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A cognitive theory of graphical and linguistic reasoning:
logic and implementation

Keith Stenning Jon Oberlander

Human Communication Research Centre
University of Edinburgh
2 Buccleuch Place
Edinburgh £H8 91w Scotland

Abstract

We discuss external and internal graphical and linguistic representational systems. We
argue that a cognitive theory of peoples’ reasoning performance must account for (a) the
logical equivalence of inferences expressed in graphical and linguistic form; and (b) the
implementational differences that affect facility of inference. Our theory proposes that
graphical representations limit abstraction and thereby aid processibility. We discuss the
ideas of specificity and abstraction, and their cognitive relevance. Empirical support comes
from tasks (i) involving and (ii) not involving the manipulation of external graphics. For
(i), we take FEuler’s Circles, provide a novel computational reconstruction, show how it
captures abstractions, and contrast it with earlier construals, and with Mental Models’
representations. We demonstrate equivalence of the graphical Euler system, and the non-
graphical Mental Models system. For (ii), we discuss text comprehension, and the mental
performance of syllogisms. By positing an internal system with the same specificity as
Euler’s Circles we cover the Mental Models data, and generate new empirical predictions.
Finally, we consider how the architecture of working memory explains why such specific
representations are relatively easy to store.
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1 Introduction

Humans can use a variety of external representational systems to perform the same task. The
same reasoning task can be performed with linguistic representations, such as logical formulae,
or with graphical representations, such as diagrams. Different representational systems can
give rise to different performance characteristics. Humans also use internal representations
which may intuitively be differentiated as linguistic or imagistic, and which exhibit different
processing characteristics. There is a long history of controversy about how these internal
representations can be distinguished (Galton 1883, Pylyshyn 1973, Kosslyn et al. 1979), or
indeed whether this is possible even in principle (see Anderson 1978).

In this paper, we argue that a cognitive theory of peoples’ reasoning performance is required
which can account for two things. First, the fundamental equivalence of inferences expressed
in graphical and linguistic form; and secondly, the differences in facility of inference in the
two modes and in heterogeneous combinations. We thus contrast the logic of a task with its
implementation.'

This general argument will be advanced with respect to a particular theory of cognitive
implementation. The kernel of the theory is that graphical representations such as diagrams
limit abstraction and thereby aid processibility. We term this property of graphical systems
of representation specificity—the demand by a system of representation that information
in some class be specified in any interpretable representation. We thus identify specificity
as the feature distinguishing graphical and linguistic representations, rather than low level
visual properties of graphics. We take specificity to be a general, logically-characterisable
property of representational systems, which has direct ramifications for processing efficiency.
Our account thus has two virtues. It allows computational specification of the processing
differences between differing systems. But also, by detaching the distinctions from low level
differences to do with media, it reveals features of natural language discourse which resemble
graphical limitations on abstraction. These features will play a similarly important part in
maintaining the processibility of natural language discourse.

The paper is structured as follows. In Section 2, we sketch our main working hypotheses. In
Section 3, we introduce some of the ideas which underpin our account. The trade-off in pro-
cessing, between between expressiveness and efficiency, applies to any computational system,
human or artificial. We therefore go on to consider two domains which provide suitable empi-
rical tests for the theory. The first is examined in Section 4, where we reconstruct a traditional
system for externally supported graphical reasoning, Euler’s Circles (Ecs), and compare it
with another notation for solving syllogisms, Johnson-Laird’s (1983) ‘Mental Models’ system
(MMs). In Section 5, we turn to the second domain, and consider the relation between exter-
nal graphical representations, and internal cognitive structures. There, we discuss how our
theory bears on text comprehension, and on the mental performance of syllogism tasks.

! This parallels Larkin and Simon (1987), who emphasise the distinction between informational equivalence
and computational equivalence. Like them, we depart somewhat from Marr’s (1982) terminology. For Marr,
the computational level characterises a process in terms of abstract mathematical functions; implementation is
a matter of the hardware level. However, relative to a logic, computing with the logic is an implementational
issue. We understand computational issues to be less, rather than more, abstract than logical issues, and
therefore adopt the latter way of speaking, in which to compute with a logic, we must implement it.
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2 A general cognitive theory of graphical representations

We can sketch the main points which characterise our working theory in the following way:

1. Graphical representations are one sort of representation which exhibit ‘specificity’—
they compel specification of classes of information, in contrast to systems that allow
arbitrary abstractions.

2. Actual graphical systems permit the expression of some, but not all, abstractions.
3. Together, this means that such representations are relatively easy to process.

4. This specificity helps explain why graphical techniques, such as Euler’s Circles, for
teaching abstract reasoning are so widespread, and presumably effective.

5. The internal working memory representations we use in some reasoning tasks share with
graphical representations this property of specificity.

6. Natural language discourse conventions stay closer to graphics in respect of specificity
than do fully abstractive logical languages, in order to preserve processibility.

It is worth observing that our theory is intended to avoid emphasis on the particularly visual
properties of graphics. We instead emphasise some general logical properties of representa-
tions, which have computational ramifications. It is easy to imagine a blind reasoner using
embossed Euler’s Circles to solve syllogisms.? In this paper, we do not discuss point (6), the
role of natural language discourse conventions, in any detail; some preliminary remarks are
made in Stenning and Oberlander (1991:613-615). Point (4), which relates to processing with
external graphical representations, is dealt with in Section 4, and point (5), which relates to
processing with internal graphical representations, is dealt with in Section 5. Section 3 lays
out some groundwork, by making more precise the idea of specificity and the related notions
which underpin points (1) to (3).

3 Specificity and limited abstraction

The first part of our working theory raises a number of questions. First: what does specificity
in a representational system actually mean? Secondly, what does it mean to be able to express
some, but not all, abstractions? Thirdly, how does this limited expressiveness purchase ease
of processing? In answering these questions, we attempt to define specificity more precisely,
and therefore make use of some further new terms. In particular, we introduce three types
of representational systems, organised by their increasing expressiveness. These are mimi-
mal abstraction, limited abstraction, and unlimited abstraction representational systems. We
illustrate them with two simple cases, and then in Section 3.4 indicate their computatio-
nal significance by comparing them with Levesque’s (1988) vivid systems. Such a tripartite
hierarchy obviously evokes the Chomsky language hierarchy (cf. Aho and Ullman 1972); we
address this parallel, and the cognitive relevance of our proposal, in Section 3.5.

®Tactile Venn diagrams have been used with good effect in teaching blind students elementary logic (Gold-
stein and Moore personal communication).
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3.1 Minimal abstraction representational systems

The simplest characterisation of specificity can be given in semantic terms. Imagine a repre-
senting world and a represented world. The former reflects at least some aspects of the latter.
To characterise a representational system, we must state (i) the represented world; (ii) the
representing world; (iii) what aspects of (i) are being modelled; (iv) what aspects of (ii) are
doing the modelling; and (v) the correspondences between the two worlds (Palmer 1978:262).
Let us require a characterisation ideally to provide an extra component: (vi) a key: that part
of the mapping from representation to world which has to be made explicit to users of the
representation because they do not carry it as part of their general knowledge. A system
will then have a set of possible representations, constructible out of basic elements, each of
which represents some world as being some way. Rearranging the elements in a particular
representation may cause it to correspond to a different possible world.

Now, when a system of representation is a language, either natural or logical, it is relati-
vely straightforward to give a model-theoretic semantics for the system, and for its possible
representations. An interpretation function will map representational elements into model
elements; differing choices of domain for the model would lead to differing interpretation
functions. For example, we could choose to model temporal expressions in natural language
using a timeline with a domain of integers, or reals, or whatever. Now, suppose we fix both
the domain and the interpretation function; then there is particular question we may ask:
how many models correspond to a representation? Under the intended interpretation for the
language, how many ways are there of making a sentence true?

By contrast, consider a system of representation which is—at least superficially—not like a
natural language. Take a graphical system in which a well-formed representation is a fixed
arrangement of squares containing a set of solid black circles. The intended interpretation
for this system tells us three things. The squares denote the set of offices in my building; the
black circles denote researchers; and the relation of spatial containment denotes the relation
of working in an office. Just as with a language, we can ask: how many models correspond
to a particular representation in this system? Under the intended interpretation, how many
ways are there of making a graphical representation true?

The basic semantic point here is just this: a minimal abstraction representational system
(MARS) is one in which there is exactly one model for each representation in the system,
under the intended interpretation. We can put this another way via the notion of a relation
dimension (cf. Palmer 1978:268). A dimension is a set of mutually exclusive relations, only
one of which holds for each object or set for which the relation is defined. For example, colour
is a unary dimension whose values are properties such as redness; interobject distance is a
binary dimension whose values are distances. The current point is thus: take a represented
world, choose which relation dimensions the representing world is to capture; a MARS is then
one which, for every chosen dimension, must have a single value for every object in the domain.

This semantic characterisation has a syntactic reflex; a representational system which is
minimally abstract will embody certain restrictions on its possible representations, which
ensure that each representation corresponds to exactly one intended model. The particular
manifestation of this syntactic reflex will depend a good deal on the overall form of the
representational system. To illustrate this, consider in turn two trivial MARSs: a graphical
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Figure 1: A graphical tabular representation of a world W
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Figure 2: A comprehensive sentence of Ly representing world W

system of two-dimensional tables, and a linguistic system of restricted predicate calculus.

Two dimensional tables. Consider a system of tabular representation. In the represented
world W, there are four objects and five unary property dimensions; each dimension has
just two values, which means that an object either has the property, or it doesn’t. For the
tabular representational system to be minimally abstract, the representing world must always
represent each of the objects and dimensions, and must assign each object exactly one value on
each dimension. Figure 1 provides a representation which can be interpreted as an element
of a minimally abstract tabular system. So: where is the syntactic reflex of the semantic
constraint? Our representation contains symbols for objects, properties, 1s and 0s; what is
specific about it? The answer is that a well-formed tabular representation has no cells which
are not occupied by a 1 or a 0. There are no empty cells (occupied by Blanks), and there are
no crowded cells (occupied by more than one symbol).

