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a b s t r a c t

Numerous distributional cues in the child’s environment may potentially assist in language
learning, but what cues are useful to the child and when are these cues utilised? We pro-
pose that the most useful source of distributional cue is a flexible frame surrounding the
word, where the language learner integrates information from the preceding and the suc-
ceeding word for grammatical categorisation. In corpus analyses of child-directed speech
together with computational models of category acquisition, we show that these flexible
frames are computationally advantageous for language learning, as they benefit from the
coverage of bigram information across a large proportion of the language environment
as well as exploiting the enhanced accuracy of trigram information. Flexible frames are also
consistent with the developmental trajectory of children’s sensitivity to different sources of
distributional information, and they are therefore a useful and useable information source
for supporting the acquisition of grammatical categories.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

During the language acquisition process, the infant is
sensitive to multiple, interacting cues that assist in deter-
mining the language structure (e.g., Kelly, 1992; Mona-
ghan, Christiansen, & Chater, 2007; Saffran, 2001;
Vallabha, McClelland, Pons, Werker, & Amano, 2007). A
focus of research in child language acquisition is to deter-
mine what these cues are, and how they are used by the
child. In experimental and corpus-based studies on speech
segmentation, for instance, many cues have been isolated
that affect language learner’s judgments about where
words begin and end. Transitional probabilities between
syllables (Saffran, Aslin, & Newport, 1996), lengthening of
final syllables (Saffran, Newport, & Aslin, 1996), prosodic

cues in terms of stress placement (Curtin, Mintz, & Chris-
tiansen, 2005; Theissen & Saffran, 2003), as well as phono-
tactic information about which phonemes occur word
medially and which occur only across word boundaries
(Hockema, 2006; Mattys, White, & Melhorn, 2005) all con-
tribute to decisions about word boundaries, and interact in
intriguing ways (e.g., Johnson & Jusczyk, 2001). Yet, the
study of grammatical category learning has had substan-
tially less scrutiny, but is likely to be at least as compli-
cated a process.

There have, nonetheless, been notable exceptions that
have provided crucial insight into the processes of gram-
matical category acquisition. Some of this work has ex-
plored how information from the word itself, including
lexical stress (e.g., Kelly & Bock, 1988) and phonological
patterning (e.g., Cassidy & Kelly, 2001; Durieux & Gillis,
2001; Monaghan et al., 2007), can provide cues to gram-
matical categories. Most of this research, though, has
focused on the usefulness of distributional information for
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grammatical category learning (e.g., Finch & Chater, 1992;
Mintz, 2003; Mintz, Newport, & Bever, 1995; Redington,
Chater, & Finch, 1998; Valian & Coulson, 1988). The distri-
butional patterns in which a word tends to occur have thus
been shown to be quite informative about its potential
grammatical category. Indeed, distributional information
may be the most reliable source for categorisation, espe-
cially for high frequencywords (Monaghan, Chater, & Chris-
tiansen, 2005). However, to create psychological accounts
of how learners might use distributional information for
grammatical category acquisition, researchers have thus
far faced a difficult choice between accuracy and coverage
of this information. On the one hand, focusing on relatively
detailed distributional patterns, or ‘‘frequent frames” (such
as trigrams), can result in very accurate grammatical classi-
fication of words but at the cost of only covering a small
part of the child’s language exposure, because highly spe-
cific patterns tend to be sparse in the input (Mintz, 2003).
On the other hand, more coarse distributional patterns
(such as bigrams) can provide a broad coverage of the input
but with a lower accuracy in terms of the grammatical clas-
sification of individual words (Monaghan & Christiansen,
2008).

In this paper, we propose a novel account to overcome
the accuracy versus coverage problem in the distributional
learning of grammatical categories: We hypothesise that
children construct accurate higher-order ‘‘flexible frames”
(trigrams) on the fly from lower-order distributional pat-
terns (bigrams) with broad coverage. In what follows, we
first discuss key research on the use of distributional infor-
mation in grammatical category learning, highlighting the
work on distributional cues by Mintz (2002, 2003) employ-
ing fixed, frequent frames. Results from corpus analyses
and connectionist modelling are then reported replicating
the original results of Mintz (2003), while demonstrating
the advantage of flexible frames over fixed frames as a
means of distributional learning of grammatical categories.
We conclude by considering the implications of our flexi-
ble frames approach to distributional learning for research
on language acquisition.

2. Distributional approaches to grammatical category
learning

Extending earlier work by Finch and Chater (1992),
Redington et al. (1998) demonstrated that distributional
information from child-directed speech provided accurate
information about the grammatical categories of words,
and showed that such information could form the basis
of self-organising clusters of words into categories. In their
analyses, they assessed co-occurrences for each word
based on the previous two words, and the succeeding
two words. This study was foundational in demonstrating
the potential for grammatical category learning on the ba-
sis only of distributional information of words in text, yet
the plausibility of all this information being used by the
child acquiring her language would require ascribing a vast
memory for co-occurrences between thousands of words.
A consequent question, then, is what sources of distribu-
tional information may be computationally tractable to

the child determining the pattern of grammatical catego-
ries within the language?

Maratsos and Chalkley (1980) proposed that local dis-
tributional information in speech may form the basis of
grammatical categories, and, hence, may be a vital starting
point for language learning. Essentially, grammatical cate-
gories were hypothesised to be constructed based on the
overlap between frequently occurring phrases – if words
X, Y and Z are heard within the same position in construc-
tions A, B and C, then X, Y and Z will be abducted into the
same category. This allows generalisations such that if X is
heard in syntactic construction D, then Y and Z should be
allowed in the same position in syntactic construction D,
even if they had never been heard within that particular
sentential environment before. Cartwright and Brent
(1997) implemented a model of this approach by examin-
ing ‘‘minimal pairs” of phrases in child-directed speech.
Thus, when ‘‘the dog sat” and ‘‘the cat sat” both occurred
in speech, the frame ‘‘the _ sat” and the category set
{dog, cat} were extracted. Cartwright and Brent’s (1997)
model was effective in demonstrating that local informa-
tion was available to generate sets of words that often cor-
responded to grammatical categories, but, as with
Redington et al.’s (1998) analysis, it was computationally
intensive, and additionally it resulted in an only partial
coverage of the words in child-directed speech.

Building upon these previous studies, Mintz (2003) pro-
posed that local, high frequency co-occurrences in child-
directed speech could form the basis for the derivation of
grammatical categories. He suggested that very frequently
occurring non-adjacent pairs of words in speech would not
only be available but also useful to the language learner as
a scaffold for grouping words of the same grammatical cat-
egory. For instance, when the words ‘‘to _ to” co-occur sep-
arated by one word (‘‘__” indicates another word), then the
words that can intervene tend to be of the same grammat-
ical category – in this case, they tend to be verbs. In corpus
analyses of child-directed speech, Mintz (2003) found that
the 45 most frequent frames were extremely accurate in
reflecting the grammatical categories of the words that oc-
curred within them. Thus, words from the same grammat-
ical category tended to occur in the same frame.

In a related study, Mintz (2002) tested whether such
non-adjacent frames could be used by adult learners to
categorise words in an artificial language learning (ALL)
study. In this language, non-adjacent trigram frames were
available to categorise a set of medial words together. The
results of this study showed that participants had grouped
the medial words together as a category, which indicated
that they were able to utilise the trigram frame informa-
tion in order to create the category.

Mintz’ (2002, 2003) corpus analysis and ALL study to-
gether demonstrate that non-adjacent frames are not only
useful but are also potentially useable by the language lear-
ner: theydonot require intensivememoryor computational
resources, and so are presumably tractable to the child in
early stages of development. Additionally, it was demon-
strated that participants respond to the co-occurrences
when learning an artificial language. Such analyses are a
critical first step in understanding the potential sources of
distributional information available to the child for discov-
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ering the grammatical categories of words. The next step,
however, is to determine preciselywhat sources of informa-
tion are used by the child in grammatical category learning.
Though Mintz (2002, 2003) has demonstrated that a lan-
guage containing frequent frames can be learned, the fre-
quent frame structure contained other sources of
distributional information to which participants may have
been sensitive during learning, and frequent frames are
therefore just one candidate for the sort of information that
assists in grammatical categorisation. In particular, frequent
frames also contain two bigrams – distributional informa-
tion about the word’s category from the preceding as well
as the succeeding word. These sources may operate sepa-
rately, in learning frombigram structure, or jointly, in terms
of frequent frames. So, for the frequent frame ‘‘to _ to”, the
two bigram frames ‘‘to _” and ‘‘_ to” may each contribute
to the coherence of the category of words that appears in
these trigrams (i.e., verbs tend to succeed the word ‘‘to”,
and also tend to precede the word ‘‘to”). So, perhaps bigram
information is the key source of distributional information
in grammatical category learning?

Bigram information, on its own, has been shown to be
useful for category learning in ALL studies. Valian and
Coulson (1988) found that bigram cues could induce word
categorisation within an artificial language learning para-
digm, provided the bigram frame words were much more
frequent than the words being categorised. Using a similar
paradigm, Monaghan et al. (2005) and St. Clair and Mona-
ghan (2005) have also demonstrated grammatical category
acquisition from bigrams (see also Smith, 1966; St. Clair,
Monaghan, & Ramscar, 2009). Thus, it is not yet clear
whether trigram or bigram information, or even some
other candidate, such as the more complex co-occurrence
statistics explored in Redington et al.’s (1998) corpus anal-
yses, may direct the child’s category learning.

Yet, there are several reasons to suspect that fixed tri-
gram frames, as proposed by Mintz (2002), are unlikely
candidates for the initial cues exploited by children in
learning grammatical categories. First, frequent frames
present the problem of sparsity, as we will confirm in the
corpus analyses. In Mintz’ (2003) corpus analyses, the 45
most frequent frames classified only a small fraction of
the corpus. This kind of sparse data problem has received
considerable attention in computational linguistics, be-
cause of similar issues to those applicable in language
learning, concerning the trade-off between a highly en-
riched context providing accurate categorisation (or pars-
ing) and the reduced frequency of that specific context
and its low probability of reoccurrence (Manning &
Schütze, 1999). Hence, most natural language processing
approaches have rejected trigrams as a basis for parsing
due to their sparsity. For similar reasons, various forms of
bigrams rather than trigram are typically favoured formod-
elling visual word recognition (e.g., Grainger & Whitney,
2004). We therefore predict that trigrams are not likely to
be as useful a distributional cue as bigram information for
a child learning the categories of the language. Our first
experiment presents corpus analyses of child-directed
speech, testing whether the sparsity problem is evident in
child-directed speech just as it is in broader language cor-
pora (Manning & Schütze, 1999), and also whether this

sparsity problem is resolved by computations based on
flexible, interacting bigram distributional information.

