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ABSTRACT: Mathematics is obviously important in the sciences.  And so it is likely to
be equally important in any effort that aims to understand God in a scientifically
significant way or that aims to clarify the relations between science and theology.  The
degree to which God has any perfection is absolutely infinite.  We use contemporary
mathematics to precisely define that absolute infinity.  For any perfection, we use
transfinite recursion to define an endlessly ascending series of degrees of that perfection.
That series rises to an absolutely infinite degree of that perfection.  God has that
absolutely infinite degree.  We focus on the perfections of knowledge, power, and
benevolence.  Our model of divine infinity thus builds a bridge between mathematics and
theology.
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1. Introduction

All will agree that science makes extensive use of mathematics.  At least in physics,
scientific progress seems to go hand in hand with increasing formalization.  More
sophisticated physical theories are also more highly mathematical.  And the correlation of
progress with increasing formalization also appears sciences like chemistry and biology
as well.  Mathematics is obviously important in the sciences.  And so it is likely to be
equally important in any effort that aims to understand God in a scientifically significant
way or that aims to clarify the relations between science and theology.  Nevertheless,
mathematics has seen little application in theology.  There are few mathematical models
of God.

Our goal is to show how contemporary mathematics can be used to model the notion of
divine infinity.  We are not doing natural theology; our project is to analyze the
theological concept of God in light of the best available contemporary mathematics.   To
be God is to be maximally perfect (Morris, 1987).  Maximal perfection is absolutely
infinite.  So, for any divine perfection P, the degree to which God has P is absolutely
infinite.  For example, the knowledge, power, and benevolence of God are all absolutely
infinite.  We will provide a mathematical model of what it means to say that, for certain
perfections, the degree to which God has those perfections is absolutely infinite.  We will
focus on the three main classical perfections of knowledge, power, and benevolence.

To model divine infinity, we need two background theories.  The first background theory
is mathematical.  This is easy.  We just use modern set theory.  This theory is based on
the work of Georg Cantor (Dauben, 1990).  The second theory is theological.  We need
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some background theory of God.  This is hard – no theory of God will satisfy everybody.
And we don’t have the space to consider every possible theory.   Our work here is based
on what has been called classical theism.  We are thus inspired by figures as diverse as
Augustine (Drozdek, 1995), Gregory of Rimini (Thakkar, 2009), Leibniz, Royce, and
Plantinga.  And, of course, by Cantor himself.  For Cantor, theology was a part of the
inspiration for his mathematics (see Hallett, 1988: ch. 1; Dauben, 1977).  By using
classical theism, we do not mean to exclude other theologies.  However, we cannot hope
to build more than one bridge in one article.  We hope that we will be able to link infinity
with non-classical theisms in future work.  Finally, before we start, we want to stress that
we’re not doing a historical survey (for such surveys, see Leblanc, 1993; Achtner, 2005).

Equipped with these background theories, we can begin.  Section 2 introduces the
modern Cantorian theory of infinity.  Section 3 uses the Cantorian theory to model the
infinite decimal expansion of π  and the infinite influence of a person.   Section 4
introduces the concept of higher infinities and how transfinite recursion can be used to
define divine perfections.  The next three sections deal, respectively, with the knowledge,
power, and goodness of God.  Our conclusions are in Section 8.

2. Introducing Infinity

A long time ago, Aristotle introduced the concept of a potentially infinite series.  A
potential infinity is always coming into being; it is never wholly present.1  Suppose F is
some type of event or entity (e.g. ticks of a clock, steps into space, cuts in a line,
numbers).  A series of Fs is potentially infinite if and only if that series is defined by
some recursive procedure.  A recursive procedure for defining a series of Fs has two
rules.  It has an Initial Rule that defines the initial F in the series.  And it has a Successor
Rule that shows how to extend any given series of Fs by defining the next F in terms of
the previous Fs.  A recursive procedure does not define any last F.  For any previously
defined Fs, the Successor Rule always defines another later F.  To illustrate potential
infinity, suppose Zeus aims to count through all the natural numbers.  He produces the
initial natural number 0 at some time.  He then continues, saying 1, 2, 3, and so on.
These are the successor numbers.  Assuming that Zeus is immortal, he will always be
able to say another number.  There will always be another possible number for Zeus to
count.   Zeus will never reach the end.