Restricted predicate calculus. A related but rather different syntactic reflex arises when
we consider a predicate calculus representation of the same world W. To represent W,
we can stipulate that we have a representational language with the following properties.
We take a first order predicate logic with identity, but without quantifiers and with only
negation and conjunction as connectives. We make the unique names assumption, and insist
that only one constant denote each element in the domain. Call this language Lg; here, it
contains four constants and five predicates. We can say that a sentence of Ly in conjunctive
normal form is comprehensive when it contains the minimum number of clauses—here, 20—
required to exhaust the combinatorial possibilities of predicate and constant symbols. Figure 2
provides a representation which can be interpreted as an element of a minimally abstract
linguistic system based on Lg. In Lg, every sentence corresponds to a single interpretation
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of its constants and predicates; one and only one sentence is true in any interpretation. The
system is minimally abstract because each sentence of the language corresponds to exactly one
model. The syntactic reflex here is that well-formed representations have to be comprehensive
sentences of Lg. They must have exactle 20 conjuncts, and each combination of predicate
and constant symbol must appear once.

We can see that the restriction of a system to minimal abstraction is quite a radical one. For
the restricted predicate language, we used only a finite vocabulary in fixed length sentences;
we did not use quantifiers and variables, and we did not disjoin comprehensive sentences.
Usual logical languages obviously offer these facilities; less obviously, actual uses of tables
are rarely as restricted as that exemplified in Figure 1. Let us now therefore turn to a less
restrictive class of representational systems, which are related to MARSs.

3.2 Limited abstraction representational systems

Each representation in a MARS under interpretation could represent only one model, only one
way for the world to be. Yet real graphical systems surely do not labour under this constraint.
Consider again the office-allocation diagram mentioned above. Suppose I wanted to represent
the fact that all the offices have two persons in them, apart from one, which has either two
or three persons in it. There are two general strategies for enriching diagrams that could be
applied here.? First I could create multiple diagrams: that is, I could produce two alternate
diagrams representing the alternatives and place them side-by-side in a complex diagram.
Notice that each of the representations gives exactly one value for each object (office) on
the relevant dimension (number of occupants). But a representational system which allows
multiple diagrams has enriched its expressive power, albeit in a rather simple way. For now,
we would say that the complex diagram actually represents two ways the world could be; the
single complex diagram represents two models.

We will say that such a system is one type of limited abstraction representational system
(Lars). This particular type of LARS is such that a complex diagram abstracts over several
models; the number of its multiple subdiagrams corresponds to the number of models; each
subdiagram corresponds to one model. For each type of system, there will be a syntactic
reflex for this semantic property. With our tabular system, the reflex will be that we allow
juxtaposition of multiple tables, one for each element of the disjunction. With the predicate
system, the reflex will be that we allow well-formed formulae to be those which consist of one
or more disjuncts, each of which is a comprehensive sentence of the old system.

But we need not adopt multiple diagrams to solve the office-representation problem. A second
strategy would be to augment diagrams with new symbols. We could introduce a new type of
white circle into the squares-and-black-circles representation; one which stands for a worker
who might or might not be there. With the new symbol, we can collapse the two diagrams
of the multiple method into one. This would contain a set of squares, all but one of which
contain only two black circles; the final square containing two black and one white circle.

A system which introduces this type of symbol is another type of LARS. Here, a single
diagram corresponds to several models, the number depending on the precise interpretation

#There is actually a third strategy, which we turn to when we discuss unlimited abstraction, below.
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Figure 3: Modified predicate and tabular representations of multiple worlds

of the new symbol. In terms of relation dimensions, a LARS of either kind is a system which
permits some object to take more than one value on some dimension. The semantic move is,
of course, reflected in the syntax of the LARS. With our tabular system, consider introducing
a Blank, defined as Fither 1 or 0. Now, we can abstract over worlds. Each blank appearing
in the diagram doubles the number of cases. In our predicate system, we can introduce a <,
so that, for instance & Pa = (PaV —Pa). < permits disjuncts of this form to be conjuncts
in the old comprehensive sentences of our system. Equivalently, we could permit ‘partial’
sentences, which simply omit such internal disjunctive clauses. Figure 3 illustrates both
options. Symbols like these do not permit the expression of dependencies between values
in cells of a table (or polarities of clauses in a sentence). Semantically, abstraction is only
permitted over models which differ with regard to one object’s value on exactly one dimension.
So abstraction really is limited, in that little flexibility is allowed in picking out regions of the
space of possible models. Using a new symbol to capture abstractions, the number of models
abstracted over is exponential in the number of occurrences of the symbol.

Thus, the semantic power introduced by this type of new symbol falls short of that affor-
ded by genuinely ‘linguistic’ symbols, in the following sense. Only the latter, occurring in
a representation, permit the expression of arbitrary dependencies between entities in the re-
presented world. Introducing expressions for arbitrary dependencies corresponds to the third
general strategy mentioned in Footnote 3. In the tabular case, for example, we could express
the idea that one object’s value on a dimension depends on another object’s value on ano-
ther dimension by inserting an equational expression into the appropriate cell of the table.
Alternatively, we could place more complex information in the key which is part of the re-
presentational system. Our new symbols would be defined here, in terms of the dimensional
values to which they correspond. And so too could arbitrary dependencies; these would differ
from other parts of the key because they would refer to specific parts of the representation to
which they were adjoined. Compare a key entry for a table which stated “Blank anywhere: 1
or 0 in that location” with another entry which said “Blank in column P row b: 1if Q¢ = Sd,
0 otherwise”. Let’s call statements of the former type key terminology, and of the latter
type key assertions, loosely following the distinction introduced between terminological and
assertional knowledge (cf. Brachman, Fikes and Levesque 1983).
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3.3 Unlimited abstraction representational systems

Finally, let us say that a system is an unlimited abstraction representational system (UARs) if it
expresses dependencies either inside a representation, with equations or whatever, or outside
the representation, via key assertions. In itself, this choice of terms is purely stipulative;
however, as should emerge below, the processing differences between LARS and UARS are
likely to be accounted for in terms of the expressivness of representation and key combined,
rather than in terms of representation alone. Hence we choose to say that a LARS is a system
which keeps its representations simple, and keeps assertions out of its keys.

The kinds of LARS that are of interest to us, then, are ones which achieve abstraction by
using multiple diagrams and key terminology (new symbols). What is limited about multiple
diagrams is that we need n diagrams to represent n models. What is limited about diagrams
with new symbols is that, for m occurrences of symbol « in a single diagram, we cannot help
but represent a number of models exponential in m. We contend that that normal graphical
systems are LARSs; much of their usefulness, and their limitations, arise from this property.

3.4 The computational significance of limited abstraction

Our working cognitive theory of graphical representations distinguishes MARSs, LARSs and
UARSs on semantic and hence syntactic grounds. But the actual reasons for picking out
these classes of representational systems lie in the computational properties which flow from
the semantic properties. We would predict that a LARS would be more computationally
effective than a UARS, and that this effectiveness would be of use both to human and artificial
information processors. To investigate the validity of such a prediction, consider Levesque’s
(1988) findings. Levesque approached the problem of inferential tractability from a rather
different direction. He observed that various well-known metalogical results prevent even first
order predicate logic from providing a computationally tractable reasoning system. He then
asked: what modifications to or deviations from classical logic “will be necessary to ensure the
tractability of reasoning”? His claim is that these deviations are ezactly the same deviations
as are necessary to make logic more psychologically realistic.

Levesque’s basic suggestion is that if reasoning tasks are arranged so as to minimise the
number of cases to be considered, they can be kept tractable. Requiring a KB to be wvivid
is one way to help minimise cases. A KB is vivid if it is in a certain syntactic form. For
sentences of first-order predicate calculus, the KB can only contain (i) ground, function-
free atomic sentences; (ii) inequalities between all distinct constants (assumption of unique
names); (iii) universally quantified sentences over the domain, which for each predicate and
constant express the closed world assumptions; and (iv) the axioms of equality. A vivid KB is
consistent and complete; and more importantly, it is tractable, via this theorem of Levesque:

Theorem 1: Suppose KB is vivid and uses m constants. Let Qq,...,(, be quan-
tifiers, let o be quantifier-free. Then determining if KB = Q4 ---@Q,« has an
O(m™*! |a]) algorithm.

The worst cases will be exponential in n, but where n is much less than the length of «,
and o is much less than the size of KB, things will be much better; and these are plausible
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assumptions. Whether or not inference with a vivid KB is tractable will still depend on the
algorithm used, but in theory large KBs (of the order of 10° sentences) remain tractable.

Like a MARS, a vivid KB cannot represent universals or disjunctions. However, Levesque
suggests various extensions to vivid-form KBs which retain its computational characteristics,
while increasing expressiveness. Universals are represented by the addition of function-free
Horn clauses;? disjunctions by a switch to semi-Horn form kBs. The latter encode taxono-
mies which allow some disjunctions to be re-expressed non-disjunctively, using subsuming
predicates. Vividness can also be improved via the use of “observer-centered visually salient
properties”, which will irresistibly be applied in cases such as Berkeley’s triangle.

We agree wholeheartedly with the claim that a primary reason for the appeal of visual in-
formation lies in “what it cannot leave unsaid about the observed situation (compared to
unrestricted linguistic information)” [p387]. Of course, on neither our view nor Levesque’s is
this property confined to visual representation. His major point is that tractability is best
maintained by minimising the number of cases that must be computed over. His preferred
method of case minimisation involves syntactic constraints on representational systems. Our
major point so far has been that graphical systems are syntactically constrained; and it turns
out that these constraints are very similar to those suggested by Levesque. In itself, this is
not surprising, since our claim about limited abstraction is effectively a claim that (i) LARSs
can help minimise cases; and (ii) their power to do so is somewhat limited. But the conse-
quence of arriving at a type of representational system which resembles Levesque’s is that it
too should have computationally desirable properties.