A second reason why fixed frames may be an unlikely
source of information for categorisation is due to their dif-
ficulty of use. There is bountiful evidence of learning adja-
cent (i.e., bigram) statistics by young infants (Saffran,
Newport, et al., 1996), yet non-adjacent dependencies, such
as in fixed frequent frames, are only available at later stages
of development (Gómez &Maye, 2005), and even then they
are difficult to learn (Endress, Dehaene-Lambertz, & Meh-
ler, 2007; Onnis, Monaghan, Richmond, & Chater, 2005).
Not only do frequent frames offer sparse coverage, they
are also only available to use by the language learner under
certain specific circumstances, even when they provide
perfect categorisation information (e.g., Gómez, 2002).

A third limitation of fixed frequent frames is that they
can only categorise words that are regularly surrounded
by other frequent words. This applies well in English for
grammatical categories that may occur surrounded by a
limited number of function words, such as verbs, which
are often preceded by a pronoun and succeeded by an arti-
cle (e.g., ‘‘you _ the”), or nouns which are often preceded by
an article, and succeeded by an auxiliary or a preposition
(e.g., ‘‘the _ can”, ‘‘a _ on”), but it is unlikely to provide
information about membership for other categories, such
as adverbs or adjectives, which are generally adjacent to
a content word of lower frequency. Indeed, fixed frames
appear to provide a rather limited cue to grammatical cat-
egories in German, which have a relatively large number of
functions words e.g., because articles are marked for case,
number and gender (Stumper, Bannard, Lieven, & Toma-
sello, 2010), and also seem similarly inappropriate for
Dutch (Erkelens, 2009). Equally, function words are unli-
kely to be classified accurately due to the relatively low
frequencies of the words that surround them. Thus, there
are strong constraints imposed by the overall distribu-
tional structure of the language that limit which categories
can be formed on the basis of fixed frames, generally
restricting learning to noun and verb categories in English
and, by extension, other Indo-European languages.

Trigram information, such as in Mintz’ (2003) analyses
clearly captures a great deal of information about gram-
matical categories in children’s early language exposure,
and so is likely to have some influence on learning. Yet,
there are alternative ways in which trigram information
may be exploited for classification, at the same time avoid-
ing the problems of sparsity associated with fixed frames.
We propose instead that children make use of flexible
frames in categorisation – where the preceding and the
succeeding word provide converging and integrative infor-
mation about the category of the intervening word. Such
flexible frame information is already present in the fixed
frames of Mintz’ (2002, 2003) experiment and analyses,
but is not maximally exploited by the learner if the fre-
quent frames are treated as compositional wholes. We
show that exploiting all the distributional information
present in the trigram provides both accuracy and cover-
age for categorising the words in child-directed speech.
First, we compare the extent to which frequent frame tri-
gram information and frequent bigrams support the devel-
opment of knowledge about the grammatical categories of

M.C. St. Clair et al. / Cognition 116 (2010) 341–360 343



words in child-directed speech. We then show, by assess-
ing computational models trained on different sources of
distributional information, that flexible frames provide
the optimal basis for category learning.

3. Experiment 1: corpus analysis

The corpus analyses were designed to first replicate
Mintz’ (2003) demonstration that frequent frame trigrams
provide highly accurate information about grammatical
categories in child-directed speech. The second aim was
to test whether frequent bigrams can also provide accurate
information about grammatical categories, and to directly
compare categorisations based on trigrams and bigrams.

3.1. Method

3.1.1. Input corpora
We selected the same six corpora of child-directed

speech from the CHILDES corpus (MacWhinney, 2000)
used by Mintz (2003): Anne and Aran (Theakson, Lieven,
Pine, & Rowland, 2001), Eve (Brown, 1973), Naomi (Sachs,
1983), Nina (Suppes, 1974), and Peter (Bloom, Hood, &
Lightbrown, 1974; Bloom, Lightbrown, & Hood, 1975). As
in Mintz (2003), only the sessions in which the child was
2.6 years or younger were analysed. All utterances from
children were excluded, leaving only adult speech spoken
in the presence of the child.

The Aran corpus contained aran1a to aran20b, with the
exception of 14a and 14b. The Nina corpus contained
nina01 to nina23, with the exception of nina8. The remain-
ing corpora are identical to those in Mintz’s (2003) analy-
ses (Anne corpus: anne01a to anne23b; Eve corpus:
eve01 to eve20; Naomi corpus: n01 to n58; Peter corpus:
peter01 to peter12). The actual corpora used were slightly
different to those used by Mintz (2003), as some of the
subcorpora are no longer available in CHILDES.

The analysis was performed on the CHILDES MOR line,
which coded the grammatical category of each word. This
categorisation has an accuracy of approximately 95% cor-
rect (Sagae, MacWhinney, & Lavie, 2004). Before the cor-
pora were analysed, all punctuation, pause marking,
trailing off and interruption markings were replaced with
an utterance boundary marker, as all of these markings
either signalled the end of a sentence or a break in the
utterance. Coded on the MOR line in some of the corpora
were words that were grammatically necessary but not
actually said (grammatical omissions). As these words
were not spoken they were deleted from the analysis. In
the CHILDES database, any repetitions of words that were
marked with ‘‘[/]” to indicate the repetition (e.g., ‘‘duck [/
] duck”) were fully transcribed on the normal transcription
line, but only one version of the repetition was transcribed
on the corresponding grammatical category line (MOR
line). All repetitions were inserted into the MOR grammat-
ical category line by hand.

3.1.2. Analysis procedure
Each corpus was analysed separately. The procedure for

the fixed trigram, frequent frames analysis will be covered

in detail; a similar process was applied for the bigram anal-
yses. A list of all consecutive three word phrases was com-
piled. None of these three word phrases crossed utterances
boundaries. The 45 most frequent frames within each cor-
pus were then selected with all the words that occurred
within them, we denote these frames aXb, where a__b re-
fers to the non-adjacent co-occurrence frame, and X refers
to the set of words that occur in this context. For the fixed
frame analysis, then, the most frequent a_b non-adjacent
co-occurrences were selected and the words that inter-
vened between the a and the b word were grouped to-
gether. For the preceding bigram analysis, denoted aX,
the most frequent 45 words were selected, and all the
words that occurred immediately following one of these
most frequent 45 words were grouped together. For the
succeeding bigram analysis – Xb – the words that occurred
immediately before each of the most frequent 45 words
were grouped. Both token (every word occurrence was
counted) and type (only distinct words were counted)
analyses were performed.

For the objective grammatical category labels, Mintz
(2003) used two classifications, termed standard and ex-
panded labelling. There were ten categories of words in
the standard labelling: nouns (including pronouns), verbs
(including auxiliaries and copula forms), adjectives, prepo-
sitions, adverbs, determiner, wh-words, ‘‘not”, conjunc-
tions, and interjections. Expanded labelling simply
divided the noun and pronoun distinctions and the verb,
auxiliary and copula distinctions into separate categories.
As the differences in the results between standard and ex-
panded labelling were small in both Mintz’ study and our
own analyses, only standard labelling is reported.

In order to determine how well the frequent frames
were able to categorise the words, accuracy and complete-
ness measures were computed so as to be comparable to
Mintz (2003). The accuracy measure assessed categorisa-
tion success by looking at pairs of medial words within
the frames. All the words that occurred within one of the
frames contributed to measures of accuracy and complete-
ness, but, crucially, this did not include all the words that
occurred in the child’s corpus. In order to determine accu-
racy, the number of hits (when two words occurring in the
same frame were of the same grammatical category) was
divided by the number of hits plus the number of false
alarms (when two words occurring in the same frame were
from a different grammatical category) (accuracy = hits/
(hits + false alarms)). Accuracy gave an overall measure of
how successful the distributional cues were at grouping
words of the same grammatical category together.

Completeness measured how well the distributional
cues grouped all words from one grammatical category to-
gether in the same distributional cue grouping. Complete-
ness was the number of hits divided by the number of hits
plus the number of misses (when two words of the same
category occurred in different frames) (completeness =
hits/(hits + misses)).

Both accuracy and completeness had values in the
range [0, 1]. A value of 1 for accuracy meant that the distri-
butional category contained only one type of grammatical
category (e.g., comprised only adjectives). A completeness
score of 1 meant that the frame contained all of the words
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from a particular grammatical category, e.g., a distribu-
tional category that contained all adjectives (but poten-
tially other grammatical categories as well).

To establish a random baseline, all of the words that
were categorised in the analysis were randomly assigned
across the 45 frequent frames to create a random analysis.
Each frequent frame category contained the same number
of random tokens that were found in the frequent frame
based analysis. This baseline provides a measure of accu-
racy and completeness that would be expected if the fre-
quent frames did not aid in grouping words of the same
grammatical category together. These random baseline
values are shown in parentheses in the relevant tables.

3.2. Results

All multiple t tests and pairwise comparisons were Bon-
feronni corrected. Each individual corpus was entered as a
separate ‘‘subject” in the statistical analyses.

3.2.1. aXb analysis
The 45 most frequent aXb fixed frames for the Aran cor-

pus are shown in Appendix A. Table 1 displays the data for
the total number of word tokens and types within each of
the six child-directed speech corpora and the number of
tokens and types categorised in the aXb frames. It was
found that on average 6.3% of the total word tokens and
19.4% of the total word types were categorised in this
analysis.

Table 2 displays the accuracy and completeness mea-
sures for the token and type analyses. The aXb fixed frames
analysis had much higher accuracy than the random base-
line for both token and type analyses, t(5) = 36.47, p < .001
and t(5) = 58.21, p < .001, respectively. The completeness
measure was also significantly higher than the random
baseline for both token and type analyses, t(5) = 15.49,
p < .001 and t(5) = 13.56, p < .001, respectively.

3.2.2. aX analysis
The 45 most frequent aX frames from the Aran corpus

are shown in Appendix A. Table 3 shows a summary of
the total word types and tokens categorised in the aX
frames. An average of 42.9% of the tokens and 85.6% of
the word types were analysed, which was substantially
higher than in the aXb analyses (compare Table 1). For

the aX frames, accuracy was higher than the random base-
line for token and type analyses, t(5) = 23.81, p < .001 and
t(5) = 18.05, p < .001, respectively. Completeness was also
higher than the random baseline, t(5) = 14.00, p < .001
and t(5) = 10.25, p < .001 for token and type analyses,
respectively (see Table 4).