Aristotle contrasted potential infinity with actual infinity.  An actually infinite series is
wholly present at some single moment of time.  A series S is actually infinite at some
time t if and only if (1) the initial object of S exists at t; and (2) for every object in S at t,
there is another successor object in S at t.  It is a completed or whole totality with
infinitely many members.  To illustrate an actually infinite series, suppose that Zeus has a
perfect memory.  As he counts through the numbers, he records each number in a mental
list.  As he counts, his mental list is a series of numbers that grows ever larger.  If there is
ever any time at which this list is actually infinite, then there is some time t such that (1)
0 is on Zeus’s mental list at t and (2) for every number n on Zeus’s list at t, the successor
number n+1 is also on his list at t.  Of course, this means that there is some time at which
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Zeus has counted through all the numbers.  Most Aristotelians would deny that it is
possible for there to be any such time.  Since there is no greatest number, Zeus cannot
make any actually infinite list of numbers.  Most Aristotelians deny the reality of any
actual infinities.2

After Aristotle, there was considerable interest in the actually infinite (Duhem, 1985: pt.
1).  And while denial of the actual infinite was widespread, it was not universal.
Augustine argued that God grasps the actual infinity of numbers in a single thought (City
of God, bk. 12, ch. 18).  Duns Scotus said that what is potentially infinite to us is actually
infinite to God (A Treatise On God as First Principle, sec. 4.48).  And it seems consistent
with the notion of potential infinity to say that, for any finitely long interval of time, for
any moment within that interval, there will be another later moment still within that
interval.  Surprisingly, this means that an agent whose creative power is unlimited can
produce an actually infinite series of objects in any finite interval of time.  On the basis of
this reasoning, Gregory of Rimini argued that God can produce an actually infinite series
of objects (Duhem, 1985: 109-119; Thakkar, 2009).3  For example, God can make an
actual infinity of angels in a finite interval of time.  God creates an initial angel in 1/2
minute; God then creates every successor angel twice as fast; at 1 minute, God has
created an actual infinity of angels.  Suppose God gives these angels names.  If God
makes a mental list of the names of these angels as he creates them, then the mind of God
contains an actually infinite list at 1 minute.

Astonishingly, Gregory’s insights languished for nearly 600 years.  However, during the
19th century, the success of the calculus suggested to many thinkers that space and time
were actually infinitely divided (see Moore, 2001: ch. 8).  Between any two moments in
time, there is an interval containing an actual infinity of moments.  Between any two
points in space, there is a line segment containing an actual infinity of points.4  For
example, consider a line segment whose length is 1 meter.  It is stretched from 0 to 1.
There is a point halfway between 0 and 1.  It is the point 1/2.  Between 1/2 and 1, there
lies the point 3/4.  Hence the line segment from 0 to 1 contains an infinite series of
points: 0, 1/2, 3/4, 7/8, 15/16, 31/32, and so on.  This series is not produced by any agent
who chops up the line segment by performing successive acts of division in time.  It is
wholly present.  By the end of the 19th century, Georg Cantor decisively breaks with
Aristotle.  Cantor argues that every potentially infinite series presupposes an actually
infinite series (Hallett, 1988: sec. 1.2).  Cantor’s work begins the theory of transfinite
numbers.

According to an early version of the Cantorian theory, numbers are defined by three rules
(Hallett, 1988: 49).  These are the Initial Rule; the Successor Rule; and the Limit Rule.
We state these rules and then comment on them.  They look like this:

0.1 Initial Rule. There exists an initial number 0.

0.2 Successor Rule.  For every number n, there exists a successor number n+1.

0.3 Limit Rule.  For any endless series of numbers, there exists a limit number greater
than every number in that series.
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The Initial Rule needs little comment.   It just says 0 exists.  Given 0, the Successor Rule
defines a series of finite numbers.  The successor of 0 is 1; the successor of 1 is 2; and so
it goes.  This series is not defined temporally.  The rules say nothing about an agent who
produces these numbers one after another in time.  They simply say that the numbers
exist.  The series of finite numbers is endless.  However, it is not endless in time.  To say
that the series of numbers is endless is to say only that for every member of the series,
there exists a greater member.  Since the series of finite numbers is endless, the Limit
Rule says that there exists a limit number greater than every number in that series.
Cantor gave the name ω to that first limit number.  Since ω is greater than every number
in the series of finite numbers, ω is not finite.  More precisely, ω is the first transfinite
number – the first number beyond the finite.  The number ω is just the first transfinite
number on a transfinitely long number line.  Since ω is a number, it has a successor ω+1.
And ω+1 is followed by ω+2.  Then ω+3, ω+4, and so on.  So the next limit number is
ω+ω.  Followed by ω+ω+1….