Let us explore the correspondences. An element of a MARS will be of a certain syntactic form,
the precise restrictions depending on the particular MARS. In the case of the restricted finite
predicate language Lq discussed earlier, a comprehensive sentence can be regarded as a KB
of a special type, actually less expressive than a vivid KB. Inference with respect to this KB
will indeed correspond to tractable table-lookup. Of course, all such an inference effectively
tells us is the polarity of a given conjunct. LARSs have slightly more complex properties. A
system based on Lg permitting disjunctions of comprehensive sentences will require an upper
bound of n look-ups for every query, where n is the maximal number of disjuncts required to
cover a set of models. If each look-up gives the same answer, that answer will be returned;
otherwise, the lack of an answer will be returned. In principle n for Ly could be very large,
but in practice, the multiple representation technique would not be used when n is large.

A system based on Lg permitting ‘partial sentences’, or the new defined symbol <, will not
always allow the polarity of every conjunct to be found on table look-up, since the answer
will not be in the table to be found. However, the lack of an answer can be found on look-up,
and the interpretation of any new symbol found by look-up can be determined by consulting
the key terminology statements, again by look-up. This type of system will have the same
general properties as Levesque’s semi-Horn form KBs, since the key terminology is equivalent
to the definition of subsuming predicates in a taxonomic component.

When key assertions must be consulted, as when we are dealing with a UARS, the complexity
of inference will depend largely upon the syntactic complexity permitted in the assertions.
If an Lg-based LARS were supplemented with expressions of unrestricted quantified predicate

40f the form: Vz1 Ve ((pr A pk) = pre1) with n,k > 0 and p; atomic.
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calculus, inferential complexity would degrade accordingly. However, one can envisage UARS
which permit only some syntactically limited key assertions, and thereby maintain a desirable
level of tractability. For example, we could require key assertions to contain only universal
quantifiers; inference in such a setting should then be tractable.

3.5 The cognitive significance of limited abstraction

There is a sense, then, in which MARS, LARS and UARS form of hierarchy, in which expres-
siveness and tractability are inversely related. This naturally recalls Chomsky’s hierarchy of
languages, ranging from type 3 languages (finite-state), through types 2 and 1 (context-free
and context-sensitive, respectively) to type 0 languages (recursively enumerable sets). Thus,
it is natural to raise two further issues, concerning the relation between the proposed hierarchy
and Chomsky’s; and the cognitive relevance of such hierarchies.

On the first issue, we have little to say. Chomsky was concerned with systems containing
linear sequences of symbols, and we have cast our net somewhat more widely. It is thus
not obvious what kinds of correspondences hold; what might constitute a context-free LARS?
On the second issue, we would concede that it’s obvious that most actual graphical systems
function as LARSs. Now, Chomsky’s hierarchy has perhaps proved to be of limited use to
cognitive science. Most natural languages, after all, are at least type 1, and thus we do
not easily locate interesting constraints on processing. By contrast, we would maintain that
placing graphical systems at the LA point in the RS hierarchy has significant ramifications for
processing. For instance, we indicate in Section 4.2.4 that the LARS version of a particular
graphical system is superior to the earlier MARS version, which had been justly criticised on
the grounds of its combinatorial inefficiency.

We acknowledge that the computational constraints discussed above are—in a sense—
relatively weak, for two reasons. First, such characterisations tend to dwell on worst-cases,
which may not be a concern for computational agents which exist in forgiving environments.
Secondly, actual performance profiles are only partially determined by the complexity con-
traints. Even if a representation system has a certain complexity, the choice of a particular
representation for a given problem has a considerable impact on its solubility.

Nonetheless, if it is accepted that humans have a set of special purpose reasoning mechanisms
(rather than a single general purpose mechanism), then we can show that at least one of these
mechanisms performs efficiently precisely in virtue of the limited abstraction permitted by
the representations it manipulates. To substantiate our schematic theory, we must develop
detailed analyses of actual graphical systems and their cognitive impact. There are two broad
lines of enquiry which could provide empirical evidence for the development of the theory.

Study of externally implemented graphical systems can reveal whether their expressive power
is that of a LARS. But to show that the logical distinctions between MARS, LARS and UARS
have cognitive consequences requires study of human performance and cognitive structure.
Evidence may come from tasks involving the manipulation of external graphics, but para-
doxically, most of the existing work which addresses our evidential needs actually studies
internal cognitive structures which arise during the performance of tasks involving no exter-
nal graphics. We will consider both types of evidence here, in Sections 4 and 5 respectively.
Our method is to start from studies of external graphical systems and then to ask how such
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systems are related to internal computational structures in their users. One implication of our
emphasis on general logical and computational properties of graphics is that their tractability
for humans arises for the same reasons as their tractability for machines.

4 External graphical representation systems

After briefly reviewing some existing work on graphical communication and exploring desi-
rable properties of domains for testing our theory, we go on to take an example traditional
system of graphical reasoning, Euler’s Circles, and provide a computational reconstruction of
how this system is actually applied in logic teaching. This analysis shows that ECs are LARS
when properly interpreted, and reveals some novel properties of the logical fragment which
they can be used to reason over. We will then go on to examine another notation for solving
syllogisms, Johnson-Laird’s ‘Mental Models’ (MMs; Johnson-Laird and Steedman 1978, Mani
and Johnson-Laird 1982, Johnson-Laird 1983, Johnson-Laird and Bara 1984, Johnson-Laird
and Byrne 1991). This system was developed partly as a response to earlier work by Erickson
(1974) which interpreted Ecs as MARs and based a cognitive model of subjects’ ‘mental’ sy-
llogistic reasoning (that is, their reasoning without external graphical aids) on this MARS
interpretation. We show that MMs are a notational variant of ECs under a LARS interpreta-
tion. We close our discussion of Euler’s Circles (and of external graphics) by examining the
structure of the space of ‘registration diagrams’ employed in Euler’s system.

4.1 Positioning the theory for empirical application

There is a considerable history of work on the cognitive impact of different representations
of information. Proposals in the philosophical literature related to our approach go back
through Peirce (1977) to Bishop Berkeley (1709). Specificity of graphics is a direct result
of their exploitation of homomorphisms which Goodman (1968) placed at the centre of his
theory of graphical semantics.

Since the theory hinges on the expressiveness of different representation systems, the most
fruitful domains for testing the theory are ones in which there is a need to express some limited
range of abstractions (information is not fully determinate). At either end of the dimension of
abstraction there is no difficulty in choosing between language and graphics. If, for example,
we have total information about the spatial arrangements of a set of objects, then a map (or
if we need to read numerical distances, perhaps a matrix of distances) has no real competitor
as an information presentation. Twyman (1979) provides an insightful study of such options,
and in different ways Tufte (1983) and Mackinlay (1986) both explore methods of presenting
determinate statistical information. For us, however, the key material for empirical study is
provided by domains in which (i) there is enough determinate information to motivate the
use of a graphic; but (ii) there is also a perceived need for the expression of some abstractions
which would lead to the need for many-termed disjunctions of MARSs.

There is earlier work in such domains. Gelernter (1963) used diagrammatic representations
to control search during geometry theorem proving in an early Al system. Funt (1977, 1980)
developed the WHISPER system which employed a spatially organised ‘retina’ of elements
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for problem solving. Lindsay (1988) developed a system which exploited the specificity of
diagrams, again in the domain of mechanics problems. All of these authors are motivated
by observations that graphics aid reasoning and that this is for very general computational
reasons. Their emphasis differs from the present theory’s in that they see graphics as elimi-
nating deduction. This leads them to ignore examples in which graphics are not efficacious
(tasks which require abstractions which graphics cannot express) and to neglect a comparative
approach in which the same information is presented in contrasting modalities.

Larkin and Simon (1987) sought to explain why graphical representations aid reasoning, illu-
strating their approach again in the domain of mechanics problems. Their paper does adopt
a comparative method, translating the same problem into both graphical and sentential sy-
stems of representation, and they entertain the possibility that graphics might be bad for
some reasoning. However, their approach emphasises differences between token representa-
tions, rather than differences of expressive power of the systems the tokens are drawn from.
Our formulation in terms of information enforcement requires the latter perspective.

Work on intelligent multimedia interfaces (cf. Maybury 1993) and on ‘visual languages’ within
the professional practice of diverse groups (cf. Petre and Green 1992) raises questions concer-
ning the cognitive effects of modality choice. But existing systems do not assess alternative
presentations of the same information, and visual languages are generally based on semantic
network notations. For our initial purposes, they are not ideal, since semantic networks are
drawn from the most linguistic end of the dimension of graphical representations; they enforce
few specificities.

The most amenable domain we have found for the initial application of the theory is also
the one with perhaps the longest history of precise self-conscious use of graphical methods in
teaching, namely elementary logic diagrams. At least since Euler (1772) was faced with the
problem of teaching a German princess syllogistic reasoning, logicians have used graphical
teaching methods based on the analogy between set membership and spatial containment.
Venn (1894) modified Euler’s method into the one which is in widest contemporary use (cf.
Sun-Joo Shin 1991 for a metalogical reconstruction of Venn’s system). Peirce (1977) and
Lewis Carroll (Dodgson 1896) also worked on graphical methods (Carroll’s Symbolic Logic is
a useful if dated sample). Venn’s system is slightly more powerful and probably in commoner
use today. Nonetheless, we adopt Euler’s as our object of study because we believe that its use
of graphics is considerably richer than Venn’s and because we believe that this has important
perceptual/mnemonic consequences for human performance with the system.