3.2.3. Xb analysis
Appendix A reports the 45 most frequent Xb frames

from the Aran corpus. Table 5 shows the data for the num-
ber of word tokens and types categorised in the Xb suc-
ceeding word analysis from each corpus.

Word groupings based solely on the succeeding word
were more accurate than expected by chance for both
the token and type analyses, as can be seen in Table 6,
t(5) = 20.05, p < .001 and t(5) = 12.65, p < .001, for tokens
and types, respectively. Completeness was again higher
than chance, t(5) = 13.15, p < .001 and t(5) = 6.71, p < .005,
for tokens and types, respectively.

Table 1
Summary of the total number of word tokens and types in the corpora and
the number and percentage of tokens and types included in the aXb
analysis.

Corpus Corpus
tokens

Corpus
types

Tokens
categorised

Types
categorised

n % n %

Anne 95,255 2602 4870 5.1 388 14.9
Aran 106,931 3249 6041 5.6 745 22.9
Eve 60,929 2125 3430 5.6 386 18.2
Naomi 28,979 1877 1725 5.9 315 16.8
Nina 70,867 1968 6252 8.8 463 23.5
Peter 74,170 2127 5204 7.0 429 20.2

Mean 72,855 2325 4587 6.3 454 19.4

Table 2
Token and type accuracy and completeness measures for the aXb corpora,
random baseline values are in parentheses.

Corpus Token
accuracy

Type
accuracy

Token
completeness

Type
completeness

Anne .94 (.28) .82 (.30) .07 (.03) .08 (.04)
Aran .88 (.27) .76 (.25) .08 (.03) .09 (.04)
Eve .95 (.32) .80 (.32) .06 (.03) .07 (.03)
Naomi .94 (.32) .87 (.34) .07 (.03) .06 (.04)
Nina .96 (.32) .84 (.30) .08 (.04) .10 (.05)
Peter .92 (.28) .82 (.32) .07 (.03) .08 (.04)

Mean .93 (.28) .82 (.31) .07 (.03) .08 (.04)

Table 3
Summary of the total number of word tokens and types in the corpora and
the number and percentage of tokens and types included in the aX analysis.

Corpus Corpus
tokens

Corpus
types

Tokens
categorised

Types
categorised

n % n %

Anne 95,255 2602 39,071 41.0 2235 85.9
Aran 106,931 3249 47,822 44.7 2810 86.5
Eve 60,929 2125 23,890 39.2 1776 83.6
Naomi 28,979 1877 11,598 40.0 1503 80.1
Nina 70,867 1968 34,402 48.5 1811 92.0
Peter 74,170 2127 32,384 43.7 1813 85.2

Mean 72,855 2325 31,528 42.9 1991 85.6

Table 4
Token and type accuracy and completeness measures for the aX corpora,
random baseline are in parentheses.

Corpus Token
accuracy

Type
accuracy

Token
completeness

Type
completeness

Anne .48 (.17) .41 (.20) .08 (.04) .07 (.04)
Aran .43 (.16) .38 (.18) .07 (.03) .07 (.04)
Eve .51 (.17) .42 (.19) .09 (.04) .07 (.04)
Naomi .52 (.18) .47 (.19) .10 (.04) .08 (.04)
Nina .55 (.19) .47 (.23) .10 (.05) .08 (.04)
Peter .48 (.17) .36 (.16) .08 (.04) .07 (.04)

Mean .50 (.17) .42 (.19) .09 (.04) .07 (.04)
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3.2.4. Comparing the aXb, aX and Xb analyses
The categorisations based on the three types of frames

were directly compared using three one-way ANOVAs, on
the number of words categorised, and on accuracy and
completeness. When the results did not differ qualitatively
for the token and type analyses, only the token ANOVA re-
sults are reported. To determine which analyses catego-
rised the largest portion of the whole corpus, the
dependent variable was the number of word tokens or
types categorised from the whole corpus. There was a sig-
nificant main effect of distributional frame, F(2, 15) =
12.74, p = .001, g2

p ¼ :63. Pairwise comparisons indicated
that the aXb analysis categorised fewer tokens than both
the aX and Xb analyses, both p < .01, but the aX and Xb
analyses did not differ (p = 1.0).

For accuracy of token categorisation, there was a signif-
icant main effect, F(2, 15) = 635.38, p < .001, g2

p ¼ :99. Pair-
wise comparisons indicated that the aXb frames were
more accurate than the aX frames, which were more accu-
rate than the Xb frames, all p < .001.

For completeness, there was a significant main effect for
word tokens, F(2, 15) = 6.23, p < .05, g2

p ¼ :45; pairwise
comparisons indicated that there was a significant differ-
ence between the aX and aXb frames, p < .05, and between
the aX and Xb frames, p < .05, but there was no difference
between the Xb and aXb frames (p = 1.0). This result dem-
onstrated that the aX analysis produced distributional cat-
egories that captured more total words of the same
grammatical category than the aXb and Xb analysis. For
completeness in the type analyses, there was a significant
main effect, F(2, 15) = 29.01, p < .001, g2

p ¼ :80, with pair-

wise comparisons revealing that the aXb and aX frames
were significantly higher than the Xb frames, both
p < .001, but did not differ from one another, p = .64.

3.3. Discussion

We were successful in replicating the general findings
of Mintz’s (2003) analyses of the aXb frequent frames.
Mintz (2003) found that for token and type analyses, accu-
racy was extremely high, with means of .93 and .91,
respectively. For our aXb frame analyses, we also found
very high accuracy, with mean for type analyses of .93
and .82 for token analyses.1 For completeness, Mintz
(2003) found that the aXb frames were significantly great-
er than chance, .08 and .10 for token and type analyses,
respectively. Our analyses were similar, with .07 and .08
for token and type analyses, respectively. Though signifi-
cantly greater than chance, this indicates that approxi-
mately eleven out of every twelve occurrences of each
word occurred in different frames, meaning the categorisa-
tion of words was somewhat diffuse (though see the
frame-joining mechanism proposed in Mintz (2003), for
addressing this problem).

As anticipated, the aX and Xb frames were less accurate
than the aXb analysis, due to their reduced specificity, but
aX frames were also found to be more accurate than Xb
frames, indicating that high frequency preceding words
were more effective at classifying target words than suc-
ceeding words. This supports the hypothesis that frequent
frames are highly accurate in categorising words. However,
in the completeness scores, it was aX frames which re-
sulted in the highest values for the token analyses, greater
than both aXb and Xb frames, indicating that the aX frames
resulted in large, generic categories where each grammat-
ical category was more likely to be represented by a few
frames. Note that the completeness scores are for the set
of words categorised, so for the aX frames in the type anal-
ysis, completeness is .09 of 42.9% of the whole corpora, and
for the aXb analysis it is .07 of 6.3% of the corpora, resulting
in an 8-fold difference across all corpora. Thus frequent
frames are highly accurate, but initial bigrams have a much
wider coverage of the corpora than frequent frames.

As we have indicated above, both these measures of
accuracy and completeness were only across the words
classified within the frames. The aX and Xb frames con-
tained more types (more than three times as many) and to-
kens (more than six times as many) than the aXb frames,
and so direct comparisons of accuracy and completeness
between these types of distributional information are
biased in favour of analyses containing a smaller number
of words. Mintz (2003) points out that the number of types
categorised in his analyses is double the words categorised
in studies by Cartwright and Brent (1997) and reports that
‘‘the types constituting half of the tokens in each corpus
were contained in the 45 most frequent frames” (Mintz,

Table 5
Summary of the total number of word tokens and types in the corpora and
the number and percentage of tokens and types included in the Xb analysis.

Corpus Corpus
tokens

Corpus
types

Tokens
categorised

Types
categorised

n % n %

Anne 95,255 2602 36,101 37.9 1843 70.8
Aran 106,931 3249 45,006 42.1 2469 76.0
Eve 60,929 2125 20,807 34.1 1268 59.7
Naomi 28,979 1877 10,156 35.0 1082 57.6
Nina 70,867 1968 28,955 40.9 1446 73.5
Peter 74,170 2127 28,661 38.6 1400 65.8

Mean 72,855 2325 28,281 38.1 1585 67.2

Table 6
Token and type accuracy and completeness measures for the Xb corpora,
random baseline are in parentheses.

Corpus Token
accuracy

Type
accuracy

Token
completeness

Type
completeness

Anne .31 (.17) .25 (.18) .06 (.04) .04 (.03)
Aran .32 (.17) .27 (.19) .07 (.04) .04 (.03)
Eve .29 (.16) .25 (.18) .07 (.04) .05 (.03)
Naomi .31 (.16) .24 (.17) .07 (.04) .04 (.03)
Nina .34 (.17) .30 (.21) .08 (.05) .05 (.03)
Peter .29 (.17) .22 (.17) .07 (.05) .04 (.03)

Mean .31 (.17) .26 (.18) .07 (.04) .04 (.03)

1 The current results differ slightly from those reported in Mintz (2003),
which can be explained by slight differences in the input corpora and small
differences in occurrences of certain trigrams. St. Clair (2007) provides a
full account of the slight differences between Mintz (2003) and the current
results.
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2003, p. 98). This is certainly the case, but because few of
the token instances actually occurred within these frames
it remains to be seen whether the category of a frequent
word can be determined when just a few of its occurrences
are within a frequent frame but the majority of the time
occurring in other contexts. Equally, it remains speculative
to claim that it cannot.

The corpus analyses indicated that the child may ex-
ploit either sparse but accurate frequent frame contexts,
or bountiful but more approximate bigram information
for categorisation. However, we propose that flexible
frames present a third way which exploits the merits of
both trigram accuracy and bigram coverage. We hypothe-
sise that the best learning situation is when the frequent
frames are decomposed into their constituent bigrams.
So, for each word that occurs in an aXb frame, the learner
can be informed as to the grammatical category from infor-
mation about the preceding and the succeeding word
simultaneously. Thus, flexible frames function as a com-
mittee of experts, whereby each bigram generates a
hypothesis about the grammatical category of the inter-
vening word, and this combination allows incorrect cate-
gorisations based on only one bigram to be remedied by
the other bigram source.