Although the formal structure of Cantor’s theory of actual infinities is almost universally
accepted, some thinkers remain skeptical about the real existence of actual infinities.  We
offer an indispensability argument for actual physical infinities:5 (1) we ought to believe
in something if it is indispensable to our best science; (2) actual physical infinities are
indispensable to our best physical theories; therefore (3) we ought to believe in actual
physical infinities.  And, by analogous arguments, we ought to believe in the existence in
at least all the actual mathematical infinities needed to analyze the formal structure of
those indispensable actual physical infinities.  Byl (2007) uses the indispensability of
infinities in physics and mathematics to argue for theism.  He argues that the best
explanation for the existence of actual physical and mathematical infinities is the
existence of an actually infinite God.  Indeed, Byl argues that if there were no actual
infinities, we would be deprived of some of our best reasons for thinking that God exists.

3. Infinite Sequences

A natural way to model an infinite object is to define an infinite series of increasingly
accurate approximations to that object.  Just as ω is the limit of the series of finite
numbers, so the infinite object is the limit of the series of increasingly accurate
approximations.  For example, consider the number π.  The decimal expansion of π is
infinitely long.  So the natural way to define the decimal expansion of π is to define an
infinite series of increasingly accurate approximations to that expansion.  Greater
accuracy goes hand in hand with greater length.   Formally, for any number n, let D(π, n)
be the decimal expansion of π out to n digits.  The decimal expansion is just a list of
digits (we ignore the decimal point).  So D(π, 0) is 3.  Then D(π, 1) is 31.  Then D(π, 2)
is 314.  Then D(π, 3) is 3141.  And so it goes.  We can write all this formally using
Cantor’s rules:
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1.1 Initial Rule.  For the initial number 0, the initial expansion D(π, 0) is 3.

1.2 Successor Rule.  For every successor number n+1, the successor expansion D(π, n+1)
is defined by taking D(π, n) and adding the next digit of π.  Each D(π, n+1) is more
accurate than its predecessor and is closer to D(π) itself.

1.3 Limit Rule.  For the infinite number ω, the infinite expansion D(π, ω) is the limit of
the series of D(π, n) for every finite n.  The series of finite expansions converges to
the infinite expansion.   And D(π, ω) is the fully accurate decimal expansion of π.
We therefore identify D(π) with D(π, ω).

We often use sets to model various features of things.  For example, consider strength.
How can we define the strength of a person?  One plausible way is to identify the
strength of a person with the set of all the objects that can be lifted by that person.  So the
strength of Bob is the set of all objects that can be lifted by Bob.  To have more strength
is to be able to lift a more inclusive set of objects.  If Bob is stronger than Carl, then the
set of things Bob can lift is more inclusive than the set of things that Carl can lift.

As another example, consider influence.  To put it crudely, the influence of a person x is
the set of people who do what x tells them to do.  The influence of a person can spread
out in degrees.   Consider the influence of some person Richard.  The zeroth degree of
Richard’s influence is just Richard.  Richard now tells some people both to pat their
heads and to tell others to do the same (that is, to tell others both to pat their heads and to
tell others…).  The first degree of Richard’s influence is Richard plus all the people who
do what Richard tells them to do.  The second degree of Richard’s influence includes all
the people in the previous degrees plus all the people that they influence.  And so it goes.
For an arbitrary person x, we define degrees of influence of x like this:

2.1 Initial Rule.  For the initial number 0, the initial degree of influence of x is In(x, 0).
This initial degree includes just x himself or herself.

2.2 Successor Rule.  For every successor number n+1, the successor degree of influence
of x is In(x, n+1).  The successor degree In(x, n+1) is the previous degree In(x, n)
plus all the people influenced by people in In(x, n).

2.3 Limit Rule.  For the infinite number ω, the limit degree of influence of x is In(x, ω).
The limit degree In(x, ω) includes all people in all lesser degrees.  It includes every
person in every degree In(x, n) for any finite n.

What does it mean to say that the influence of a person is infinite?  It means that the
sequence of their degrees of influence is always growing.  The next degree is always
more inclusive than the previous degree.  For example, Richard influences some people;
they influence more people; they influence even more people; and so it goes.  To say that
the influence of Richard is infinite is to say that every next degree of influence is a bigger
set of people.  The limit degree includes all these people. For any person x, let In(x) be
the influence of x.  For any person x, if the influence of x is infinite, then In(x) is equal to
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In(x, ω).  For example, if the influence of Richard is infinite, then In(Richard) is
In(Richard, ω ).  We now have a conception of infinite influence that is both
mathematically precise and that is generalizable to higher degrees of infinity.