Although we know of no empirical studies comparing teaching elementary logic with and with-
out these graphical aids, (or indeed comparing one graphical system with another) their very
persistence is evidence of their usefulness. As we mentioned earlier, there is even anecdotal
evidence that these systems are of use to the blind in learning logic (Goldstein and Moore,
personal communication); and this itself supports our approach by suggesting that their ef-
ficacy stems from general spatial characteristics of graphics rather than specifically visual
properties of human perception. For current purposes we will assume that these graphical
systems are useful for at least some didactic purpose and seek an explanation of this fact.
When it comes to examining the evidence of human performance for structures in internal
mental processes which are isomorphic to the external systems, then there is an abundance
of empirical evidence which we take up in Section 5.2.
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4.2 A graphical algorithm for syllogistic reasoning

We begin by giving a rational reconstruction of Euler’s method of using circle diagrams to
solve syllogisms. This should be sufficient to test the predictions of our theory that such
systems will be LARS but not UARS. We are not primarily concerned with historical exegesis
and we will add some notation which does not appear in Euler’s (1772) published account.
We do believe, however, that this addition merely makes explicit what any logic teacher
would interpret Euler to have intended, rather than being a novel system. This point gains
certain significance in the light of psychologists’ subsequent misinterpretations which will be
discussed below (Section 4.2.4). In particular, the reconstruction offered here avoids the com-
binatorial explosion for which Johnson-Laird and his colleagues have justly criticised other
Euler’s Circles methods (cf. Johnson-Laird 1983:100,125; Johnson-Laird and Byrne 1991:116—
118,201). Our exposition of the graphical algorithm is divided into three parts: representing
premisses; unifying premiss diagrams; and formulating conclusions. It is important to remem-
ber that this is a ‘competence model’ for syllogistic reasoning. It requires the usual sorts of
augmentation to serve as a performance model, and we turn to this issue in Section 5.2.

4.2.1 The representation of premisses

There are five topological relations between two circles. These are the Gergonne relations,
after the nineteenth century mathematician who made the first attempt to ‘formalise’ Euler’s
system (cf. Kneale and Kneale 1962, Faris 1955, and Figure 4). Although syllogistic premisses
are mostly modelled by more than one of these five Gergonne relation diagrams, each has a
characteristic diagram which is the one which represents the maximum number of types of
individual consistent with the premiss. We refer to the models of these diagrams as mazimal
models. 1t is this characteristic diagram which is used in initial premiss representation.
Furthermore, by relating a premiss to its characteristic diagram, we see that within each
diagram, there is a sub-area which corresponds to a type of individual which is established
as existing by the premiss, and there are other areas which correspond to types of individual
which are merely consistent with the premisses, and which may or may not exist. The area(s)
known to be non-empty play a special role in the use of the diagrams. We will say that these
regions represent minimal models of their premisses. We have suggested elsewhere that this
can most easily be brought out by a convention of shading such areas. Here we will use the
notation of placing an ‘z’ in the minimal model regions (Stenning 1989, Figure 5, repeated
here as Figure 5). Note that the standard interpretation of the syllogism, which we adopt
here, assumes that there are no empty sets.®

4.2.2 Registering pairs of diagrams

Diagrams representing the two premisses of a syllogism are registered by making the two
middle-term (B) circles in the two premiss diagrams correspond. This sometimes leaves
several choices of arrangement of the A and C' circles consistent with the premisses. The regi-

5The z-marking convention fails to pick out the minimal model in just one diagram—that for Some A
are not B. It cannot easily be extended to do so because disjunctive z-marking is not possible. However, no
untoward conclusions arise from the failure to represent directly this non-emptiness.



Stenning and Oberlander

14
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A Some A are not B

(.) No A are B
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Figure 4: Gergonne relations
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<—— Some A are not B

<——NoAareB

Figure 5: Characteristic diagrams
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stration strategy described here always chooses the arrangement with the maximum number
of types of individual consistent with the premisses.

It is useful to consider positive syllogisms and negative syllogisms separately.® Positive sy-
llogisms that have valid conclusions have them in virtue of necessary intersection between
A and C'. Negative syllogisms that have valid conclusions have them in virtue of necessary
non-identity between A and C'.

Figure 6 illustrates this procedure for the syllogisms which have valid conclusions, and Figure
7 for the syllogisms with no valid conclusions. Figure 8 illustrates it for an interesting group
of syllogisms which have no conventionally expressible conclusions, but do neverthless have
valid conclusions about the relation between A and €' in the domain. These diagrams abstract
away from as much linguistic structure as possible. Only the middle term circle is significant,
and in each case, the A and ' assignments can be reversed. This means that the diagrams
abstract over combinations of figure and grammar. 21 diagrams capture 64 syllogisms, and
just 8 diagrams capture the 27 syllogisms with conventionally expressible conclusions.

This policy of registration to form diagrams representing maximal models evidently relies
on being able to identify logical constraints on circles’ placement—on being able to identify
whether an arrangement is consistent with the premisses. It might be argued that to assume
this ability is to assume the ability to reason syllogistically. We reject this argument. The
main problem for human reasoners is calculating implications of combining premisses and this
problem is not solved by merely being able to assess whether a diagram is consistent with
each premiss separately. The role that the graphical representations play is facilitating this
process of combination.

It remains to define the fate of s during the unification of premiss diagrams. If a minimal
region marked by an z is sub-divided by the third circle during registration, then the z is
removed from the diagram. As an aid to the reader, we have marked such expunged xs with
os in the diagrams presented here. Only z-marked minimal regions which persist undivided
from premiss diagram into registation diagram remain xz-marked. We will call such regions
critical regions. A critical region corresponds to a maximal type” of individual which must
exist in any model of the two premisses.®

4.2.3 Drawing conclusions

Having specified how diagrams are combined, it remains to describe how conclusions are
drawn. It is useful to divide the process into an initial decision whether there is a valid
conclusion, and a subsequent process of formulating conclusions.

There is a close relation between establishing the (necessary) existence of maximal types and
having valid conclusions. All premiss pairs which have valid conclusions establish maximal
types. Elsewhere we have called this property of the syllogism case identifiability (Stenning
and Oaksford 1993). If two premisses warrant a conclusion, it is possible to identify the sort

Positive syllogisms have two positive premisses. Negative syllogisms have at least one negative premiss.

"Maximal types are types defined for all three properties.

8We are indebted to Peter Yule for improvements in the formulation of this procedure for deciding whether
maximal types are established to exist.
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Figure 8: Registration with valid U-conclusions. These syllogisms warrant conclusions of ‘U’

form, such as Some A are not C or Some not C are not A. Note that the A and C circles can
adopt any of the five Gergonne relations, but constraint lies in their mutual relation with B.

of case which exemplifies the conclusion. This property is what allows graphical methods to
be applied to the syllogism without resort to disjunctions of diagrams.’

The model theoretic reason for this is not hard to see. Take a region which represents a
type of individual defined in terms of the two properties of its premiss. Suppose this region
is not bisected in the registration diagram which represents the maximum number of types
consistent with the premisses. If this is the case, then there is a maximal type established in
the final diagram. This is because the z-marked region is wholly included (positive syllogisms)
or wholly excluded (negative syllogisms) from the third circle. If it is bisected, then there are
two maximal types corresponding to it in the final diagram, and either one of these or both
may exist, but neither sub-type is necessary.

The converse of case-identifiability holds, except for two registration diagrams which reveal
that maximal types are established by pairs of premisses which do not have conventionally
expressible conclusions (see Figure 8). It is an arbitrary fact about the quantificational
resources Aristotle chose that these conclusions cannot be expressed. Interestingly, they are
counterexamples to his principle that two negative premisses never have a valid conclusion.
Aristotle presumably excluded these inferences because he did not regard them as involving
relations between A and €', and this view is a result of having no distinction between the
domain of interpretation and the universal domain; that distinction not clarified until the
twentieth century.

The process of formulating conclusions operates directly on critical regions which correspond
to established maximal types of individual. Existential conclusions correspond to inferences

by conjunction elimination from their descriptions. These inferences are of the form: Jz(Az A
Ba N =C'z) conclude Jz(Az A =Cz).

®This graphical technique cannot, for example, be applied to disjunctive syllogisms, which constitute a
fragment which is not case-identifiable.
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1. Form characteristic diagram for each premiss;

2. Register B circles of the characteristic diagrams of the premisses and arrange A and C'
circles with most types consistent with the premisses.

3. If no z-marked region from a component premiss remains non-intersected, then exit
with No Valid Conclusion response. If there is one, then it is the critical region.

4. If such a region does exist but both premisses are negative, then exit with a No Con-
ventional Valid Conclusion response. (If task permits, conclude that Some non-As are
not Cs).

5. Formulate conclusion:

(a) Take the description of the individual type represented by the critical region of the
diagram (e.g. A-BC)

(b) Eliminate the B term from this description
(c) Existentially quantify the remaining description for an existential response
(d) Is the critical region circular and labelled by an end term?

i. If so, it is the subject term of a universal conclusion

ii. If not, there is no universal conclusion

Figure 9: A graphical algorithm for solving syllogisms using Euler’s Circles.

This algorithm is simpler than any algorithm for making the strongest valid conclusion. Ho-
wever, it is an empirical fact about human performance under standard instructions that the
maximal generalisation is usually made. Although particular conclusions are always safer
than universal ones, subjects generally make universal conclusions where they are warranted,
and sometimes where they are not. Universal conclusions require that the critical region in
a registration diagram be circular and labelled by an end term (A or C'). If a critical region
is circular, then the label of the circle becomes the subject of a valid universal conclusion. If
there is no such circular critical region, there is no valid universal conclusion.

This completes our graphical algorithm for solving syllogisms using FEuler’s Circles. This algo-
rithm is summarised in Figure 9. We will shortly look at the correspondences and differences
between this and the Mental Model method.

4.2.4 The EC system as LARS

We now return to our general approach to a cognitive theory of graphical representations.
We ask how the current system of graphical reasoning achieves the abstractions required to
capture syllogistic logic, and we relate these abstractions to MARSs, LARSs and UARSs.

The pivotal shift from a minimal abstraction interpretation of the diagrams to an abstract one
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is the shift from interpreting regions as corresponding to types that do exist to interpreting
them as corresponding to types which may exist. Figure 4 shows the abstraction over models
which is necessary to express premisses graphically; Figure 5 shows how Euler’s reinterpreta-
tion allows graphical expression of the abstraction. This shift of interpretation, combined with
the subsidiary z-marking convention distinguishing necessary from merely consistent types,
is the first prerequisite to achieving a one-to-one mapping between diagrams and premisses.
This is because it eliminates the disjunctions of diagrams necessary under the primitive in-
terpretation. The interpretation which psychologists have assumed in the past makes the
ECs into MARss (cf. Erickson 1974, and Ford 1985 for a later defence of this analysis). Our
interpretation reflects the actual use of the system by making ECs into LARSs.