We next present a series of simulations in order to
determine which source of distributional information
may be most conducive to category learning for a statisti-
cal learning system which utilises child-directed speech
corpora to determine grammatical categories. We compare
connectionist models that learn to map between different
types of distributional information and the grammatical
category of each word in the corpus. We compare the
learning from fixed frames (aXb), either preceding (aX) or
succeeding (Xb) bigrams, and flexible frames (aX + Xb), in
order to determine the usefulness of each of these methods
as a basis for categorising the language to which a child is
exposed. If the model learns categories more effectively
from the aXb frames compared to the aX or Xb frames then
this indicates that a general purpose learning system finds
accuracy is most beneficial to learning at the expense of
coverage of the language, whereas if the model learns bet-
ter from the bigram frames this indicates that broad cover-
age is better for learning. However, if, as hypothesised, the
flexible frame (aX + Xb) model shows the best learning
then this indicates that decomposing the trigram informa-
tion is best for learning categories of words.

4. Experiment 2: computational modelling of trigrams
and bigrams

In order to test how effective learning could be based on
the aXb fixed frames compared to the aX, Xb, and aX + Xb
flexible frame information, we trained a feedforward con-
nectionist model to learn to map between the distribu-
tional information of the frame and the grammatical
category of the word within the frame (whether that was
the fixed frame, or the flexible frame). Feedforward con-
nectionist models are computationally similar to multiple
regression techniques, and the model is intended to reflect
general purpose learning mechanism responding only to

the statistics of the distributional information in the
child-directed speech. The model we employ had a hidden
layer between the input distributional information and the
output grammatical category, meaning that potential
interactions between different sources of input informa-
tion could occur, and so is equivalent to a multiple regres-
sion model where all terms can interact. However, we used
a connectionist model instead of a statistical model as the
connectionist model enables learning over time to be ob-
served and not only a snapshot of the final result of the
ideal learner. In this respect the connectionist model pro-
vides insight into the plausibility of learning grammatical
categories from the language environment from the vari-
ous types of distributional information.

4.1. Method

4.1.1. Architecture
The model comprised an input layer, which was con-

nected to a hidden layer of 200 units, which was connected
in turn to an output layer. We trained four different ver-
sions of the model corresponding to each of the four types
of distributional information. In the aXb model, each unit
in the input layer represented one of the aXb frames in
the corpus. So, one particular unit in the input was acti-
vated when a particular frame was inputted from the lan-
guage. For the aX + Xb model, there was a set of units for
the word preceding the target word and another set for
the word following the target word. So, when a frame
was inputted from the language, one unit was active to
represent the preceding word and another was active to
represent the following word. The aXb and aX + Xb models
are shown in Fig. 1 when inputting the sequence ‘‘you go
to”. ‘‘go” specifies that the verb unit in the output should
be active in both models. For the aXb model, the unit in
the input representing ‘‘you_to” is active, and for the
aX + Xb model, one unit representing the preceding word
‘‘you” and another unit representing the succeeding word
‘‘to” are active. In the aX model (not illustrated), only the
preceding word unit was active, and in the Xb model, only
the following word unit was active.

The output units represented each of the grammatical
categories in either the standard or expanded labelling,
as described in the corpus analyses. The results section re-
ports only the standard labelling models, as the expanded
labelling resulted in similar performance and distinctions
between the different distributional information types.
All frames, and not only the 45 most frequent, were in-
cluded in the model’s input to determine whether addi-
tional information about category would be available
from all frames with the particular distributional
characteristics.

4.1.2. Training and testing
The model was trained to produce an activity of 1 on

the output unit corresponding to the grammatical category
of the word within the frame. So, when the sequence ‘‘you
go to” was selected the input units corresponding to
‘‘you_to” were activated, and the model had to learn to
activate the verb unit at the output. Units in the hidden
and output layers of the model were activated in the range
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[0, 1] and activation was a sigmoid function of the sum of
the units connecting to the unit multiplied by the weights
on the connections. The model learned to solve the task by
adjusting the weights on the connections between units to
get closer to the target activation at the output, using the
backpropagation learning algorithm with learning rate 0.1.

Input–output patterns were selected randomly accord-
ing to the frequency with which they occurred in each
child’s corpus. We tested the model’s performance at two
stages of training, first after 10,000 words had been pre-
sented to the model, to test whether categorisation was
effective after limited input to the model, and we also
tested the model’s performance after more extensive train-
ing up to 100,000 patterns presented. These two stages of
performance will indicate whether aXb frames provide
more accurate information initially, or whether bigrams
appear to be the best early foundation of learning, and also
provide data on whether, after greater exposure to the lan-
guage, one type of distributional information is more effec-
tive as a basis for grammatical categorisation. At each
stage, the model’s performance was tested by presenting
the whole of the child’s corpus and determining whether
the model produced an output activation closer to the tar-
get grammatical category than to any other unit in the set
of output units. In these analyses separate computation of
accuracy and completeness is not appropriate as the mod-
el’s ability to classify the entire corpus is calculated, and
therefore the results are analysed in terms of the model’s
ability to correctly predict the category of each word in
the whole corpus.

4.2. Results

Table 7 shows the number of distinct aXb, aX, and Xb
frames in each child corpus. These values indicate that
each preceding bigram word occurs with an average of be-
tween five and nine succeeding bigram words to produce

the trigram frequent frames. We analysed the output of
the computational model to determine whether the pre-
cise pairing of particular preceding and succeeding words
as in the aXb frames is beneficial for learning, or whether
the independent contribution of these words better bene-
fits learning grammatical categories within the language.

4.2.1. Early training stage
We tested the model’s performance early in training,

after 10,000 word tokens had been presented. Fig. 2 shows
the results of the model’s classification accuracy for each
grammatical category in the standard labelling, for each
type of distributional information. For each child, we
determined the accuracy of the overall classification of
the model by determining how many words of each cate-
gory were classified into each of the 10 categories in the
standard labelling. We then calculated the asymmetric
lambda value (Goodman & Kruskal, 1954) on the ability
of the model to predict the categories of the words. Lamb-
da is a measure of association between two classifications,
and is particularly appropriate when one classification pre-
cedes the other temporally or causally, as then the extent
to which the second classification system predicts variance
in the first can be determined, and thus applies in the case
where we measure the extent to which the distributional

Fig. 1. The aXb (left) and aX + Xb (right) models processing the input ‘‘you go to”. Solid line arrows indicate fully connected layers of units in the model,
dashed line arrows indicate how the input translated into units activity in the model.

Table 7
Number of distinct aXb, aX and Xb frames in each child’s corpus.

Corpus Distinct aXb
frames

Distinct aX
frames

Distinct Xb
frames

Anne 15,984 1874 2132
Aran 23,499 2710 3100
Eve 9224 1310 1496
Naomi 5293 980 1202
Nina 11,555 1494 1714
Peter 10,939 1318 1617
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information classifications can reflect the given grammati-
cal categories. Lambda provides a parametric measure of
the predictive accuracy of the model from a set of non-
parametric categorisations (the lambda value indicates
the reduction in prediction error of each word’s category
given the model’s classifications), and provides a value in
the range [0, 1], where 0 indicates zero predictability and
therefore no association between predicted and actual
categories, and 1 indicates a perfect association. Conse-
quently, and unlike other non-parametric tests of associa-
tion such as v2 or Cramer’s V, the lambda values for each
classification can be compared to each other by converting
the difference between the values into a z-score. The lamb-
da value is also advantageous over other measures of asso-
ciation as it is asymmetric, and so determines the extent to
which the model’s judgments approximate the actual
categories, so the lambda value is thus unaffected by the
ability of the actual categories to predict the model’s
judgments. The formula for the asymmetric lambda value
of association is:

kb ¼
Pk

j¼1nMj "maxðRiÞ
N "maxðRiÞ

where the table of cross-classifications has r rows and k
columns, nMj is the highest frequency in the jth column
of the table, max(Ri) is the largest row total, and N is the
total number of observations (Goodman & Kruskal, 1954).
The formula for variance of lambda is:

varðkbÞ ¼
N "

Pk
j¼1nMj

! " Pk
j¼1nMj þmaxðRiÞ " 2

P0nMj

! "

½N "maxðRiÞ'3

where
P0nMj is the sum of all the maximum frequencies for

each column that are in the row i (Siegel & Castellan,
1988).

In the following analyses, we used a conservative test of
the difference in lambda values by taking the higher of the
two standard deviation values for each of the two lambdas
in calculating the z-score of the difference. Table 8 reports
the mean accuracy across all the words in each child cor-
pus in the standard labelling, as well as the lambda values,
and the z-score for the differences between each of the
classifications.

Though the corpus sizes are very different, and the
number of distinct fixed frames and bigrams are highly
variable, there is remarkable consistency in the classifica-
tion accuracy of each model for each child’s language envi-
ronment, both in terms of overall accuracy as well as the
lambda values of the association between predicted and
actual grammatical categories. Over all corpora and all
grammatical categories, the aX + Xb flexible frame model
resulted in the highest accuracy, with the aXb frames clas-
sifying words more poorly even than the aX and Xb frame
models. The aXb model resulted in accuracy of 37–41% cor-
rect classification for each of the corpora, yet this was due
to the model classifying nearly all words as verbs or all
words as nouns (see Fig. 2A), and so the overall accuracy
of the classification is better reflected in the lambda values,

Fig. 2. Proportion correctly classified for each grammatical category in each child-directed speech corpus after 10,000 word presentations, for (A) aXb fixed
frames, (B) aX + Xb flexible frames, (C) aX frames, and (D) Xb frames. Categories are for standard labelling.
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which for the aXb model were small, and not significantly
different from zero for two of the six corpora.

In contrast, the aX + Xb model achieved a high degree of
accuracy, even after this small quantity of training, result-
ing in more than half of the words correctly classified in
each corpus, and lambda values were highly significantly
different from a zero association. aX + Xb frames were
effective at classifying a substantial proportion of nouns,
the verbs, and conjunctions (see Fig. 2B). The comparison
between lambda values for the aXb model and the aX + Xb
model indicated a huge difference in classification accu-
racy, with z-scores of the difference ranging from 31.45
to 69.98 across the corpora.

The Xb model was less accurate than the aX model,
indicating that the word preceding each target word re-
sulted in greater accuracy of classification than the suc-
ceeding word. The aX model was effective in classifying
either the nouns or the verbs as well as some of the con-
junctions, the Xb model effectively classified a generally
high proportion of both the nouns and the verbs. However,
both the single bigrammodels attained a level of classifica-
tion accuracy higher than that of the fixed frame model,
and both were less accurate than the flexible frame model,
indicating that the greater frequency of occurrence of bi-
grams in the corpus resulted in better categorisation per-
formance, but that combining two bigrams resulted in

Table 8
Classification accuracy and lambda values for the standard labelling after 10,000 words of training.