4. Into the Transfinite

One of the most impressive results of the modern theory of infinity is that ω is not the
biggest infinite number.  The number line extends endlessly far beyond ω.  It extends far
out into the transfinite.   The transfinite number line (the Long Line) is defined in set
theory.  Set theory is highly technical and we won’t go into any detail here.  Here we
provide only an introductory and very high-level overview.

The most basic version of set theory is known as Zermelo – Fraenkel – Choice set theory
(ZFC).  Many excellent introductions to ZFC are widely available (e.g. Hamilton, 1982;
Devlin, 1991).   ZFC can be used to define the most basic version of the Long Line.  But
ZFC is not the biggest theory of sets.   It defines a tiny universe of sets and a short
number line.  It is logically possible to extend ZFC.  This means that ZFC does not define
any absolute infinities.  To be absolutely infinite is to be infinite in a way that is logically
maximal.  Since we’re interested in an absolutely infinite object (God), we want to use
that number line than which no longer is logically possible.  So we need to extend ZFC,
and its short line, as far as it can be extended without contradiction.  ZFC is extended by
adding special existence axioms, known as large cardinal axioms (Drake, 1984).  These
axioms assert the existence of transfinite numbers that are extremely large.

When we add large cardinal axioms to ZFC, we get a new set theory.  Let ZFC* be ZFC
plus all consistent large cardinal axioms.  Since ZFC* includes all consistent large
cardinal axioms, any extension of ZFC* is inconsistent.   ZFC* is the logically maximal
set theory.  The number line determined by ZFC* is the logically maximal number line.
It is the Long Line.  Since the length of the Long Line is logically maximal, it is
absolutely infinitely long.  There are three kinds of numbers on the Long Line.  The first
kind includes only the initial number 0.  The second kind includes every successor
number.  Every successor number has the form n+1 where n is some number on the Long
Line.  For instance, 1 is a successor number; but so is ω+1.  The third kind includes every
limit number.  Every limit number is defined as the upper bound of some infinite series of
numbers.   For example, ω is a limit number.  But there are greater limit numbers.

We use the Long Line to define a series of increasingly accurate approximations to divine
perfection.   For any number n on the Long Line, the n-th approximation is the n-th
degree of divine perfection.  Since the Long Line is absolutely infinitely long, the series
of degrees of any perfection rises to an absolutely infinite degree of that perfection.
When we use the Long Line to define these degrees, we are going beyond ordinary
recursion (which just uses Initial and Successor Rules).  We are defining the degrees by
transfinite recursion.6  A definition by transfinite recursion involves a rule for each kind
of number on the Long Line.  So it involves an Initial Rule, a Successor Rule, and a Limit
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Rule.  To reach the absolute infinite, we also add a Final Rule.  For any perfection P, the
definition of the degrees of P by transfinite recursion has this form:

3.1 Initial Rule.  For the initial ordinal 0, there exists an initial degree of the divine
perfection P.  This is P(God, 0).  Following our earlier examples, P(God, 0) is some
initial set of objects (e.g., those that are least relative to the perfection).

3.2 Successor Rule.  For every successor number n+1 on the Long Line, there exists a
successor degree of the perfection P.  This is P(God, n+1).  Following our earlier
examples, P(God, n+1) is a set of objects.  And just as the number n+1 is defined in
terms of n, so P(God, n+1) is defined in terms of P(God, n).  Each next degree of P is
an extension or amplification of the previous degree.

3.3 Limit Rule.  For every limit number L on the Long Line, there exists a limit degree of
the perfection P.  This is P(God, L).  Following our earlier examples, P(God, L) is a
set of objects.  And just as the number L is defined in terms of all the numbers less
than L, so P(God, L) is defined in terms of P(God, k) for all k less than L.  Each limit
degree of P is defined as the union of the entire progression of lesser degrees of P.

3.4 Final Rule.  There is a maximal degree of the perfection P.  Formally, P(God) is
defined in terms of P(God, k) for every number k on the Long Line.  Since P(God) is
defined in terms of every number on the Long Line, it is absolutely infinite.  P(God)
is a collection of objects.  However, this collection is not a set.  For those who are
familiar with the technical details, P(God) is a proper class.

