who wish to reject t. It appears to pass the criteria I have
provided, so, at least here, it seems like a connective the relevantist could
accept.

Let us turn from constants to a brief discussion of other frames for relevant
logics.

8 What about other frames?

In studying intuitionistic logic, one often uses Kripke frames, and some of the
work cited above uses Kripke frames in an important way. Kripke frames are
not, however, the only sort of frame used to study intuitionistic logic.58 The
situation is similar with relevant logics. The discussion of relevant connectives
so far has employed Routley-Meyer frames. While these are generally the pre-
ferred frames for relevant logics, there are other options out there, such as the
semilattice frames of Urquhart [1972], the operational frames of Fine [1974,
1988], the simplified frames of Priest and Sylvan [1992], and the collection
frames of Restall and Standefer [20xx], as well as the American plan models
of Routley [1984]. There is a worry that the assessment of connectives in a
given frame theory will be too parochial. Indeed, other kinds of frames might
suggest different sorts of connectives to consider. These are, I think, reasonable
worries about presentation-dependent criteria, but I will note that the criteria

That is not clear. Neither is it clear what the analog of the variable sharing criterion should
be in that context.
57 For the logic R, there is a way of replacing the Ackermann constant. Anderson and

Belnap [1975, 362-363] says that, when the language has only finitely many propositional
atoms, p1, . . . , pm, then one can use (p1 → p1) ∧ . . . ∧ (pm → pm) instead of t. This does
not hold in weaker logics. For example, (q → q) → (p ∧ q → q) is a theorem of B but
((p → p) ∧ (q → q)) → ((q → q) → (p ∧ q → q)) is not, as can be shown using MaGIC to
obtain a countermodel.
58 See, for example, Bezhanishvili and Holliday [2019].
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proposed in the previous section are mostly not presentation-dependent. While
I will not be able to assuage these worries in generality, it will be instructive to
briefly look at one other sort of frame, namely Urquhart’s semilattice frames,
to see how different connectives might fare with respect to our criteria.59

Definition 6 (Semilattice frame, model) A semilattice frame is a triple
〈K,t, 0〉, where 0 ∈ K, t : K ×K 7→ K, satisfying the following conditions.

– 0 t x = x
– x t x = x

– x t y = y t x
– (x t y) t z = x t (y t z)

A semilattice model M is a pair of a semilattice frame F with a valuation
V : At×K 7→ 2. M is said to be a model on the frame F .
A valuation is extended to a verification relation on the whole language induc-
tively as follows.

x  p iff V (p, x) = 1
x  A ∧B iff x  A and x  B
x  A ∨B iff x  A or x  B
x  A→ B iff ∀y(y  A⇒ x t y  B)
x  A ◦B iff ∃y, z(x = y t z and y  A and z  B)

Definition 7 (Holding, validity) A formula A holds in a model 〈K,t, 0, V 〉
iff 0  A.

A formula A is valid iff it holds in all models on all frames.
UR is the set {A ∈ L : A is valid}.
The criteria for being a relevant connective in the context of the semilattice

logic UR will be much the same as in the previous section.60 One simplification
in the context of semilattice frames is that no Heredity criterion is needed, so
we can focus on the two presentation-independent criteria. Much of our earlier
discussion is still in force. In particular, the points about ubiquity remain, so
connectives that generate too many ubiquitous formulas in too many models
must be rejected.

There are some connectives that are particular to semilattice frames.61

– x  BA iff ∀y ∈ K,x t y  A
– x  CA iff ∀y ∈ K, y t x  A

It turns out that both of these must be rejected, despite the fact that the
point of evaluation is used in a substantive way in both. The problem is that
C yields a violation of variable sharing, namely q → (Cp → p). To see this,
suppose that 0 6 q → (Cp→ p). Then for some x, x  q and 0 t x 6 Cp→ p.
This implies that there is a y such that y  Cp and x t y 6 p. The former

59 See Standefer [2022a] for an overview of recent work on semilattice frames.
60 UR properly extends the positive fragment of R, so it technically falls outside the demar-

cation set in §5. We can, as shown by Humberstone [1988], modify the semilattice frames to
bring the resulting logic into alignment with R by using an additional operation and adjust-
ing the verification condition for disjunction. This modification has important connections
to other areas of logic, some of which are explored by Humberstone [2018]. We will stick
with the unmodified semilattice frames here, for the simplified presentation.
61 I thank Lloyd Humberstone for proposing these connectives to me.
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implies that for all z, z t y  p, which results in a contradiction, x t y  p.
The connective B is equivalent to C in light of the frame conditions.