Corpus aXb aX + Xb aX Xb Difference in k values as z-scores

Acc k Acc k Acc k Acc k aX + Xb " aXb aX " aXb Xb " aXb aX + Xb " aX aX + Xb " Xb aX " Xb

Anne .33 .00 .52 .26*** .47 .17*** .40 .06*** 78.76*** 67.03*** 25.58*** 26.69 60.87*** 43.99***

Aran .36 .05*** .56 .33*** .53 .29*** .45 .17*** 92.10*** 76.50*** 44.10*** 12.85*** 52.00*** 37.60***

Eve .39 .01*** .53 .22*** .46 .11*** .41 .03*** 49.86*** 33.27*** 6.13*** 26.75*** 45.72*** 27.31***

Naomi .41 .05*** .59 .33*** .54 .26*** .48 .15*** 32.78*** 24.33*** 11.92*** 8.92*** 20.76*** 12.33***

Nina .38 .00 .63 .41*** .57 .30*** .48 .15*** 93.92*** 70.12*** 31.63*** 24.12*** 53.60*** 31.71***

Peter .42 .06*** .58 .31*** .54 .25*** .46 .13*** 46.74*** 33.36*** 12.09*** 11.47*** 33.98*** 21.59***

All .37 .02*** .56 .32*** .52 .24*** .44 .13*** 119.57*** 89.84*** 42.22*** 41.60*** 101.57*** 62.53***

Note. Tests for lambda values are against zero association.
*** p < .001.

Fig. 3. Proportion correctly classified for each grammatical category in each child-directed speech corpus after 100,000 word presentations for (A) aXb fixed
frames, (B) aX + Xb flexible frames, (C) aX frames, and (D) Xb frames. Categories are for standard labelling.
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better performance than using single bigrams. The z-scores
of the differences were highly significant in each case.

After a small amount of exposure to each corpus, the bi-
gram models were able to categorise accurately several of
the grammatical categories in each corpus, whereas the
aXb model was poorer at learning the objective categories
of the words.

4.2.2. Later training stage
Though we were interested in determining whether

each type of distributional information is an effective con-
tributor to grammatical categorisation early in language
development, therefore after a small quantity of exposure
to the language, it may be that the aXb fixed frame model,
due to the rarity of occurrences of each input frame, would
demonstrate a learning advantage after more extensive
training. Fig. 3 shows the results of the model’s classifica-
tion accuracy for each type of distributional information
in the standard labelling after the model had been exposed
to 100,000 words from each corpus. Table 9 shows the cat-
egorisation accuracy and predictive strength (lambda) of
each model for the standard labelling. The results are qual-
itatively similar to those for the earlier training stage, with
the flexible aX + Xb frames resulting in the most accurate
classification, followed by the aX frame, then by the Xb
frame, and least accurately by the fixed aXb frames. This
was the case for each of the corpora, which showed a
remarkable consistency in terms of how accurately words
could be classified into their respective grammatical
categories.

The principal effect of additional training was to in-
crease the accuracy of classification for all the models.
Fig. 3 shows that the aXb model classifies nouns and verbs
with a degree of accuracy, and shows some correct classi-
fication of conjunctions. However, the improvement in
classification of words in the aX + Xb model is more rapid
than that of the aXb model, with the difference in z-scores
between the aXb and the aX + Xb models’ classifications
increasing compared to the early training stage. Fig. 3
shows that, for the aX + Xb model, performance is accurate
for nouns, verbs, determiners, and conjunctions, and that
some occurrences of wh-words, adjectives and ‘‘not” were
also correctly classified.

It is possible that the aXb fixed frame model may have
performed more poorly than the other models because this

model has an order of magnitude more input units, mean-
ing that each hidden unit in this model has to integrate
information over more input units. Indeed, the computa-
tional power of connectionist models is a function of the
number of units in the model (including hidden units),
and the number of connections. Keeping the number of
hidden units stable for all the simulations has the advan-
tage of equating the ratio of input to hidden layer connec-
tions relative to the number of input units (or number of
distinct frames) for each model. However, this had the con-
sequence that the hidden layer in the aXb model was per-
forming a greater compression of the inputs than the aX,
the Xb or the aX + Xb models, due to the large difference
in the ratio of connections to each hidden unit between
these models. The next experiment tests the possibility
that differences in the required compression may have
influenced the degree of categorisation possible.

5. Experiment 3: computational model of fixed frames
with increased resources

In order to test whether greater compression for the
aXb fixed frame model resulted in reduced accuracy, we
repeated the aXb fixed frame simulations but increased
the numbers of hidden units to be the same ratio to input
units as for the aX + Xb flexible frame model, thereby
equalising the amount of compression required.2

5.1. Method

5.1.1. Architecture, training and testing
The simulations were identical to those reported for the

aXb fixed frame model, except for the increase in hidden
units. The model was assessed as before by determining
the asymmetric lambda values, and these new classifica-
tion results were compared to the other simulations of
Experiment 2.

5.2. Results and discussion

Table 10 shows the results for the aXb model with in-
creased hidden units, with the number of hidden units

Table 9
Classification accuracy and lambda values for the standard labelling after 100,000 words of training.

Corpus aXb aX + Xb aX Xb Difference in k values as z-scores

Acc k Acc k Acc k Acc k aX + Xb " aXb aX " aXb Xb " aXb aX + Xb " aX aX + Xb " Xb aX " Xb

Anne .51 .23*** .71 .55*** .62 .41*** .55 .30*** 86.68*** 45.26*** 14.42*** 34.72*** 50.77*** 22.47***

Aran .47 .20*** .68 .52*** .59 .39*** .51 .26*** 99.43*** 53.87*** 15.11*** 37.70*** 62.05*** 30.28***

Eve .56 .28*** .75 .60*** .66 .44*** .54 .24*** 61.02*** 29.60*** "5.56*** 27.77*** 47.48*** 27.19***

Naomi .61 .36*** .78 .64*** .67 .47*** .59 .34*** 37.07*** 14.10*** "2.53** 22.42*** 30.73*** 13.42***

Nina .59 .33*** .79 .67*** .68 .49*** .60 .35*** 71.27*** 33.59*** 3.70*** 44.25*** 65.30*** 28.82***

Peter .57 .30*** .75 .60*** .66 .45*** .58 .32*** 67.32*** 29.75*** 2.72** 31.25*** 48.43*** 22.23***

All .53 .26*** .73 .58*** .64 .43*** .55 .43*** 165.72*** 88.06*** 16.38*** 84.42*** 136.45*** 64.83***

Note. Tests for lambda values are against zero association.
** p < .01.
*** p < .001.

2 We are grateful to two anonymous reviewers for prompting the design
and inclusion of Experiments 3–6.
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used for modelling each child’s corpus. The effect of
increasing the number of hidden units resulted in a slight
increase in classification accuracy and lambda values, how-
ever, the aXb model continued to be significantly worse at
classifying the category of intervening words than the
aX + Xb and the aX models. Overall, the aXb model with
more hidden units did improve classification to be signifi-
cantly better than the Xb model for most of the corpora
(marked with > in the table).

Although the size of the hidden unit layer relative to the
number of input units does not seem to explain the poor
performance of the aXb fixed frame model, the large num-
ber of input units may nonetheless affect learning nega-
tively as each unit is only activated a few times. Our next
experiment therefore addressed this issue by reducing
the number of input units, and thus the number of fixed
frames to consider.

6. Experiment 4: computational modelling of the most
frequent frames

For each of the computational modelling experiments,
the aXb fixed frame resulted in the lowest categorisation
accuracy, principally due to the poor coverage of the entire
corpus from such specific information. However, it remains
a possibility that this may be an artefact of using the entire
set of frames from each corpus for determining the gram-
matical categorisation. For the aXb fixed frames, this re-

sults in a large number of fixed frames, and the sheer
size of this set may have led to poorer performance com-
pared to the other models which had a smaller set of
frames and consequent smaller set of input units. To test
whether performance was due to this artefact, we repeated
each of the simulations of Experiment 2 but used only the
most frequent 45 frames in each case, to make the compu-
tational results comparable to the corpus analyses in
Experiment 1 and to Mintz’ (2003) study.

6.1. Method

6.1.1. Architecture, training, and testing
The models were identical to those used in Experiment

2 except that the input layers contained 45 units – one for
each of the most frequent 45 frames – plus one additional
dummy unit that was active for all other frames. Therefore,
there were 45 frequent units and one dummy unit, which
was activated for the less frequent frames. For training
and testing, if the frame was one of the most frequent 45
frames then the corresponding unit in the input was acti-
vated, and for all other frames the dummy unit was acti-
vated. For the aX + Xb model, the same principle applied
– if the aX bigram was one of the most frequent 45 preced-
ing bigrams then the corresponding unit was active, and
the dummy unit otherwise, and if the Xb bigram was one
of the most frequent 45 succeeding bigrams then one of
the frame units was active, and the dummy unit otherwise.
The model was tested in the same way as for Experiment 2
except that only the 45 most frequent frames activated the
frame input units, and categorisation accuracy was as-
sessed using the asymmetric lambda value.

6.2. Results and discussion

Table 11 shows the results after 100,000 words of train-
ing. Performance after 10,000 words of training showed a
similar pattern of accuracy. Compared to the models
trained on all frames in Experiment 2, the models with
the top 45 frames were worse at classifying the corpus,
but, critically, the lower classification accuracy of the aXb
fixed frames was also observed in the current results. Con-
sistent with the other computational models, the aXb fixed
frames were significantly worse at classifying words from
the corpus than the preceding and succeeding bigram
models, which in turn were significantly worse than the

Table 10
Classification accuracy and lambda values for the standard labelling after
10,000 and 100,000 words of training for the aXb model with increased
hidden units.

Corpus # hidden
units

aXb + hiddens
10,000

aXb + hiddens
100,000

Acc k Acc k

Anne 334 .37 .02*** .54 .28***

Aran 351 .38 .07*** .48 .22***

Eve 271 .43> .06*** .60> .34***

Naomi 168 .40 .03*** .62> .38***

Nina 304 .41 .05*** .62> .39***

Peter 304 .42 .06*** .61> .36***

All .40 .05*** .56> .31***

Note. Tests for lambda values are against zero association.
*** p < .001, > indicates lambda value is greater than that for the Xb
model.

Table 11
Classification accuracy and lambda values for the 45 most frequent frame computational models for standard labelling after 100,000 words of training.