5. The Knowledge of God

The first main classical perfection of God is knowledge.  The knowledge of God is
absolutely infinite.  We want to define this mathematically.  To say that God has
knowledge implies that God has a mind and that the mind of God contains ideas.  An idea
in the mind of God is a mental representation of some possibly existing thing.  It is an
exact description of that thing.  Presumably, God can think about any possible thing.
God can think about numbers, sets, protons, horses, universes, and so on.  If this is right,
then God has ideas of numbers, of sets, of physical things, of universes, and so on.
Following Leibniz (Theodicy, secs. 414 – 417), we say that God’s idea of a universe is a
complete and perfectly accurate description of that entire universe at every moment of its
history.7

We don’t have to worry too much about the details of what it means to be a divine idea.
Our main concern is with the organization of the ideas in the divine mind.   Clearly, there
are some divine ideas.  God has some knowledge.  And, equally clearly, some of these
divine ideas are more complex than others.  More complex divine ideas are composed of
simpler divine ideas.  Complex divine ideas have internal structure.  For instance, there is
some sense in which the idea of a hydrogen atom is composed of the idea of a proton and
the idea of an electron.  The idea of the hydrogen atom is more complex than the ideas of
its parts.  As another example, consider natural numbers.  Many mathematicians say that
every natural number is the set of all lesser natural numbers.  So 3 is the set {0, 1, 2}.  It
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seems reasonable to say that the idea of a set is somehow composed of the ideas of its
members.  If this is right, then there is some sense in which the idea of the number 3 is
composed of the ideas of the numbers 0, 1, and 2.  Thus the idea of every greater natural
number is more complex than the ideas of all the lesser natural numbers.  As another
example, the idea of a possible universe is composed of the ideas of all the things in that
universe.   The idea of that universe is more complex than the idea of each thing that it
contains.

Any mathematical model is based on some ultimate assumptions.  These are typically
expressed as axioms.  Our model of divine knowledge is based on five axioms.  The first
axiom says that some divine ideas are the simplest divine ideas.  They aren’t composed of
any other divine ideas.  For example, quarks are said to be simple physical things.  If this
is right, then the idea of a quark is among the simplest divine ideas.  Likewise for the idea
of an electron.  As another example, the number 0 isn’t composed of any other numbers;
it’s the simplest number.  So it’s fair to say that the idea of the number 0 is a simple idea.
And since the empty set doesn’t contain any members, it’s fair to say that the idea of the
empty set is a simple idea (indeed, 0 is typically identified with the empty set).

The first axiom implies that there is a lowest level of mental complexity in the divine
mind.  The simplest ideas are on the lowest level of the divine mind – the bottom shelf in
the divine mental library.  The bottom level is level 0.  The least degree of divine
knowledge includes every idea in level 0.  Formally,  K(God, 0) is the 0-th degree of
divine knowledge. K(God, 0) is a set of ideas in the divine mind.  God knows every idea
in that set.

The second axiom says that simpler divine ideas are combined in all possible ways to
make more complex divine ideas.  Since God is all-knowing, God cannot be ignorant of
any possible combinations.  The second axiom implies that there are levels of the divine
mind above the bottom level.  More complex ideas are on higher levels.   The degrees of
divine knowledge correspond to the complexity levels of divine ideas.  Certainly, more
intelligence is required to know more complex ideas.  Since protons are made of many
quarks, it takes more intelligence to understand the idea of a proton than to understand
the idea of a quark.  And, if every natural number is the set of all lesser natural numbers,
then it takes more intelligence to understand 5 than it takes to understand 4.

Accordingly, the first degree of divine knowledge is K(God, 1).  This degree contains all
the ideas formed out of simple ideas.  The second degree is K(God, 2).  An idea on this
second degree can be formed by composing just ideas in degree 1 or by composing an
idea in degree 1 with an idea in degree 0.  This degree contains any combination of ideas
that involves at least one idea from degree 1.  For every degree of divine knowledge,
there is a successor degree.  For any n-th degree, there is an (n+1)-th degree.  Generally,
the (n+1)-th degree of divine knowledge K(God, n+1) contains every combination of less
complex ideas that involves at least one idea from the n-th degree K(God, n).