There are weaker operational frames obtained by dropping some of the
frame conditions. In those frames, C still generates violations of variable shar-
ing, as can be seen by inspecting the proof above. B generates weakening-like
validities, such as Bp→ (q → p).

There are analogs of the projection connectives in the semilattice frame
setting.

– x  GA iff ∃y, z ∈ K(x = y t z and y  A)
– x  HA iff ∃y, z ∈ K(x = y t z and z  A)

As 0  p → p and 0 t x = x, for all x ∈ K, G yields violations of variable
sharing. The formula G(p → p) is ubiquitously true in all models, so q →
G(p → p) is as well. Given the permutation condition, H is equivalent to
G, but it is worth noting that even without that condition, H will generate
violations of variable sharing. Suppose 0 6 q → (p → Hp). Then there is an
x such that x  q but 0 t x 6 p → Hp. This implies that there is a y such
that y  p but xt y 6 Hp, but the former contradicts the latter in light of the
verification condition for H.

There is one more connective to consider in this section. The difference
operator, D, from classically based modal logic.62

– x  DA iff ∃y ∈ K(x 6= y and y  A)

This verification condition does not, in general, work in the context of Routley-
Meyer frames because it violates Heredity. In some variant frames, such as for
the simplified semantics, one can do away with the heredity ordering for many
logics, and for those frames, one can use this verification condition.63 The
difference operator yields ubiquitous truths, such as D(p → p) ∨ (p → p). To
see this, note that 0  p → p, so for every point x, either x = 0, in which
case x  p → p, or x 6= 0, in which case x  D(p → p). Violations of variable
sharing then follow. One might expect from the meaning of the difference
operator that it should produce some irrelevancies, and this result bears out
that expectation.

As we can see, alternative frames permit the interpretation of some new
connectives. Many are analogs of connectives that we saw on the Routley-
Meyer frames. While I will not consider the other types of frames in detail here,
I expect that the situation with them will be similar. The considerations of the
preceding two sections have, for the most part, proceeded with few additions
to the frames. Further augmentation of the frames, such as equipping them
with binary modal accessibility relations, neighborhood functions, or a host of
other standard logical devices would open the gates to more connectives still.

62 See Blackburn et al. [2002, 421 ff., 480-481].
63 See Priest and Sylvan [1992], Restall [1993b], or Priest [2008] for more on simplified

semantics without the ordering. See the latter or Restall and Roy [2009] for more on which
logics appear to need the ordering.
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9 Conclusions

In §6, I introduced three criteria for being a relevant connective. Two of these
were presentation-independent, with the third being particular to the frame
theory adopted. These criteria are comparatively simple and distinctively rel-
evant, not being plausible, for example, from the point of view of the classical
logician. These criteria are fairly minimal, acceptable to most any relevant
logician. Nonetheless, they are far from trivial, and in fact provide substantial
constraints, as they rule many plausible connectives as being in violation of the
relevant logical philosophical views. Many connectives do not respect the re-
quirement that there be a substantive connection between the antecedent and
consequent of a valid conditional. These connectives will not even be weakly
relevant.

Let us summarize some of the features of connectives that get in the way
of them being relevant connectives. The first thing is that the verification
condition for a connective must involve the initial point of evaluation in a
substantive way, which we can understand here as meaning that the condition
is not equivalent to one that does not feature the initial point. There are
familiar ways of using logically equivalent forms that can ensure that the
initial point occurs, albeit in an inessential way.64

One feature of verification conditions that can signal that something is
amiss, even when the point of evaluation is used in an essential way, is the
argument that the connective satisfies Heredity. For the many of standard
connectives, one appeals to the inductive hypothesis in showing Heredity is
satisfied. Failure to cite the inductive hypothesis is not dispositive, however, as
the salient case for the conditional does not and that connective is a paradigm
relevant connective. For some connectives, such as actuality and ↓, we see
that the argument that the connective obeys Heredity does not appeal to
the inductive hypothesis in an essential way. While it may seem like a small
point, failure to appeal to the inductive hypothesis can be an indication that
something is amiss. It can indicate that the truth of the whole does not depend,
in appropriate ways, on the truth of the parts at suitably related points. If
that dependence is lacking, there is a danger that the connectives generate
ubiquitous truths.