Corpus aXb aX + Xb aX Xb Difference in k values as z-scores

Acc k Acc k Acc k Acc k aX + Xb " aXb aX " aXb Xb " aXb aX + Xb " aX aX + Xb " Xb aX " Xb

Anne .40 .06*** .63 .42*** .53 .26*** .58 .34*** 84.04*** 61.76*** 59.34*** 36.40*** 17.94*** "15.53***

Aran .38 .08*** .59 .39*** .52 .28*** .53 .29*** 104.34*** 73.94*** 64.87*** 37.32*** 29.23*** "4.43***

Eve .40 .02 .65 .42*** .53 .23*** .54 .24*** 44.51*** 24.09*** 25.22*** 31.23*** 29.50*** "2.11*

Naomi .43 .08*** .64 .41*** .55 .27*** .60 .35*** 38.02*** 28.96*** 28.01*** 16.24*** 6.61*** "8.18***

Nina .45 .10*** .67 .46*** .56 .28*** .61 .36*** 76.34*** 33.14*** 50.92*** 34.27*** 19.92*** "15.31***

Peter .42 .05*** .64 .42*** .55 .27*** .57 .30*** 49.81*** 29.81*** 34.12*** 25.58*** 20.12*** "5.51***

All .41 .07*** .63 .42*** .54 .27*** .56 .31*** 159.16*** 91.89*** 111.63*** 75.10*** 49.64*** "20.62***

Note. Tests for lambda values are against zero association.
* p < .05.
*** p < .001.
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aX + Xb flexible frames. The benefit of flexible frames over
fixed frames, then, is thus not an artefact of the large num-
ber of units in the input layer for the aXb fixed frame
model.

The computational studies thus far have shown that
decomposing the fixed frame into two bigrams results in
the best classification of the child-directed corpora. How-
ever, the flexible frames also contain fixed-frame informa-
tion, and it may be that the advantage of the flexible
frames over the bigram information is due to the fixed
frames that they contain. The next Experiment tests the
role of fixed frames in the flexible frame model.

7. Experiment 5: separating fixed frame from flexible
frame information

The aX + Xb flexible frame model showed an advantage
over the aX and Xb bigram models (as well as a large
advantage over the aXb fixed frame model). However, it
could be that this advantage over the bigram models was
due to the aX + Xb model using fixed-frame information
in addition to bigram information to assist in classification.
As both the preceding and succeeding word were pre-
sented simultaneously, the model may have picked up on
the co-occurrence of particular preceding and succeeding
words to boost categorisation performance. To test this
hypothesis, we compared the aX + Xb model’s performance
to a model where during training only the preceding or the
succeeding bigram was presented, but at test the patterns
were identical to the aX + Xb model. We call this the
aX + Xb-separated model. For this model, the co-occurring
fixed frame is not available, though the preceding and suc-
ceeding bigram are both available, and combine in their
classification during the testing stage. If the aX + Xb-sepa-
rated model performs at a level similar to the aX + Xb mod-
el then this suggests that fixed frames do not contribute to
the aX + Xb model’s performance advantage over the bi-
gram models. However, if the aX + Xb-separated model is
close in performance to the aX or the Xb model then this
suggests that the aX + Xb model’s improved performance
was due in part to the aXb fixed-frame information.

7.1. Method

7.1.1. Architecture, training and testing
The aX + Xb-separated model was identical in architec-

ture to the aX + Xb model of Experiment 2. For each train-

ing trial, an aX + Xb flexible frame was selected randomly
from the same training set as used for the aX + Xb model.
However, the aX + Xb-separated model was first presented
only with the preceding bigram information (aX), the
weights were then adjusted according to the backpropaga-
tion of error, and then the Xb bigram information from the
frame was presented to the model, with weights again ad-
justed. After training, the aX + Xb-separated model was
tested in exactly the same way as the aX + Xb model: both
aX and Xb information was simultaneously available to the
model. Note that this enables the overlap between the pre-
ceding and succeeding bigram information to influence
categorisation, but it does not permit the model to extract
the fixed-frame information as this was never simulta-
neously presented during training. The aX + Xb-separated
model was assessed for classification accuracy using asym-
metric lambda and compared to the other models’ classifi-
cations in Experiment 2.

7.2. Results and discussion

Tables 12 and 13 show the aX + Xb-separated model’s
performance, for 10,000 words and 100,000 words, respec-
tively. At both early and later training stages, the aX + Xb-
separated model performed significantly better than the
aX, the Xb and the aXb models, as with the aX + Xb-simul-
taneous model. However, for most of the corpora there was
a slight advantage for the aX + Xb-simultaneous model
over the aX + Xb-separated model. This shows that there
is a small amount of variance accounted for by the model’s
use of the fixed-frame information in the aX + Xb-simulta-
neous model. This is, however, an extremely small amount
of information when compared to the disadvantage of
learning only from fixed frames, as in the aXb model.

The advantage of the aX + Xb model over the other
sources of distributional information arises from several
sources. First, the combination of aX and Xb bigrams en-
ables two distributional cues to be simultaneously applied
to the classification of words. The corpus analysis of the aX
and Xb bigrams in Experiment 1 revealed that categories
based just on a bigramwere too broad and contained many
false positive classifications. However, a false positive due
to the aX bigram can be corrected by the information from
the Xb bigram.

Take as an example the aXb frame ‘‘you___to”. In the
aXb frame analysis of the Naomi corpus, 119 verb tokens
are classified, 1 adjective, 2 adverbs, and 1 preposition.

Table 12
Classification accuracy and lambda values for the aX + Xb-separated model for standard labelling after 10,000 words of training.

Corpus aX + Xb-sep Difference in k values as z-scores

Acc k aX + Xb " aX + Xb-sep aX + Xb-sep " aXb aX + Xb-sep " aX aX + Xb-sep " Xb

Anne .49 .20*** 22.17*** 61.54*** 9.46*** 43.64***

Aran .55 .33*** 3.81*** 88.17*** 9.04*** 48.07***

Eve .46 .22*** 38.58*** 23.06*** ".06 18.91***

Naomi .58 .32*** .82 31.95*** 8.05*** 19.93***

Nina .60 .41*** 10.10*** 82.79*** 12.99*** 43.50***

Peter .56 .31*** 4.84*** 41.69*** 6.63*** 29.01***

All .54 .27*** 21.19*** 103.44*** 19.03*** 80.38***

Note. Tests for lambda values are against zero association.
*** p < .001.
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For the preceding bigram analysis on the same corpus, the
word ‘‘you___” precedes 883 verbs, 20 adverbs, 1 adjective,
7 conjunctions, 12 nouns, 20 prepositions, 1 negative par-
ticle, and 3 pronouns. For the succeeding bigram analysis,
the word ‘‘___to” succeeds 325 verbs, 13 adverbs, 26 adjec-
tives, 12 prepositions, 38 nouns, 73 pronouns, 9 negative
particles, and 6 determiners. Note that in each of these
cases the bigrams have occurred in the corpus much more
frequently than the aXb fixed frame. The combination of
information in the flexible frame, then, contributes to dis-
covering that the overlap in the most frequent category for
the aX and the Xb frame is the verb token. For each corpus,
the aX bigrams misclassified a mean of 44.3% of words. Of
these, 31.5% were reclassified correctly by the aX + Xb
frame, with just 4.2% of the words correctly classified by
the aX model reclassified incorrectly by the aX + Xb frame.
Of the 31.5% correctly reclassified by the aX + Xb model,
the Xb model also classified them correctly in 79.7% of
the cases.

Fig. 4 shows that this combined advantage is general
across the different grammatical categories. The figure

shows the mean percentage of each corpus classified cor-
rectly by each of the aX, Xb, and aX + Xb models, and their
overlap. The relevant portions of each bar indicates the cor-
rect classifications for the aX + Xb model, with the relative
proportions that are also correctly classified by the aXmod-
el, the xB model, or both. In very few instances does one of
the bigrammodels correctly classify a word and the aX + Xb
flexible frame misclassify. For the noun category, for in-
stance, almost 70% of each corpus was correctly classified
by the aX, the Xb and the aX + Xb model, as indicated by
the black portion of the bar. The aX + Xb and aX model cor-
rectly classified approximately 12% of the nouns that the Xb
model misclassified. The aX + Xb and the Xb model cor-
rectly classified 8% that the aX model misclassified, and
the aX + Xbmodel correctly classified a further 2% that both
the aX and the Xb models misclassified. There was just a
small proportion of nouns that the aX or Xbmodel correctly
classified but the aX + Xb model misclassified, reinforcing a
viewof the aX + Xbmodel as a committee of bigramexperts.

A second advantage of the aX + Xb flexible frame distri-
butional information is that rarer fixed frames may still

Table 13
Classification accuracy and lambda values for the aX + Xb-separated model for standard labelling after 100,000 words of training.

Corpus aX + Xb-sep Difference in k values as z-scores

Acc k aX + Xb " aX + Xb-sep aX + Xb-sep " aXb aX + Xb-sep " aX aX + Xb-sep " Xb

Anne .70 .53*** 4.00*** 81.37*** 29.81*** 46.77***

Aran .64 .47*** 12.37*** 83.49*** 23.02*** 49.68***

Eve .74 .57*** 3.10*** 56.51*** 23.53*** 44.39***

Naomi .76 .62*** 2.16 34.22*** 19.61*** 28.57***

Nina .78 .64*** 6.13*** 64.94*** 36.82*** 59.17***

Peter .74 .58*** 3.85*** 62.25*** 26.66*** 44.58***

All .71 .55*** 15.53*** 148.88*** 66.12*** 120.92***

Note. Tests for lambda values are against zero association.
*** p < .001.

Fig. 4. Classifications for each grammatical category across the six corpora indicating proportions of each category where the aX, Xb, and aX + XB models
make same and different categorisations.
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contain at least one frequent bigram, thus the frequent bi-
gram can be used to guide categorisation, based on previ-
ous learning situations. Take the example ‘‘you___with”,
which occurs 27 times in the Naomi corpus, and is not
one of the 45 most frequent frames in the corpus. All 27 to-
kens that occur in the fixed frame are verbs. The majority
of words that occur after ‘‘you___” are verbs (431 from
495 tokens), and the words that occur before ‘‘___with”
are also a majority of verbs, with double the occurrence
of the fixed frame: 59 verbs, 40 nouns, 7 pronouns, 1 adjec-
tive, 4 adverbs, and 6 prepositions. The overlap of frequent
information can focus the learner on the verb, but can
simultaneously mean that the 40 occurrences of nouns
preceding ‘‘with” do not influence categorisation of the
word in the ‘‘you___with” frame.