The third axiom says that for any endlessly increasing series of degrees of knowledge in
the divine mind, there is a limit degree that includes all those levels.   The first limit
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degree is the ω-th degree of divine knowledge.  It is K(God, ω).  Limit degrees don’t add
any new ideas.  They merely gather together or accumulate the ideas on all lesser
degrees.   So K(God, ω) includes every finitely complex idea in the divine mind.   For
example, K(God, ω) includes God’s knowledge of every finitely complex physical thing.
It includes God’s knowledge of every finite number, or of every finitely complex set.
But K(God, ω) does not include any infinitely complex ideas.  They will appear in the
next degree.

The fourth axiom says that some divine ideas are infinitely complex.  God has an idea for
every possible universe; some of those are infinitely complex; so God has some infinitely
complex ideas.  Consider an irrational number like π.  As we’ve already discussed, the
decimal expansion of π is infinitely long (3.141592654….).  Surely God knows the
decimal expansion of π.  The divine idea of the decimal expansion of π is an infinitely
complex idea.  Hence the mind of God contains an infinitely complex idea.  Likewise,
Augustine says that God knows the entire infinite sequence of natural numbers as a single
entity (City of God, bk. 12, ch. 18).  To use modern terminology, God knows the set of all
natural numbers.  This set is ω .   The divine idea of ω is an infinitely complex idea.
Since the idea of ω is not finitely complex, it does not appear in K(God, ω).  It first
appears on the next degree.  This is the successor degree K(God, ω+1).   Finally, the fifth
axiom says that for every possible (consistently definable) mathematical object, God has
an idea of that object.  God is not ignorant of any possible mathematical object.  Cantor
used this principle to justify the existence of infinite numbers and sets (Dauben, 1977).

We’ve given five axioms for divine knowledge.  We can use them to associate every kind
of number on the Long Line with a degree of divine knowledge.  We can use them to
define the knowledge of God by transfinite recursion.   Since there are three kinds of
numbers on the Long Line (initial, successor, and limit), there are three rules for divine
knowledge.  We add a fourth rule (a final rule) to get to the absolute infinite.  The rules
are:

4.1 Initial Rule. The least degree of divine knowledge is K(God, 0).  This degree contains
all simple divine ideas.  For every idea x in K(God, 0), God knows x.

4.2 Successor Rule.  For every successor number n+1 on the Long Line, the (n+1)-th
degree of divine knowledge is K(God, n+1).  This degree contains every possible
combination of less complex ideas involving at least one idea from K(God, n).  So,
the next degree of divine knowledge is the largest possible expansion of all the
previous degrees.  Thus the mind of God increases in knowledge in a maximal way.

4.3 Limit Rule.  For every limit number L on the Long Line, the L-th degree of divine
knowledge is K(God, L).  A limit degree doesn’t add any new ideas.  It merely
gathers together or accumulates all the ideas in all lower degrees.  Hence the degree
K(God, L) includes every idea in every degree k for k less than L.  Consider the lease
infinite degree of divine knowledge K(God, ω).  It includes every idea in K(God, 0)
plus every idea in K(God, 1) plus every idea in . . . K(God, n) . . . and so on.
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4.4 Final Rule. The final degree of divine knowledge is K(God).  This degree contains all
divine ideas on all lower levels.  It is the total or maximal accumulation of divine
ideas.  Formally, for any number k on the Long Line, for any idea x, if x is in some
degree K(God, k), then x is in K(God).  The final degree of divine knowledge is
identical with the total content of the divine mind.  It is the knowledge of God.

6. The Power of God

The second main classical perfection of God is power.  God is absolutely infinitely
powerful.  Divine power is creative power (Morris, 1991).  It is the power to create some
object.  We use transfinite recursion to define this power.  The n-th degree of divine
power is P(God, n).  How do we define the degrees of divine power?  Certainly, the
power of God parallels the knowledge of God.  If God has an idea, then God has the
power to create something that is a model of that idea.  Equivalently, if God has a
description, then God has the power to create something that fits or satisfies that
description.  So we might say that for every number n on the logically maximal number
line, P(God, n) is identical to K(God, n).  Of course, to say that God can create an object
does not imply that God does create it.  It merely implies that God has the ability or
capacity (the power) to create it.

We now come to a perplexing question: does God create mathematical objects?  We said
that God has ideas of these objects – for every number, God has an idea of that number.
It would be fascinating to go into this question; but it would take up too much space.8  So
we’ll just be content with saying that mathematical objects are ideas in the mind of God.
We’ll focus our attention on physical things.  Physical things exist in universes.  Every
possible physical thing either is a part of some possible universe or is identical with some
possible universe.   So we’re focusing on the power of God to create universes.  To create
a possible universe is to actualize that universe.  It is to produce an actual universe that
corresponds to the possibility.  God has an idea of every possible universe.  The idea is in
some degree of divine knowledge.  We thus identify the n-th degree of divine power with
the set of possible universes on the n-th degree of divine knowledge.   Formally, for any n
on the Long Line,  P(God, n) is the set of all x such that x is a possible universe in
K(God, n).  The power of God is P(God).  It is the union of P(God, n) for all n on the
Long Line.