In this case, turning a MARS into a LARs is achieved by a change of ontology (from types to
possible types) and adoption of a definite strategy of diagram choice (represent the maximal
model). The resulting compression of diagrams is made usable by the z-marking convention.
z-marking plays a role in finding critical regions and therefore in deciding whether there are
conclusions, and in formulating them.

The strategy of representing maximal models is what allows all reasoning to proceed with
respect to a single diagram. It is a peculiar property of the syllogistic fragment that there is a
unique maximal model, and a unique minimal model, for every combination of premisses, and
that the minimal model captures all valid inferences. The reason for the latter property is that
inferences depend only on the existence of maximal individuals, and never on contingencies
between the existences of sets of individuals. These logical properties explain why Euler was
able to devise a graphical system for the syllogism. If contingency between maximal types
were a determinant of valid inferences, a system more powerful than a LARS would be required.

So the Euler’s Circle example substantiates the importance of our distinction between MARS
and LARS in understanding how real graphical systems are used. What of the distinction
between LARS and UARS? Are there abstractions which this graphical system cannot express?
Our analysis of LARS and the upper limits on their expressiveness indicated that the distinction
between LARS and UARS remains blurred. Increasingly complex interpretative conventions—
which we termed key assertions—mean that graphical representations do less and less work.
However, it is clear that the EC system we describe cannot express many abstractions about
the domain over which it reasons. For example, only about half the models in this domain
correspond to models of EC diagrams (cf. Stenning and Oberlander 1994, p. 777). So, the
system cannot implement even the three-predicate fragment of monadic predicate calculus.
This system, as it stands, is a LARS rather than an UARS. But could it be extended to
capture the remaining abstractions in its domain? Sun-Joo Shin (1991) has presented a
formalisation of Venn diagrams, and has extended the system to implement the relevant
fragment of monadic predicate logic. It is our intuition that this system renounces many of
the cognitive advantages of the EC system described here. It seems to do so precisely because
its system of ‘linking of regions’—introduced to capture contingencies between the existence
of types of individual—essentially incorporates a semantic network formalism (cf. Schubert
1976). This comparison clearly warrants empirical investigation.
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4.3 The equivalence of Euler’s Circles and Mental Models (or EC = M?)

Our aim in considering the correspondence between Ecs and MMs is to show what is cognitively
important about graphical representations. At one level we will claim that ECs and MMs are
equivalent—they implement the same family of theorem provers. But at a more detailed level,
ECs exploit the expressive limitations imposed by graphical systems in a way that MMs cannot.
In the latter case, there is no natural limit on the notation of two-dimensional arrangements
of letters and arcs. We believe this comparison makes it clearer that the importance of MMs is
not that they are non-logical (cf. Johnson-Laird 1983:51) or non-formal (cf. Johnson-Laird
and Byrne 1991:212), nor that they are a ‘model theoretic’ rather than a ‘proof theoretic’
method (cf. Johnson-Laird and Byrne 1991:212-213). Ecs provide a graphical computer for
syllogistic reasoning. So they are a graphical proof theory, however transparent they may
make the relation between computation and the space of models. Rather, the important
questions posed by both ECs and MMs concern how they are implemented in memory.

Comparison with MM methods is revealing for a cognitive theory of graphics applied to sy-
llogistic reasoning, for three reasons. First, MM theory has been responsible for revealing
important empirical observations of subjects’ reasoning. Secondly, the theory has also made
sweeping claims about the nature of mental representation based on those observations. For
example, Johnson-Laird (1983:51) maintains that the theory “solves at a stroke the problems
of which particular rules of inference are in the mind, how they are mentally represented, and
how children acquire them. These questions simply do not arise, because logic is banished
from the mind”. More recently, Johnson-Laird and Byrne (1991:215) conclude that methods
using MMs provide “the mainspring of human reasoning”. Lastly, it has been argued that MMs
are distinct from graphical methods for the syllogism. For example, Johnson-Laird specifically
excepts his own theory from the generalisation that “all current psychological theories of the
syllogism turn out to be variations” on Euler’s Circles and Venn diagrams (Johnson-Laird
1983:77). Mwms are distinguished from graphical methods on the grounds that they do not
suffer the combinatorial explosion which “embarrasses the theories based on Euler circles”
(Johnson-Laird 1983:100; cf. also Johnson-Laird and Byrne 1991:116-118).

In comparing ECs to MMs it is important to bear in mind that the latter can be considered
either as (i) another externally represented reasoning system or as (ii) a theory about an
internally implemented cognitive system bearing some relation to the written theory. We
here adopt the former stance in order to compare ECs and MMs as external ‘paper-and-pencil’
aids to reasoning. In Section 5.2, we consider the empirical evidence about correspondence
between MMs and internal mental structures and processes.

One further distinction must be considered. The EC system described here is a normative
implementation of syllogistic reasoning corresponding to a normative use of mental models
notation. Mental models theory has been extended as a performance theory to explain sub-
jects” errors. It is not difficult to see how to do this with ECs (primarily by specifying
sub-optimal registration strategies) but we have not yet done this in our exposition.

ECs, MMs and the relevant fragment of the monadic predicate calculus are evidently equivalent
at the logical level—they pick out the same consequence relation. The equivalence that
concerns us here is at the level of the theorem provers which are implicit in ECs and MMs, and
which we made explicit for ECs in the last section. Both systems operate by: representing all
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(ii) or (iii) \la/ (a) (ii) or (iii)
R (v) or (vi)
(i) or (vi) < or (vii) i

(i) or (vi) (b) (iv) or (v) or (vii)

Some A are B

AllBare C (a) = (ii) and (iii)

Figure 10: Correspondences between parts of EC and MM representing types of individual, for
an example syllogism. Key to the numbered regions: (i) abe (ii) a—b—c (iii) a—be (iv) —abe
(v) ma—be (vi) ab—c (vii) —ab—ec. Note that —ab—c and ab—c are not represented in either
completed MM or EC. These are the only two types inconsistent with the premises.

and only maximal types of individual which are consistent with the premisses; by identifying
which maximal types of individual are established by the premisses; and then generalising
from these types.!® We therefore proceed by laying out the representational correspondences
between the systems and then the correspondences between their proof strategies.

The particular mental model system we use here for comparison is that of Johnson-Laird and
Steedman (1978). Other variants exist (for example, Johnson-Laird and Bara 1984, Johnson-
Laird and Byrne 1991) but the details of those systems could be reconstructed within the EC
framework adopted here. The main complexity involved in establishing the equivalence of any
of these systems and ECs lies in MM’s treatment of extra notational devices—parentheses and
negative links in MMs—and in the procedural elements of the strategies for MMs’ use. These
annotations and procedures serve to allow one diagram to abstract over several possible states
of affairs. We begin by examining the central structural correspondences, and then look at
the details which differ within each family.

Columns of letters in MMs and minimal sub-regions of EC diagrams both represent types of
individual. Monadic predicate calculus would represent these types by conjunctions of atomic
predicates (or their negations), each predicated of the same variable. To illustrate with an

example syllogism, Figure 10 shows the development of EC and MM representations for the
syllogism Some A are B, All B are C.

At every stage of development, z-marked regions of ECs correspond to columns of letters
with no parenthesised elements in MMs. In both notations they represent types of individual

10This is not a general feature of theorem provers. For example, it is commonplace in natural deduction
based theorem provers to assume the existence of indviduals inconsistent with the premisses and then proceed
by reductio ad absurdum.
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whose existence is established by the premisses. Non-z-marked regions and columns with
some parenthesised element(s) represent individuals which are consistent with the premisses
but not established by them. Note that no region in the EC, nor any column or part of a
column in the MM, represents either of the types A A B A =C nor =A A B A =C'. These are
the only types inconsistent with the premisses. The only type consistent with the premisses
but unrepresented is the wholly negative type =A A—=B A—~(C'. Neither ECs nor MMs represent
this type of individual, since it plays no role in any inference expressible in the syllogism.

MMs include elements in their representations of first premisses which allow the additions of
second premisses to yield any maximal type consistent with both premisses. ECs have a simple
and consistent policy of representation which is motivated by the underlying model theory at
every point. Registration represents all consistent types. z-marking represents types entailed
by the single premisses represented. z-marked regions take their significance directly from the
model theory. In contrast, many features of mental model notation are quite arbitrary. Only
subsets of consistent maximal types get represented in some syllogisms, but this omission of
types plays no part in the system of reasoning. An example of MMs’ idiosyncrasies is illustrated
in Figure 11. It might at first seem that we can interpret the parentheses in MMs as standing
for either a predicate or its negation. However, if this were so, the parenthesised ‘a’
‘b’ in the representation of Some A are B could potentially come to represent individuals
which are A A B. In fact, the parenthesised ‘a’ is never completed in this way—it can only
come to represent either an A that is =B, or a B that is =A. So the parentheses within a
column are not to be interpreted independently of each other. This fact could be captured by
including a negative link between these two parenthesised elements, as we have done in dotted
lines.!! For example, the first option (with regard to the parenthesised ‘a’) disappears when
the second premiss forces the parenthesised ‘b’ to represent a B that is €. This omission of
the negative link is particularly arbitrary since the corresponding positive link is included in
the representation of the negative particular premiss. There, however, the ‘b’ is arbitrarily
not parenthesised (we have inserted square parentheses). If our square additions are included
in the MM notation, columns with parenthesised elements then correspond to unmarked EC
regions, and unparenthesised columns to z-marked ones.

and

This example is sufficient to show that mental models adopt arbitrary choices of representation
strategy, whereas the Fuler’s Circle system described here has a motivated policy. What is
arbitrariness from a logical point of view might be motivated from a psychological point
of view. But in fact it turns out that these particular notational features play no role in
capturing empirical observations in the data. Whether subjects take representational short
cuts in mentally manipulating ECs is an important psychological question; we return to it in
Section 5.2 when we discuss how our EC algorithm might be mentally implemented.