In all the models we have presented thus far, the mod-
els have been provided with the target grammatical
category for the word in each distributional context. How-
ever, this information is not available to the child learning
her language from the outset, and this assumption that the
categories are provided to the learner and the only task is
then to match lexical items to these categories is a far less
difficult problem than having to discover the categories in
the first place. In the next Experiment, we test the extent to
which an unsupervised analysis can reflect the grammati-
cal categories of all the words in the child’s exposure,
based on the learning of just a very few, high frequent con-
tent words from the language. Though this model still re-
quires the categories to be specified on the basis of the
first few words, it does indicate the extent to which gener-
alisations based on the different types of distributional
information we have considered provide potential for
reflecting category membership and also defining the lear-
ner’s category structure itself.

8. Experiment 6: unsupervised generalisation from a
subset of early-acquired words

In this final model, we test the extent to which unsuper-
vised learning based on a small set of early-acquired words
can successfully generalise to the whole corpus. In these
analyses we restricted the comparison of different sources
of distributional information to generalisations based on
either flexible or fixed frames. For each child’s corpus, we
have assumed that the category of a small set of high fre-
quency words can be ascertained on the basis of informa-
tion external to the distributional contexts in which
words occur (e.g., semantic, distributional, phonological,
etc.). We next determine the extent to which the distribu-
tional contexts in which these high frequency (hence
early-acquired, Kauschke & Hofmeister, 2002) words occur
reflect the grammatical categories of the whole corpus.
Thus, we tested whether the contexts in which a few
learned words occur can lead to accurate reflection of the
grammatical categories found in the whole corpus. We re-
stricted our analyses to the noun/verb distinction, which
categories represent the largest proportion of word types
in the language (Monaghan et al., 2005), and a distinction
that is critical for early comprehension and production
ability. We predicted that the contexts of a few early-ac-

quired words would be able to accurately reflect the gram-
matical categories of a large sample of the language.
Furthermore, we predicted that the flexible frames con-
texts would provide a better generalisation than fixed
frames because the co-occurrence of bigrams with a small
set of high frequency words would provide better cover-
age, and sufficient accuracy, for the whole corpus than
the fixed frames in which these words occurred.

8.1. Method

8.1.1. Corpus preparation
We used the same child-directed speech corpora as in

the previous Experiments. For each child’s corpus, we se-
lected the nouns and verbs from a set of the most frequent
words. For each word in this set, we then determined the
distributional contexts in which the frequent word oc-
curred, either in terms of the bigram information in the
flexible frames, or the trigrams in the fixed frames. These
frames were then labelled as predicting the grammatical
category of the high frequency word that occurred within
this context. So, for the high frequency word ‘‘think”, in
the Peter corpus it occurred in the context ‘‘I think it’s” 53
times. So, in the aX + Xb flexible frames model, each time
the frame ‘‘I ___” occurred in the corpus, the model gener-
alised the context of the following word to predict a verb
category. Similarly, each time the frame ‘‘____ it’s” oc-
curred, again the model generalised the context of the pre-
ceding word to a verb category. For the aXb fixed frames
model, each time the ‘‘I ___ it’s” trigram context occurred
in the corpus the intervening word was classified as a verb.
If more than one word occurred in the same distributional
context, then the grammatical category label for that con-
text was assigned as the most frequent occurrence of the
category. As an example from the Peter corpus, the frame
‘‘can think of” occurred once, but because the flexible frame
preceding context ‘‘can ____” co-occurred more frequently
with nouns and pronouns than with verbs (245 times pre-
ceding nouns and pronouns, 220 times preceding a verb),
this preceding context was labelled as predicting a noun.

We selected the 10 most frequent nouns and verbs from
the corpus, and assigned the target grammatical category
for contexts in which these words occurred according to
the category of the frequent word (noun or verb). For each
context in the corpus in which a high frequent word did
not occur, the model was not provided with a target gram-
matical category, and so no learning took place for these
contexts. Pilot testing with a greater number of nouns
and verbs did not show improved generalisation over the
smaller word set.

8.1.2. Architecture, training and testing
The architecture, training and testing was the same as

in the previous Experiments, and as with the previous sim-
ulations we compared the model trained on fixed frames to
a model trained on flexible frames. We stopped training
after 100,000 words from the corpus had been presented
to the model (including words with no target grammatical
category provided from the high frequent words). The
models were then tested on their ability to predict the
grammatical category of the word occurring in each frame
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with the grammatical category taken from the full corpus.
The training and testing target grammatical categories
were therefore distinct – during training they were gener-
alisations from the high frequency words, during testing
they were the actual grammatical category for each word
as indicated by the MOR line in CHILDES, similar to the pre-
vious experiments.

8.2. Results and discussion

The categorisation results based on learning just the
most frequent 10 nouns and verbs from each corpus
are shown in Table 14. The values indicate the classifica-
tions based on the whole corpus excepting the items
used to form the categories (so omitting the 10 most fre-
quent nouns and verbs from the final analysis). As in pre-
vious simulations, we report lambda values as well as
overall accuracy of classifications, though in the current
Experiment these values are computed just for nouns
and verbs.

For the aX + Xb analyses, the categorisation of the
remaining corpus based on the distributional information
generated from just a small set of frequent words was sig-
nificantly better than chance for all corpora except the Pe-
ter corpus. For the remaining five corpora, and for the
combined analysis of all six corpora, lambda values were
significantly above chance, all p < .001. This suggests that,
if the child has learned the grammatical category of a small
set of high frequency words then, based on the flexible
frame distributional contexts in which these words occur,
generalisation to discovering the grammatical category of
a large proportion of the other nouns and verbs in the cor-
pus can generally be achieved. So, if the child can learn the
grammatical category of these words from sources other
than distributional information then bootstrapping from
this set can provide accurate categorisation. The failure of
the classification based on the Peter corpus was due to
most words being classified as verbs, and so the prediction
of the categories based on the distributional information
was at chance level. In order for the lambda statistic to
be significant for a two-category analysis, accuracy of clas-
sification of both categories has to be greater than 50%, as
otherwise it is not possible to determine from the distribu-

tional information alone whether a word is classified as a
noun or a verb. It is thus important to consider both the
accuracy level and the lambda statistic when interpreting
the results.

A striking feature of the results is that accurate gener-
alisation can occur even when the learner knows less than
a dozen words. For the aX + Xb flexible frames model,
based on just the 10 most frequent words, the child had
access to distributional information that could correctly
categorise a further 70% of the nouns and verbs in the
child’s language environment. For the Aran corpus, for in-
stance, this meant that from the contexts of just 10 nouns
and verbs, 69% of the remaining 2528 nouns and verbs
could be correctly classified. The potential of this informa-
tion for generalisation from the aX + Xb flexible frames
analysis emerges early in the child’s language acquisition,
and indeed, generalising from 25 or 50 words did not sub-
stantially improve categorisation accuracy for the flexible
frames.

For the aXb fixed frames analyses, the model was not
able to generalise from the contexts in which a small sub-
set of words occurred. In all cases, the model predicted that
most of the words based on their fixed frame distributional
contexts were nouns, and so the association from the dis-
tributional information was at chance. The classification
accuracy in each case was close to .5, which is the random
baseline for categorising into two groups. This qualitative
difference in the generalisation effects between the
aX + Xb and the aXB contexts was due to the greater spec-
ificity of the fixed frame context. The high frequent words
occurred in particular contexts, and these were often dis-
tinct from the contexts in which other nouns and verbs
tended to occur.

However, assuming the child can generalise from the
contexts of a few words in turn presumes that the child
has already determined the category of these words from
other, non-distributional information. Whilst there is gen-
eral agreement that children can learn a few nouns from
semantic information outside the distributional contexts
in which these words occur, there is debate over whether
any verbs can be learned without distributional informa-
tion (Gleitman, 1990; Gleitman, Cassidy, Papafragou, Nap-
pa, & Trueswell, 2005). However, assuming that children
can acquire some knowledge about only nouns before dis-
tributional information can become useful allows suffi-
cient information to promote learning of the noun
category and an ‘‘other” category. Generalisation of contex-
tual information from only the top 10 nouns in each child
corpus resulted in highly accurate categorisation of nouns
as distinct from categories in which nouns did not occur.
Across the six corpora, 48.7% of nouns could be correctly
categorised in this way. In terms of words in the ‘‘other”
or ‘‘non-noun” category, a mean of 92.7% of the words in
this category were verbs, providing the possibility that
verbs could be learned on the basis of categorisation
formed from the contexts of a few nouns. Though this
was not as accurate as the aX + Xb information based on
both nouns and verbs, it does show the potential for boot-
strapping of grammatical categories based on generalising
categories from only a few words from a single grammati-
cal category.

Table 14
Classification accuracy and lambda values for the unsupervised modelling
results, based on the contexts of the 10 most frequent nouns and verbs in
each corpus.

Corpus 10 most frequent nouns/verbs

aXb aX + Xb

Acc k Acc k

Anne .50 .00 .75 .36***

Aran .52 .00 .69 .24***

Eve .52 .00 .73 .31***

Naomi .53 .00 .69 .22***

Nina .57 .00 .64 .11***

Peter .49 .00 .68 .00
All .52 .00 .70 .22***

Note. Tests for lambda values are against zero association.
*** p < .001.
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9. General discussion

The purpose of this paper was to test a new approach to
distributional learning of grammatical categories based on
the hypothesis that children construct on-line trigram-
based flexible frames (aX + Xb) from coarser bigram-based
information (aX and Xb). We therefore first quantified the
relative usefulness of different sources of distributional
information as cues to grammatical categories in language.
Our corpus analyses replicated the original results from
Mintz (2003), indicating that frequently occurring aXb
fixed frames of non-adjacent words provided a highly
accurate context for the grouping together of words of
the same grammatical category. However, as in the spar-
sity problem of corpus linguistics (Manning & Schütze,
1999), there is a trade-off between accuracy and coverage
of the language. The aXb fixed frames tended to be highly
specific and so words of the same category were often not
grouped together. In contrast, the child may utilise infor-
mation about co-occurrences between words at a coarser
grain size than trigrams. We determined the extent to
which bigrams could provide information about grammat-
ical categories, and, though there was a reduction in accu-
racy compared to aXb trigrams, there was an enormous
increase in the extent to which the whole corpus could
be categorised.