7. The Benevolence of God

The third main classical perfection of God is benevolence.  Benevolence is active.  It is
the power of God directed in an active way towards the realization of the best.  Divine
benevolence is divine actualization – it creates value by changing the merely possible
into the actual.  To define divine benevolence, we start with a system of axioms.  These
axioms determine the four rules in a definition by transfinite recursion.
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We give eight axioms for divine benevolence.  Clearly, God has some ethical obligations.
The first axiom for divine benevolence says that God does what God is ethically
obligated to do.  The second axiom comes from Leibniz: every universe in the mind of
God has some ethical value (Theodicy, secs. 414 – 417).  The third axiom is vaguely
utilitarian: the value of any universe corresponds to the quantity and quality of life in that
universe.  Sterile universes have no value.  Universes with the least amount of life have
the least value.  Universes with more life have more value; they are better universes.

The fourth axiom allows us to define an initial rule for divine benevolence.  The fourth
axiom says that God is ethically obligated to maximize the value of creation.  It follows
from this that God is ethically obligated to create some universe; otherwise, the value of
creation would be zero, which is not maximal.  It also follows from this that God is
ethically obligated to start by actualizing every least valuable universe.  For if God does
not start by actualizing all of these, then God will have failed to actualize some universes
that contain some value; but then the value of creation would not be maximal.

The fifth and sixth axioms allow us to define a successor rule for divine benevolence.
The fifth axiom is that, for every universe, there is at least one way to improve it
(Reichenbach, 1979; Fales, 1994).  Any way to improve a universe defines a better
version of that universe.  For any universe x, and for any way to improve x, there is
another universe y that is improved in that way.  The sixth axiom is that, for any universe,
if God actualizes that universe, then God is ethically obligated to actualize every
improvement of that universe (Forrest, 1981; Coughlan, 1978).

The seventh and eighth axioms allow us to define a limit rule for divine benevolence.
The seventh axiom involves the notion of an ethical progression of universes.  An ethical
progression is a sequence of universes in which every next universe in that sequence is an
improvement of the previous universe. The seventh axiom says that for every ethical
progression, there is at least one way to improve that entire ethical progression.  To say
that a universe x is an improvement of an entire ethical progression is to say that x is
better than every universe in that progression.  The eighth axiom says that for every
ethical progression, if God actualizes that progression (by actualizing every universe in
it), then God is ethically obligated to actualize every improvement of that progression.

According to these axioms, God actualizes a plurality of universes.  God actualizes a
multiverse (Kraay, 20XX).  Within the framework of process theology, Edwards (2000)
has also argued that God makes a multiverse.  We use transfinite recursion to formally
define this multiverse.  For any n on the Long Line, the n-th degree of divine benevolence
is Act(God, n).  Each degree of divine benevolence is a set of possible universes.  God
actualizes every universe in every degree of divine benevolence.   For any n on the Long
Line, and for any x in Act(God, n), God has the power to actualize x and the benevolence
of God directs god to actualize x.  The rules for divine benevolence look like this:

5.1 Initial Rule.  The initial degree of divine benevolence actualizes every least valuable
universe.  Thus Act(God, 0) is the set of all least valuable universes.
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5.2 Successor Rule.  For any universe x, if God actualizes x, then God actualizes every
improvement of x.  More formally, for every successor number n+1 on the Long
Line, for every universe x, if x is in Act(God, n), then for every y, if y is an
improvement of x, then y is in Act(God, n+1).

5.3 Limit Rule.  For every endless ethical progression of universes ƒ, if God actualizes
every universe in ƒ, then God actualizes every improvement of ƒ.  More formally, for
every limit number L on the Long Line, for every ethical progression defined on L, if
God actualizes that progression, then for every universe y, if y is an improvement of
that progression, then y is in Act(God, L).

5.4 Final Rule. There is a maximal degree of divine benevolence.  Formally, Act(God) is
the union of all Act(God, k) for all k on the Long Line.   Act(God) is the Best.   For
every  possible universe x in Act(God), God actualizes x.