In summary, ECs and MMs should be seen as two families of notations which can each be used
to formulate a range of theorem provers. What these theorem provers have in common is
that they (i) agglomerate the representation of both premisses into one representation which

11 Johnson-Laird claims that universality is represented within mental models by repetition of copies of
individuals (an analogical representation, he claims). But this sits oddly with the observation that the number
of individuals of a type that exist is never relevant to consequence in the monadic predicate calculus, a logic
without identity. In fact, closer observation of mental models reveals that the function of repetition at the
stage of representing the first premiss is always to allow the representation of any type of individual that may
be required when the second premiss 1s added. Universality, in fact, is captured by ensuring, either explicitly
or implicitly, the representation of all consistent types.
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Some A are B Some A are not B
\T/ (@ a [€)
b (b b [\tl)/]

Figure 11: The interpretation of parentheses and links in Mental Models. The dotted link
and the square parentheses are our additions to the original notation.

(ii) represents all individuals consistent with the premisses and (iii) distinguishes those which
must exist from those which may exist. They then specify procedures for reading conclusions
off from these representations.

Seeing Ecs and MMs as notational variants raises the question: Is one notation more con-
strained than the other? It is fairly easy to say what constitutes a natural extension of ECs,
though even here, it may be hard to state exactly which annotations are natural. When it
comes to MMs, it seems to us that there is no inherent reason why systems of letters, with
and without parentheses, linked by arcs and distributed in two dimensions should have any
of the limitations that graphical representations exhibit. In fact, it is known that partitioned
semantic networks are equivalent in expressive power to polyadic predicate calculus (Hendrix
1979), and that they can be extended to capture the full lambda-calulus (Schubert 1976).

So, although the Ecs method described here is equivalent to a theorem prover expressed in
MMs notation, there is a great difference in the degree of constraint on the theorem provers
expressible in the two notations. The graphical nature of Ecs determines that all types
represented by a registration diagram must be maximal types. That is because every point
in a plane is either inside or outside of every circle drawn in that plane. This is a special
case of specificity, and it is precisely this property which captures the human tendency to
reason over agglomerative representations (cf. Stenning 1991) composed of maximal types
of individuals. For the purposes of formulating psychological theories of reasoning, the more
limited the expressive power of a system which can fit the data, the more the notation is
contributing to an understanding of the phenomena described.

4.4 Animation

Ecs are distinctive among graphical systems based on the analogy of spatial containment
to set membership in exploiting movements and constraints on movement in reasoning. We
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chose to describe an EC algorithm rather than a Venn diagram one because of this exploitation
of movement which we refer to as animation. Static diagrams are related to each other by
movements of circles (and changes in size) and Ecs thereby exploit a particular concept of
continuity. We believe that this is one of the ways in which they facilitate reasoning and it
provides another illustration of specificity, this time in the temporal dimension.

Introducing movement into graphical representations introduces temporal specificity. Time is
a dimension, and so representations which employ sequences of states to represent a dimension
(whether a temporal dimension or not) have to determine a complete ordering of represented
states. An animation sequence is specific with regard to temporal relations just as a diagram
is with regard to spatial relations. Interpretation conventions may be able to cancel some of
these temporal specificities and achieve some abstractions representing partial orderings of
states, but not just any abstraction can be expressed.

In the case of ECs, spatial and temporal specificities combine in a very elegant way. Each
static diagram represents one of the 128 different models of the syllogism. Moving a circle
typically leads to one type of individual at a time either being added to, or deleted from
the model represented before the movement. In some cases a movement might introduce or
delete two individuals but such double events can always be turned into pairs of single ones by
changing the angle of movement infinitessimally. This means that the 64 models which have
EC diagrams are related in a seven dimensional space, with one dimension for each individual
type. Movements of circles in the EC diagram correspond to sequences of transitions from
corner to adjacent corner of this seven-dimensional hypercube. There are no catastrophes—
no cases in which a minimal movement brings about a distant model. Figure 12 portrays
the space of three-circle diagrams; the restriction to circles in Euler diagrams is an essential
element in establishing this continuity.

Representations that are continuous in the sense used here are computationally tractable for
quite general reasons. Roughly, from any point in the structure, one can take a minimal path
to any other point on the basis of information in its address. What evidence is there—other
than this most general sort of computational ground—for believing that human beings have
internal reasoning mechanisms which exploit this sort of continuity? Hinton (1979, 1980)
argues that it is this type of continuity of structural description which underlies our ability
to solve ‘visualisation’ problems. He further argues that this sort of continuity is sufficient
to explain ‘mental rotation’ phenomena which are usually assumed to require representations
which are analogue in a much stronger sense.

Although we know of no explicit experimental study of the role of continuity in the manipu-
lation of such structured spaces in working memory, it seems plausible that our transactions
with the mechanical world are underpinned by a mechanism exploiting such continuity. The
logical constraints provided by syllogistic premisses can be modelled in the EC representati-
ons by the mechanical constraints on the movement of discs in a plane. Imagine driving a
nail through the critical region(s) of registration diagrams. For positive syllogisms, this nail
constrains the A and C' circles from sliding apart. For negative syllogisms, the nail constrains
the A and C circles from being superimposed (having been adjusted to have equal size).

So the graphical nature of Ecs provides not only the spatial specificity which forces the
representation of maximal types of individual. It also provides the spatio-temporal specificity
which supplies a mechanism for navigating around the space of models in a continuous fashion
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Figure 12: The graphical structure of the space of three-circle registration diagrams. The
edges of the graph represent additions or subtractions of single elements to and from models.
Thanks to Robert Inder and Richard Tobin for their considerable improvements to this figure.
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(notice that this graphical property does not hold of Mms). The efficacy of this mechanism
should not be underestimated. Rather than considering an unstructured set of 128 models, the
algorithm positions its user at a particular point in this space corresponding to the registration
diagram of the syllogism to be solved. It then helps identify every immediate neighbour of
that model, and every immediate neigbour of any subsequent construction.

5 From external graphics to internal imagery

We have so far been concerned with characterising the properties of graphical representations
in general and, in particular, Ecs and the procedures that manipulate and interpret them so
that they implement syllogistic logic. Psychological considerations have only entered through
comparison with MMs which are explicitly embedded in a psychological theory of verbal rea-
soning. But our general approach has cognitive pretensions—we aim to explain differences
between peoples’ facility in reasoning with graphics, with language and with calculi. So even
if we were to restrict ourselves to cases in which external graphics are used, we would still
require a theory of how the information they carry is represented and processed internally. In
fact, we believe that our approach—through the computational nature of external graphical
systems—promises a new perspective on the nature of internal representations used when
reasoning without explicit external graphics. However, this does not commit us to the view
that the relation between internal and external representations is direct. We would expect the
internal representations to show similar specificities to successful external aids, but internal
implementations might be expected to differ significantly from external ones.

Our theory can approach the task of analysing internal representations at two levels. By
showing that the logic of graphical representations is more computationally tractable than
more general logics (as we indicated in Section 3.4), we show that processing the information
graphical representations convey is easier than processing some more general class of infor-
mation. This explains why graphical representations are easier to process for any reasoning
system. Such an ‘architecture-free’ approach must be supplemented by empirical observations
of human information processing which show that the specific representations used in a task
are in fact more easily processed than abstractive ones. Only empirical research can support
the view that representations with the characteristics described by the formal theory are ac-
tually employed. Theories of the architecture of working memory built on such observations
should then be able to explain how graphics are processed more easily.

Here we review some of the evidence that specific representations are generally more easily
processed by human beings. We first discuss results from studies of text comprehension, and
then return to the syllogism and examine the relevance of the behavioural data on ‘mental’
syllogism solution. Fnally, we consider a theory of working memory which can explain why it is
easier to hold and manipulate data-structures which are limited in their powers of abstraction.

5.1 Text comprehension and verbal reasoning

There is already extensive experimental evidence that can be construed along the lines of
our theory. The text processing and verbal reasoning literatures deal with the presentation
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of potentially abstract information and adduce evidence that people derive more concrete
representations for it. We can review only a few example findings here. They can be classified
by the type of information which creates specificity. The first group study the specificity
resulting from graphical representations of spatial relations; the second studies specificity
resulting from the unique name axioms implicit in graphical representation systems.

A number of studies have compared the processing of two types of texts. One type conti-
nuously determine the spatial relations of a described array of objects; the other type leave
spatial relations indeterminate for at least some stretch of text (see for example, Mani and
Johnson-Laird 1982, Clark 1969a, McGonigle and Chalmers 1986). The following examples
from Mani and Johnson-Laird illustrate indeterminacy which remains at the end of the text.

Determinate: The spoon is behind the knife. The knife is to the right of the plate. The
fork is to the left of the plate.

Indeterminate The spoon is behind the knife. The knife is to the right of the plate. The
fork is to the left of the knife.

In the latter case, the last two sentences only determine a partial ordering of knife, plate and
fork. Indeterminate texts prove much harder to process in tasks where subjects have to test
the whole range of their models, but not where one will suffice. Both Mani and Johnson-
Laird’s findings and McGonigle and Chalmers’ qualifications are interpretable in terms of
subjects having a high-capacity durable memory for representations exhibiting specificity.
This memory cannot be employed for indeterminate material unless the addition of contingent
information is permitted. These experiments are examples of a large literature on verbal
reasoning which bears out the problems caused by indeterminacy. Many of these experiments
do not involve spatial relations overtly, but do involve transitive reasoning about dimensions
which therefore present the same logical situation (for example, Clark 1969b).

There has been less research explicitly investigating the processing of texts in which reference
(rather than spatial relations) is indeterminate giving rise to violations of unique name axioms.
Bransford and Johnson’s (1972) classic experiment demonstrating the incomprehensibility of
a ‘trick’ prose passage is actually an example, though the authors do not discuss it in those
terms. Close examination of the passage used reveals a number of sources of confusion. No
syntactically indefinite introductions are made and definite phrases’ referents are untraceable.
Because the definite noun phrases referring back to earlier mentioned elements are chosen to
be abstract, there are multiple possible antecedents for many of them. The picture which
the authors used to make the passage comprehensible enables the reader to make unique
assignments and thus facilitates processing.