Another idea suggests itself from a survey of the results so far. If the
verification condition for a connective features quantification into the ternary
relation, or a chain of ternary relations, then for each quantified point there
should be some subformula evaluated there. This distinguishes fusion from the
projection connectives, for example. We saw some cases where violating this
stricture led to violations of variable sharing, as with J, but there are cases
where it seems only to lead to weakening-like validities, as with O.

The preceding idea does not address the issue with R. The verification con-
dition quantifies over sequences of points rather than just points. The condition

64 Equivalent forms that use inessential variables comes up elsewhere in relevant logics,
such as Dunn [1987, 351-352]
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does not evaluate a subformula at every of those quantified points, but the con-
dition could be rephrased to do so conjunctively without changing the issue. A
similar point holds for Q, albeit disjunctively rather than conjunctively. This
suggests that connectives with infinitary or higher-order verification conditions
will violate the sort of locality constraints that are important for capturing
relevance in the models.

Restall [2000, 259 ff.] and Badia [2016] present relevant directed simula-
tions on Routley-Meyer models to obtain some preservation and expressibility
results similar to results in the area of classically based modal logics. Badia
uses a basic relevant language that includes ⊥ and negation, and so >.65 Con-
nectives definable in the language will be preserved as a consequence of the
general preservation results proved. In particular, L and M will be preserved,
as they are definable in the language. Therefore, directed simulations do not
preserve the sense of substantive connection at the heart of relevant logics.
Consequently, relevant directed bisimulations do not seem like a good tool for
delineating the relevant connectives.66 They can do many things, but they do
not isolate the connectives that satisfy my criteria.

Many of the considerations raised for connectives interpreted on Routley-
Meyer models hold as well for connectives interpreted on other sorts of models.
There may, however, be some important differences, as illustrated by the semi-
lattice models. One important difference is that they lack a heredity ordering,
which provides some additional flexibility in interpreting connectives. There
are variations on and subclasses of Routley-Meyer frames that also lack a
heredity ordering, such as the flat frames used for Boolean negation or some
forms of simplified semantics.67 Another important difference is that a semi-
lattice frame has a single distinguished point that has distinctive features. The
distinctive logical behavior of the distinguished point features prominently in
the problem with D. These features lead to violations of variable sharing from
the projection connective G, although that one violates the earlier requirement
that a subformula be evaluated at each quantified point. Upon closer inspec-
tion, that is plausibly the problem with B and C. While a subformula of BA
is evaluated at x t y, no subformula is evaluated at y, the absence of which is
perhaps obscured by the operational notation. An analogous point holds for
CA.

I will close with two promising strategies for introducing connectives on
Routley-Meyer frames. The first, following Bimbó and Dunn [2008], is to in-
terpret an n-ary connective using quantifiers and an (n+ 1)-ary relation. Fol-
lowing the ideas set out so far, one of the (n+ 1) spots in the relation should
be the initial point of evaluation and each of the remaining quantified points

65 Although Badia does not consider fusion in the language, Restall does consider fusion
in the language when presenting the simulations. Restall’s results for fusion will carry over
to Badia’s setting.
66 Cf. the discussion and role of bisimulation in modal logic, as presented by, e.g. Blackburn

et al. [2002].
67 For the former, see Meyer and Routley [1973, 1974]. For the latter, see Priest and Sylvan

[1992].
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should be used to evaluate a subformula.68 Once the relation moves outside
of the normal points, even logical truths can fail. This possibility of failure,
mentioned earlier in the context of the constants, seems to be important in
modelling the substantive connections imposed by relevant implications. While
good as a heuristic, this is not sufficient to ensure the resulting connective is a
relevant one, since both ↓ and D have the desired features but violate variable
sharing.