8.  Conclusion

Our project here has been to use contemporary mathematics to model the absolutely
infinite perfection of God.  We modeled the three classical perfections: the knowledge,
power, and benevolence of God.  We explained what it means, for each perfection, for
God to have that perfection in an absolutely infinite way.  And we did this using the best
available contemporary mathematics.  Of course, objections can be raised against our
project.  No doubt the most serious objection to our model challenges the very idea of
using mathematics of any kind to model the infinity of God.  This objection can be raised
from both the mathematical and the theological sides of our project.

On the mathematical side, the challenge to our project can be raised with formal
precision: within the theory of infinity based on standard set theory, there is no way to
decide the cardinality of the continuum.  Indeed, there is a long list of similar undecidable
propositions concerning mathematical infinities (Devlin, 1991: ch. 6.1).  If mathematical
rationality is not able to answer its own purely formal questions, then surely it is not
adequate for the analysis of divine infinity!  This challenge is both warranted and
salutary.  The necessary self-limitations of mathematical rationality compel us to be
humble.  It’s a good thing to be reminded that reason has intrinsic limits.  Nevertheless,
no one would argue that we should stop using mathematics.  It is a useful tool, especially
in the sciences.   We should apply it in theology as far as we can, and no further.

On the theological side, the challenge to our project is perhaps concerned more with
content than with form.  Divine infinity is the unsurpassable richness of concrete life; it is
not the sterile orderliness of mathematical abstraction.  Accordingly, even if
mathematical rationality were fully adequate to solve its own problems, it would not be
adequate in theology.  An excellent reply was given by Josiah Royce.  Royce (1899) was
among the first to apply the new Cantorian theory of the infinite to theology.  Speaking of
the divine life, Royce writes (and the italics are his):
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[I]t is easy, as we have seen, to make light of mere numbers because they are so
formal, and because one wearies of mathematics.  But our present case is simply
this: Of course the numbers, taken in abstract divorce from life, are mere forms.
But if in the bare skeleton of selfhood, if in the dry bones of that museum of mere
orderliness, the arithmetical series, – if, even here, we find such an endless wealth
of relatively unique results of each new act of reflection, in case that act is taken
in synthesis with the foregoing acts, – what may not be, what must be, the wealth
of meaning involved in a reflective series whose basis is a concrete life, whose
reflections give this life at each stage new insight into itself, and whose syntheses
with all foregoing acts of reflection are themselves, if temporally viewed, as it
were, new acts in the drama of this life? (Royce, 1899: 580)
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Notes

1It has often been argued that there is no middle ground between (1) the strictly finite and
(2) the actual infinite.  Hence Aristotle’s notion of potential infinity is incoherent.  See
Umphrey, 2002: 128-130.  See also Tiles, 1989, especially ch. 1.
2It is not entirely clear that an Aristotelian must deny the existence of actual infinities.
After all, Aristotelians say the universe has no beginning; hence there have actually been
infinitely many days before today.  See Moore, 2001: ch. 2.5.
3Gregory of Rimini (c. 1300 – 1358) affirms that God can produce actual infinities.  And
Gregory even proposes solutions to the apparent part-whole paradoxes of the infinite.  He
anticipates Bolzano.  See Duhem, 1985: 109-119; Moore, 2001:53; Thakkar, 2009.
Thakkar cites Gregory of Rimini (1979–87, III 443:3–12).
4According to Weyl, if physical space is not continuous, then the Pythagorean Theorem
does not hold in physical space.  Yet it does hold.  See Weyl, 1949: 43.
5Our indispensability argument for actual physical infinities parallels the Quine-Putnam
indispensability argument for abstract mathematical objects.  See Steiner (1998) and
Colyvan (2001).  We note that Hartry Field denies the existence of any abstract objects.
Yet even he affirms that actual infinities are indispensable in physics (Field, 1980).
6On the one hand, a definition by recursion has two rules: an initial rule and a successor
rule.  It defines a potential infinity.  On the other hand, a definition by transfinite
recursion has at least three rules.  It at least adds a limit rule to the initial and successor
rules.  It may also add a final rule.  Transfinite recursion defines actual infinities.
7Many Leibnizian ideas concerning God and possible universes have been taken up, in
various ways, in contemporary analytic philosophy of religion.  For example, see
Plantinga, 1974.  We cannot go into further detail here.
8Plantinga (1980: 142-143) says that God does not create mathematical objects.  But
Menzel (1987) says that God does create them.  We won’t enter this debate here.
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