If the balloons popped the sound wouldn’t be able to carry since everything
would be too far away from the correct floor. A closed window would also
prevent the sound from carrying since most buildings tend to be well insulated.
Since the whole operation depends on a steady flow of electricity, a break in
the middle of the wire would also cause problems. Of course the fellow could
shout but the human voice is not loud enough to carry that far. An additional
problem is that a string could break on the instrument. Then there would be
no accompaniment to the message. It is clear that the best situation would
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involve less distance. Then there would be fewer potential problems. With face to
face contact the least number of things could go wrong. [Our emboldening marks
irretrievable references].

It is not the pictorial nature of the context which is essential. The picture can be replaced by a
textual preamble clearly introducing the emboldened elements into the domain in ways which
permit the resolution of the later abstractions; the text is rendered equally comprehensible.

Context: A man with a guitar is serenading a girl at a fifth floor window. He
has a microphone connected by a wire to a speaker suspended at the level of her
window by a bunch of hydrogen balloons . .. [Italics mark indefinite introductions].

Both the provisions of context amount to introducing compliance with the unique name con-
straints we have mentioned in connexion with minimal abstraction representational systems
(MARss), and their relatives.

A more precisely controlled experiment aimed directly at studying temporary indeterminacy
of reference is reported in Stenning (1986). Subjects read texts describing domains which
they knew to have just two elements. For example:

There is a small square. There is a black square. There is a small black thing.
There is a small white thing. There is a small circle.

The pattern of identities is not determined until the third sentence in this example. When
there was indeterminacy, it caused disruption of processing, particularly at the point where
indeterminacy was resolved. This was interpreted as being due to the delayed construction
of specific representations. These and other results have been interpreted as demonstrating
the existence of a ‘non-propositional’ memory (cf. Johnson-Laird 1983, Garnham 1987).

A complementary observation that has also been invoked as evidence against propositional
representations is that readers cannot remember the surface segmentation of propositions
in texts. The observation was made in general terms by Bartlett (1932) and by Bransford,
Barclay and Franks (1972) but has recently been used by Garnham (1987) to argue against
any ‘propositional’ account. Garnham’s examples are of subjects’ failures to discriminate
whether they saw The man with the martini is tall or The man standing by the window is tall
when they had been told that the man standing by the window is the man with the martini.

If these texts were represented in a MARS, then this is exactly the result one would expect. The
distinction between which properties are identifying and which merely attributed is therefore
lost in translation. But both these forms become equivalent in a MARS because both result
in representations in which there is one man and one martini, and one window by which he
is standing. These inferences are not licenced by the logical form of the isolated sentences
but by the discourse interpretation conventions. But that is hardly an argument against the
resulting representation being sentential.
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5.2 Syllogism data

What light can our theory shed on the empirical literature on human syllogistic reasoning
carried out without paper-and-pencil support? Since we have shown that ECs are equivalent
to MMs, an account based on ECs will inherit explanations of results explained by MMs up
to this equivalence. So, for example, the most important predictor of syllogism difficulty in
MM theory is the distinction between one-, two- and three-model problems. In the highly
procedural MM system, this distinction is defined by the number of loops of constructing
and testing involved in the solution of a given problem. In the graphical algorithm, this
property can be defined in terms of the number of possible arrangements of the circles in
the registration diagram when the maximal-areas constraint is relaxed. Ardin (1991) showed
that most of the variance of problem difficulty is actually captured by the distinction between
single model problems and those requiring greater numbers of models. In EC terms, this is
just the question whether there is any choice of registrations of the two premiss diagrams.

But we need to consider some additional notations (such as directional links) which are used
in MM theory but have not yet been replicated in our EC notation, and the role these notations
play in capturing empirically observed phenemona. We should also ask whether there are novel
predictions suggested by Euler’s notation; an important test of an alternative notation is its
ability to reveal new generalisations in old empirical data or to suggest new data that should
be relevant. We therefore turn next to the role of additional notation in MMs in capturing
empirical observations, before reviewing new observations arising from the EC notation.

5.2.1 Notation in MMs not duplicated in the EC system

One feature of the MM notation which plays an important role in capturing psychological
data is the directionality of the links between predicate letters within an individual. One of
the most original empirical observations which Johnson-Laird and Steedman (1978) made is
that the formulation of conclusions is strongly affected by the grammatical organisation of
the premisses. In MM notation, grammatical status is marked by the directionality of both
positive and negative links, and this effect is captured by the procedures for formulation of
candidate conclusions. The procedures prefer to read conclusions in the direction of arrows.
So, where ‘a’ is linked to ‘c’ through ‘b’ by two arrows pointing in the same direction, there
is a preference for the conclusion which aligns with the arrows.

ECs are not usually used with any grammatical notation. This is probably because of their
didactic origin—to learn syllogistic logic is to learn that some grammatical differences are lo-
gically immaterial; for example, those in positive particular and negative universal premisses.
To learn this is a substantial accomplishment because of the natural tendencies noted in the
Figural Effect. These tendencies in turn stem from the functions of subject and predicate
in natural language. But if ECcs are to be part of a descriptive theory of mental process,
annotating subject and predicate is just as natural as it is in MMs. Suflixing the label on
each circle by its grammatical category and allowing two matching suffixes to influence the
generation of candidate conclusions is equivalent to the directionality of arrows in MMs. Once
the annotation is added to Ecs, it can play the same role in controlling the formation of
conclusions and the testing of their generality: ECs require an interface to the language of
conclusions just as much as MMs.
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5.2.2 Novel empirical analyses and predictions of the EC notation

Our EC notation revealed the case-identifiability of the syllogistic fragment. This novel pro-
perty in turn revealed the U-conclusions missed by the Aristotelian proof-theoretic apparatus.
This logical curiosity in turn suggests an empirical prediction—that subjects should be capa-
ble of drawing the U-conclusions by substantially the same mechanisms they employ for the
range of other conclusions. Yule (1991) and Yule and Stenning (1992) test this prediction
directly. Their subjects describe maximal types of individuals entailed by syllogistic premis-
ses rather than drawing conventional conclusions. Their results demonstrate that subjects
can describe the critical individuals whose existence is entailed by pairs of premisses which
have no conventional conclusion. Subjects do not even find these maximal types the hardest
ones to discover. This result strongly suggests that the task of identifying maximal types
established by premisses is naturally adopted by subjects. We have argued elsewhere that
this is because this task is more naturally assimilated to subjects’ discourse comprehension
strategies than the conventional syllogistic task (cf. Stenning and Oaksford in press). This
methodology conforms with our principle that the best evidence for the use of ‘graphical’
representations is to supply information abstract with regard to an image (syllogistic pre-
misses defining individuals in terms of only two properties) and observe subjects’ abilities at
constructing maximally specified representations (specifications of maximal individuals).

The graphical approach also reveals some novel formulations of the effects of figure. MM
theory explains figural effects in terms of a first-in first-out (FIFO) memory. Our graphical
algorithm suggests a more general explanation in terms of the logical, rather than sequential,
properties of syllogisms. This novel formulation (cf. Yule and Stenning 1992) focusses on the
part played by critical regions in determining conclusions. Where there is a valid conclusion,
there is a critical region. Since the latter are defined as x-marked regions from the premisses
not bisected during registration, it can be determined which premiss ‘contributed’ the critical
region. In some cases both premisses will contribute it. Subjects can therefore concentrate on
identifying these regions. If subjects begin organising their conclusion in terms of an z-marked
region from the first premiss, in some syllogisms they have to shift attention to an z-marked
area from the second premiss in order to find the critical region. Yule and Stenning (1992)
have shown that its predictions are born out in subjects’ orders of descriptions of critical
individuals. The sequences observed are incompatible with the FIFO explanation.

Another difference between the EC method we describe and the MM system is that our algo-
rithm is linear and avoids any loops. This is appropriate in a prescriptive method, but we
do not propose this as descriptively adequate for the data of naive syllogistic reasoners. The
cycles of construction, testing and reformulation of candidate conclusions of Mental Model
Theory can be reproduced in the EC framework proposed here.

There is one further argument in the literature about the relation between MMs and ECs
which deserves mention. Johnson-Laird, Byrne and Tabossi (1989) present data from subjects
performing relational inferences and claim that this domain demonstrates that MM theory is
extendable in ways that graphical methods are not. Their argument goes as follows: ECs
capture only monadic arguments. Mental models can capture these relational arguments.
Therefore, mental models cannot be equivalent to ECs and are more extensive in their coverage
(cf. also Johnson-Laird and Byrne 1991:131).
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This argument is all the more extraordinary because the mental model diagrams given as
analyses for the relational arguments are positional diagrams which only need a minor rear-
rangment of letters, and the circles drawn in, to make them into recognisable Ecs. For
example, Johnson-Laird and Byrne (1991:138) discuss the following case. Let p be painters;
m be musicians and a be artists. We use the same notation convention, except that we arrange
the as in an equivalent but different order:

Premiss 1 None of the painters are in the same place as any of the musicians

Representation | [p|[p][p] || [m][m][m] |

Premiss 2 All of the musicians are in the same place as some of the artists

Combined Representation | [p][p][p] a || [a][a][m][m][m] |

By drawing circles round the ps, as and ms, the EC representation is then derived.

This argument is interesting in the current context because it reveals the involvement in these
reasoning tasks of what is sometimes called the ‘representation selection’ problem (cf. Amarel
1969). Johnson-Laird et al. have chosen a fragment of the relational predicate calculus which
collapses trivially to a monadic fragment. This explains why both MMs and ECs can encode
the reasoning involved. But what neither system explains is how subjects recognise that these
representations can be selected to solve these problems. How do subjects recognise that an
apparently relational problem can be reduced to a monadic one by the freezing of arguments
to relations? This is a quite general weakness of psychological theories of reasoning which
generally focus on the processes which follow representation selection.