The subsequent computational modelling demon-
strated that, for a general purpose learning mechanism,
bigrams resulted in more effective learning of the gram-
matical categories of words in child-directed speech than
did the trigrams. Furthermore, the computational model-
ling demonstrated that the convergence of two general bi-
grams – aX and Xb – within a flexible frame was much
more effective for learning than single bigrams (either aX
or Xb), which were in turn more effective than the fixed
frame aXb trigrams.

The effectiveness of these flexible frames was because
they harness the advantage of coverage from bigrams that
occur frequently throughout the corpus, together with the
increased accuracy that follows from greater specificity of
the context. Flexible frames inherit the strengths of both
the bigram and the fixed frame statistics, but avoid the
weaknesses of both methods. Flexible frames are also con-
sistent with the developmental trajectory of children’s sen-
sitivity to different sources of distributional information
for learning language: Adjacent, bigram information can
be used before children become sensitive to non-adjacent
dependencies (Gómez & Maye, 2005); succeeding bigram
information can be used as well as preceding information
as cues for categorisation (e.g., Frigo & McDonald, 1998;
St. Clair et al., 2009); and adjacent bigram information re-
mains easier to use for determining language structure
even after considerable language exposure (Onnis et al.,
2005).

The results of Experiment 5 also indicate that the
accuracy of classification from the flexible frames is par-
tially due to being able to harness the value of fixed
frames – when the fixed-frame information was removed
from the combination of bigrams, performance reduced
slightly. This indicates that flexible frames are able to

exploit both low-level bigram as well as higher-order
trigram information to assist in categorisation. We sug-
gest that the developmental trajectory of the use of the
trigram is likely to follow the initial use of bigrams, gi-
ven that bigram information is available to infants at
an earlier age than non-adjacent dependencies in learn-
ing (Gómez & Maye, 2005; Saffran, Newport, et al.,
1996).

Though we have focused in this paper on the distinc-
tion between bigram and trigram distributional informa-
tion as the basis of grammatical categorisation, the
point we wish to make is about discovering the cues in
the child’s language environment that provide useful
and useable information for grammatical categorisation.
We have highlighted the relative merits and disadvan-
tages of two potential sources of information: bigrams
which provide large coverage but low accuracy, and tri-
grams that are highly accurate but also highly specific.
Yet, the sources of distributional information that the
child uses are likely to transcend such distinctions be-
tween particular sources of information. We have focused
on the bigram/trigram distinction to make the more gen-
eral point about the computational usefulness of alterna-
tive sources of information. We contend that the child
will exploit any sources of information that prove useful
to categorisation, and some combination of highly fre-
quent and useful trigrams, bigrams, and even higher-or-
der co-occurrences (e.g., Bannard & Matthews, 2008),
according to their usefulness (and constrained by their
availability) is likely to constitute the child’s repertoire
of distributional cues. Cartwright and Brent’s (1997) mod-
el of categorisation, for instance, indicates that frames
with different amounts of specificity may be useful, but
that with more extensive training, categories increase in
generality, and become defined by more general distribu-
tional information. The bigram/trigram distinction pro-
vides a test case, then, to highlight the distinction
between alternate cues in terms of their usefulness for
language acquisition.

We have focused in our analyses on how distinct
grammatical categories may be distinguished based on
distributional information within child-directed speech
utterances. For the majority of the models utilising distri-
butional information, the training was ‘‘supervised”, in that
the target grammatical category for each word was pro-
vided to the learner. This is evidently not the case for the
child learning her first language, and these supervised
models ignore the question of how such categories are dis-
covered in the first place. However, our final study focused
on what category information can be bootstrapped on the
basis of learning the category of a very few, highly frequent
words. If the child can learn the category of these words
then we have shown that, using the same principles as
the supervised analyses that reveal the potential distribu-
tional information available in the child’s language envi-
ronment, the categories of the majority of words in the
language can follow based on the same distributional
information linked to these high frequency words. As in
the supervised analyses, the generalisation from a small
set of words was better accomplished based on the flexible
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frames distributional information, and in fact, the fixed
frames information resulted in classifications close to
chance level. It is a moot point about how many words,
and how many categories can be learned by the child in
this way, but even with the very conservative assumption
that only a few nouns can be learned, our Experiment 6 has
shown accurate generalisation from flexible frames to al-
most half of all nouns, distinct from almost 90% of verbs.
Throughout our analyses, we have shown that flexible
frames provide the best quality of information for gram-
matical categorisation, so if verbs are to be discovered from
distributional information alone (see, e.g., Gleitman et al.,
2005) then we contend that flexible frames are most fit
for this purpose.

Even without assuming the child can determine the
grammatical category of a small set of words to begin
the process of categorisation of the whole language, it is
possible that our measures of the statistics useful for
reflecting the grammatical categories within the child’s
language exposure may equally apply to determining
what those categories are in the first place. Mintz (2003)
indicated how clustering of words in frequent frames
may give rise to hypotheses within the learner about the
category structure of those words (see also Harris, 1954;
Maratsos & Chalkley, 1980) – words that occur in similar
categories can be clustered together (Redington et al.,
1998) – and a similar process for discovering the catego-
ries, and not only the category membership of words
can apply to the analyses we have presented here. We
have shown that combinations of preceding and succeed-
ing bigram information best reflect the objective gram-
matical category structure of child-directed speech, and
that clustering based one these flexible frames will lead
to the most accurate hypotheses about the categories that
are present in the language, as well as the membership of
those categories. We predict that a repeat of the unsuper-
vised methods of Redington et al. (1998) that enable flex-
ible combination of clusters based on preceding and
clusters based on succeeding information will enable the
generation of categories that most closely resemble those
of the objective classification of the language. For in-
stance, a category based on words succeeding the word
‘‘the” would be clustered together, but then this category
would be further subdivided in terms of whether these
words precede the word ‘‘goes”, for instance. In this
way, nouns (which can both succeed articles and precede
verbs) will be distinguished from adjectives (which can
only succeed articles), resulting in increasing accuracy of
the clustering. The benefit of flexible frames is that words
that succeed ‘‘the” and precede ‘‘goes” can be clustered to-
gether, even if they never occur in the frame ‘‘the ____
goes”, but do occur in more general frames ‘‘the ___”
and ‘‘___ goes”.

Yet, the demonstrations that distributional regularities
can provide highly accurate grammatical categorisations
of the language do not necessarily indicate that such word
co-occurrence information alone drives the child’s
knowledge and construction of the grammatical catego-
ries themselves. Our previous work has indicated the
importance of phonological and prosodic cues to gram-
matical categories, for instance (Monaghan et al., 2005;

Monaghan et al., 2007), and other language-external
information, such as gesture, attention, or social cues
(Gleitman, 1990; Monaghan & Christiansen, 2008; Siskind,
1996; Tomasello, 2003), which we envisage as also being
of critical importance for guiding the discovery of the
categories.

For accounts of language acquisition that posit innate
grammatical categories (e.g., Chomsky, 1981) or innate
semantic features to which distributional categories attach
(e.g., Pinker, 1999), the language environment also needs
to provide a structured reflection of the categories in the
language to facilitate learning to map particular words
onto the innate categories. Accounts of language acquisi-
tion that instead claim that the language environment is
sufficient alone to generate the grammatical categories
also lay claim to the same structural properties of the lan-
guage environment as the basis of learning. The studies we
have presented here do not decide between these theoret-
ical accounts of grammatical category acquisition, but they
do assist in generating hypotheses about the sources of
information that assist in creating either the mapping onto
the category or the category itself. Establishing which
sources of distributional information are used by the child
provides an important precursor to future tests of the
nativist/empiricist debate. For instance, determining which
cues are most useful to a general purpose learning system
forming categories in the language enables hypotheses
about the sorts of categories that may be formed on the ba-
sis of surface features of the language – in terms of distri-
butional and phonological cues, for instance – to be made.
Such a view would be consistent with accounts of gram-
matical processing that propose many exceptions to a
model of language with very general categories (e.g.,
Culicover, 1999; Goldberg, 2006). It would also be consis-
tent with data from child production where inconsisten-
cies with adult grammatical structure can be shown to
reflect surface features of distributional information in
child-directed speech (Freudenthal, Pine, Aguado-Orea, &
Gobet, 2007).

To conclude, this research provides support for a new
view of the distributional information that the child uses
to determine the grammatical categories within the lan-
guage. We have shown that trigram information may be
helpful for this process, as discovered by Mintz’ (2003)
seminal study. Yet, we have shown that to be effective
for classifying the language, the sparsity of fixed trigram
frames is a poor candidate for learning, and instead the tri-
gram frames used by children must be flexible, in terms of
permitting preceding and succeeding bigram information
to be combined ‘‘on the fly” for categorisation. Further-
more, learning from flexible frames is consistent with the
statistical information available to children early in the
language acquisition process. We concur with a wide-
range of studies of multiple cues in language acquisition
that suggest children are likely to employ useful informa-
tion in the environment for determining language struc-
ture (e.g., Colunga & Smith, 2005), and we have
demonstrated here that flexible frames provide a particu-
larly useful source of distributional information for the
learning of grammatical categories from child-directed
speech.
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Appendix A. 45 most frequent frames in the Aran corpus
(ordered in terms of token frequency for each
individual cue)

aXb aX Xb

you_to the You
are_going you The
what_you a It
you_it to To
to_it it A
you_the is On
there_are that That
to_the and We
a_isn’t are Going
the_one we In
it_the oh Is
to_with what Are
what_it going There
the_isn’t on isn’t
is_a come Your
i_think in He
do_want well Got
you_a isn’t One
it_you your This
put_on do And
we_to i With
you_that that’s Do
put_in have Have
you’re_to got Of
the_in put Put
to_a this don’t
a_of with Not
the_of don’t Then
is_going it’s For
here_are there What
have_got can Think
the_and of Can
the_on not They
the_to he Go
what_we all Want
do_think what’s didn’t
a_on one All
you_me for At
to_to did Up
want_to go I
you’ve_to there’s Aran
have_look think She
it_to you’ve Some
and_the didn’t Out
is_sure some Like

Appendix B. 10 highest frequency nouns and verbs for
the unsupervised models in Experiment 6. Words are
reported in order of decreasing frequency in each
corpus

Corpus Highest frequency nouns and verbs

Anne you, going, we, it, think, have do, want, got,
that

Aran you, it, going, we, that, got, put, your, have,
think

Eve you, it, have, don’t, do, your, put, I, are, want
Naomi you, it, want, are, don’t, your, put, can, have,

is
Nina you, is, want, are, put, going, we, it, did, do
Peter you, it, put, want, going, don’t, that, think,

me, I
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