The second strategy follows that of the simplified semantics. For this, some
detail on the simplified semantics will be useful. A simplified frame is a quadru-
ple 〈K,N,R,∗ 〉, where K 6= ∅, N ⊆ K, ∗ : K 7→ K, a∗∗ = a,and R is a ternary
relation on K.69 A model is a pair of a frame and a valuation v : At×K 7→ 2,
which extends to a verification relation on the whole language much as with
Routley-Meyer models, although we will ignore fusion here. The twist comes
with the verification condition for the conditional, which splits into two parts,
one for normal points and one for the rest.

– a  B → C iff for all b ∈ K, if b  B then b  C, provided a ∈ N .
– a  B → C iff for all b, c ∈ K, if Rabc and b  B then c  C, provided
a 6∈ N .

One can interpret an n-ary connective with whatever verification condition
one wants on the normal points and on the non-normal points, one can use
an (n + 1)-ary relation and quantifiers in a different condition to ensure that
no violations of variable sharing arise. As an example, one could split the
verification condition for the universal modality as follows, where S is a binary
relation on K.

– a  UB iff for all b ∈ K, b  B, provided a ∈ N .
– a  UB iff for all b ∈ K, if Sab then b  B, provided a 6∈ N .

One can then construct a model for which Up ∧ ∼Up holds at a point. For
this, we must augment the simplified frame with a binary relation S. Let K =
{a, b, c}, N = {a}, a∗ = a, b∗ = c, c∗ = b, Raaa, Rabb, Racc, Sbb, and Scc.
Set v(p, a) = v(p, b) = 1 and v(p, c) = 0. In this model, b  Up and b  ∼Up.
So, the formula Up∧∼Up is not ubiquitously false, so the particular violation
of variable sharing from §6, Up ∧ ∼Up → q can be invalidated. This strategy
seems promising, although, if the Ackermann constant is in the language, one
can still find formulas ubiquitously false in all models. An example of such is
t ∧Up ∧∼Up. The viability of either of these strategies will, however, have to
wait on future work.
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30 Shawn Standefer

Goldstein, Peter Fritz, Melissa Fusco, Roy Cook, the audiences at the Mel-
bourne Logic Seminar, the Pukeko Logic Seminar, the Buenos Aires Logic
Workshop, Australian Catholic University, and the 2019 Australasian Associ-
ation for Philosophy Conference, and two anonymous referees for comments
and discussion that have greatly improved this paper.

References

Alan Ross Anderson and Nuel D. Belnap. Entailment: The Logic of Relevance
and Necessity, Vol. I. Princeton University Press, 1975. 9, 10, 13, 15, 24

Alan Ross Anderson, Nuel D. Belnap, and J. Michael Dunn. Entailment: The
Logic of Relevance and Necessity, Vol. II. Princeton University Press, 1992.
23

Arnon Avron. What is relevance logic? Annals of Pure and Applied Logic, 165
(1):26–48, 2014. doi: 10.1016/j.apal.2013.07.004. 9

Guillermo Badia. The relevant fragment of first order logic. Review of Symbolic
Logic, 9(1):143–166, 2016. doi: 10.1017/s1755020315000313. 28

Jc Beall, editor. Revenge of the Liar: New Essays on the Paradox. Oxford
University Press, 2007. 4

Nuel Belnap. Tonk, plonk and plink. Analysis, 22(6):130–134, 1962. doi:
10.1093/analys/22.6.130. 3, 8

Francesco Berto. A modality called ‘negation’. Mind, 124(495):761–793, 2015.
doi: 10.1093/mind/fzv026. 21

Francesco Berto and Greg Restall. Negation on the Australian plan.
Journal of Philosophical Logic, 48(6):1119–1144, 2019. doi: 10.1007/
s10992-019-09510-2. 21

Guram Bezhanishvili and Wesley H. Holliday. A semantic hierarchy for intu-
itionistic logic. Indagationes Mathematicae, 30(3):403–469, 2019. 24

G. M. Bierman and Valeria de Paiva. On an intuitionistic modal logic. Studia
Logica, 65(3):383–416, 2000. doi: 10.1023/A:1005291931660. 8

Katalin Bimbó. Curry-type paradoxes. Logique Et Analyse, 49(195):227–240,
2006. 2
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