In summary, the EC algorithm inherits the predictions of MM theory, but the graphical nature
of the algorithm suggests some generalisations of some of the most important effects. The
method makes new predictions of behaviour on novel tasks, some of which have already
been confirmed. Our claim that a reconstructed Euler system is preferable to MMs as a
competence theory rests on the inherently weak expressive power of these graphical notations.
This weakness stems from the specificity of graphical representations predicted by our general
theory. This argument from parsimony is now strengthened by insights contributed by Euler’s
system into old empirical data, and by the prediction of new experimental results.

5.3 Internal implementation of ECs

On the one hand, our approach to graphical representations through logic places them in the
general space of representation systems and focusses on their specificity as their critical logical
property. On the other hand, this approach raises questions about how limited abstraction
logics can be implemented in the mind. This separation of logical and implementational
questions is the greatest gain for psychology in our approach. Approaches which conflate
mental representation with the specification of an abstract system have failed to identify the
single greatest problem for implementing deductive reasoning in human memory—the problem
of binding several temporary constellations of attributes in working memory. Stenning and
Oaksford (1993) present a discussion of the differences in implementational problem and
human performance between long term memory based binding and working memory binding.
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Syllogisms are difficult for human reasoners precisely because they demand the temporary
binding of properties into specifications of individuals; grouping of individuals into models;
and possibly the consideration of several models. These bindings cannot be achieved on the
basis of bindings already implemented in long term memory.

There is, of course, a very extensive literature on the binding of elements of lists together
in human working memory. But there are few memory models which cover the holding of
bindings in working memory, which would be suitable for implementing the collections of
types underlying syllogistic reasoning. Stenning, Shepherd and Levy (1988) adopted a direct
approach to analysing the representations resulting from the processing of very simple texts.
They identify the attribute binding problem as the central knowledge representation problem
which human memory must solve in order to represent texts in which more than one pattern of
bindings is possible. They presented texts describing pairs of individuals in terms of four mo-
nadic properties (such as people with professions, nationalities, statures and temperaments)
and observed the reading times and errors of cued recall. They demonstrate that binding of
property to individual is represented in a distributed fashion; Stenning and Levy (1988) went
on to show that the bindings could be retrieved from the distributed representation proposed
by a soft-constraint satisfaction system.

This proposal for the representation of binding is distinguished from others (such as Ander-
son’s (1983) AcT*’s semantic network) in that the representation contains within itself an
active inferential mechanism which resolves inconsistency in retrieving bindings. This me-
chanism is what explains why this memory can only hold determinate patterns and so why
the system can hold only representations from MARSs. This line of investigation was aimed
at explaining the text conventions on the introduction of, and anaphoric back reference to,
discourse referents. The conventions were described in Stenning (1978) and shown to resemble
graphical specificity in Stenning and Oberlander (1991).

An important consequence of this memory architecture is that the representations underlying
verbal reasoning have at least two levels. These are: the underlying associative memory from
which the constraint satisfier infers ‘best fitting” memories; and mechanisms which operate
over the output from this retrieval mechanism. Previous theories have all assumed memory
for bindings as primitive and explained only the top-level mechanism. The fact that retrieval
from the lower level associative memory is by a constraint satisfaction network explains why
this memory can only hold minimally abstract representations. Theories which assume that
bindings are primitive network links cannot explain why these links cannot represent a more
general range of representations. The empirical evidence for a memory for bindings which
holds minimally abstract representations is complicated by the fact that there are certainly
other systems of working memory which can hold abstractive representations. The most
obvious example is the articulatory loop which can hold representations of sentences.

The suggested architecture has various implications for the implementation of syllogisms in
human working memory. Because the EC technique employs only abstract representations
of a constrained sort, it could be adapted to this architecture. The bindings which must be
held are bindings within the narrow compass of MARSs. Because natural deduction systems
do not agglomerate representations (cf. Stenning 1991), implementing them would require
representing bindings outwith MARSs. The architecture also has the consequence that only
one agglomerated pattern of bindings can be held at a time (the constraint satisfier can only
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satisfy one set of constraints at a time). Thus if subjects employ a strategy of considering
several binding patterns (as in Mental Models Theory) this architecture explains why they
must be considered serially. It is this requirement of serial consideration of models which MM
theory uses to explain the different difficulty of one-, two- and three-model syllogisms.

How could such a memory architecture form the core of a mental implementation of Euler’s
Circles? It certainly does not represent geometrical entities like circles but rather sets of
types of individual. The question can usefully be broken down into two parts: which sets of
types of individuals are represented? and how does the strategic reasoning process control
the changes to these sets required in the process of considering a range of possible models?

On the first question, Stenning and Levy’s model fits well the fact that all regions of Ecs
represent maximal individuals defined on all three properties. It is a fundamental property
of the Stenning and Levy model that all individuals represented are maximal. However, the
model has problems representing variable numbers of types of individuals. The interested
reader is referred to Stenning & Oberlander 1994 for a detailed discussion of ways of circum-
venting this restriction. On the second question, the resetting of the set of types represented
in the constraint satisfaction system can exploit whatever mechanism underlies our ability
to predict the mechanical effects on topological relations mentioned in Section 4.4. Such a
mechanism is eminently implementable in a distributed connectionist representation of the
multi-dimensional space. Distributed representations derive many of their desirable properties
exactly from the continuity of the semantics which is imposed on their states. The underlying
representation may actually be thoroughly digital, as in Willshaw nets, in which weights are
either 0 or 1 (Willshaw 1981). But the error correction and content addressability of these nets
derive from the continuity of their semantics—patterns at small Hamming distances count as
similar patterns. The constraint satisfaction model of binding is the only available memory
model which explains why representations from MARSs (and their close relatives) are easier
to represent than arbitrary binding patterns. It thus provides an approach to the relation
between external graphics and internal representations.

This review of a small sample of literature is sufficient to exemplify our current argument.
Representational systems that embody various degrees of specificity are a medium of repre-
sentation which would serve to explain the observations that have been taken to motivate
‘non-propositional’ representations. Furthermore, they provide some analysis of what these
representations are like. If images are like specific representations, then this theory will
explain how they can be processed, discharge the homunculi, and explain many of the obser-
vations of people processing abstract stimuli such as texts.

6 General discussion

The contrast between logic and implementation is central to our approach to the cognitive
implications of media assignment. Having a logic common to particular graphical and lingui-
stic systems can explain similarities between systems implemented in different modalities, as
well as differences between them.

The approach through logic allows explanations of general effects of complexity which are
common to people and machines. The framework therefore allows for more subtle differen-
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tiation between two types of case. The first includes those cases in which humans exhibit
particular performance profiles for very general reasons of computational complexity. By con-
trast, the second includes cases in which humans’ performance profiles are to be explained by
particular features of their computational architecture. Such issues are certainly not solved
merely by using a logical framework; but at least they can be precisely formulated.

Regarding the imagery debate, we would urge a more careful differentiation of ‘propositional’
representations into a whole variety of sentential systems. These systems will have quite dif-
ferent inferential properties and ranges of possible implementation. We believe the resulting
classifications will be much better guides to the psychological analysis of their internal im-
plementation. Computational models of internal implementations in long term and working
memory are not paper-and-pencil-drawing implementations. Nor are they representations in
acoustic or printed natural languages. Approaching them armed with a characterisation of
their central computational properties—including specificities—might be expected to have
advantages in the range of implementations which are thereby suggested.

The analysis of Euler’s Circles indicates that our distinction between MARS and LARS at
least describes a major distinction between interpretations of this graphical case. And this
particular case has historically played a part in arguments for and against graphical reasoning
as a psychological model. The clarification of the relation between Fuler’s method and mental
models unites two important strands of research. On the one hand, there is a body of empirical
data about human reasoning, with an important tradition in logical thought. On the other,
there are contemporary practical interests in the role of graphics in information display. The
clarification also indicates that graphical algorithms can make a contribution to extending
and deepening the empirical understanding of the data.

Kant argued that as mobile active beings, our reasoning processes are influenced by our spa-
tial experience. His theories were based on a physics subsequently to be generalised, but they
had a crucial impact on psychological thinkers such as Vygotsky and Piaget, and on their
formulations of theories of the development of reasoning. Linguists have explored the ‘loca-
list” hypothesis that the child derives its abstract categories by generalising initially spatial
concepts (cf. Anderson 1971, Clark and Carpenter 1989). Cognitive linguists have argued
along related lines that our most abstract categories are derived from spatial archetypes (cf.
Jackendoff 1983, Langacker 1987); they have further claimed that this leads inexorably to a
‘non-realist’ ontology for natural language semantics (cf. Lakoff 1987). What we evidently
share with all these authors is the following intuition. Mechanisms developed for perceiving
and reasoning about the spatial world are likely to be used for reasoning about other do-
mains. However, we are agnostic about the ontological direction which development follows;
on balance, we prefer to adopt a realist semantics for space, and to demand from psychology
an explanation of how logics are implemented in the mind.

Ongoing theoretical work extends our framework to other systems of graphical and linguistic
representation. We are lead to treat the more expressive ‘visual’ formalisms (such as semantic
networks) essentially as languages, whereas the least expressive formalisms (such as finite-state
generated languages) are considered to be iconic modalities, enforcing information in a similar
way to graphics. By redrawing the intuitive distinction on theoretical grounds, we can cast
new light on the cognitive efficacy of so-called ‘visual languages’ (Stenning, Neilson & Inder
forthcoming). In a more empirical vein, we have completed a study evaluating the cognitive
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effects of teaching first-order logic using Hyperproof (a graphically enhanced system due to
Barwise & Etchemendy 1994). Hyperproof uses a graphical LARs involving abstraction ‘tricks’
analogous to those observed here in Ecs. Its cognitive effects were compared with those of a
conventional syntactic method. The results show strong interactions between students’ pre-
course problem-solving aptitudes and their post-course reasoning improvements and proof-
styles (Cox, Stenning, & Oberlander 1994). Oberlander, Cox & Stenning (1994) argue that
these emergent differences in proof-style revolve around use of the abstraction symbols.
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