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ABSTR.ACT: We study utive *t methods for optimization problems in Block Angdar
Form (BAF). We begin by reviewing some standa"rd basis factorizations, including Saun-
ders' orthogonal factoüzation and updats for the simplex method that do not impose any
rcstriction on the pivot srq,úene- and maintain the basis factorization structured in BAF
throughout the algorithm. We then suggest orthogonal factorization and updating proce-
dures that allow coarse grain parallelization, pivot updates local to the affected blocks, and
independent block reinversion. A simple pardlel environment appropriate to the descrip-
tion and complexity analysis of thesr' procdures is defrned in Section 5. The factorization
and updating procedures are prrrented in Sections 6 and 7. Our update prccedure out-
performs conventional uOdating procd:trrm even in a purely sequentia.l environment.
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Consider the linear program

J. M. STERN AND S. A. VAVASIS

LP : min{f x: z ) 0 and Ax: d}.

If Aism x n, a (nondegenerate) vertex ofthe feasible region has n-m active inequalities

constraints, í.e. n - m variables are set to 0. These are the residuaÌ variables for that
vertex. Permuting the vector r to separate its basic, i.e. nonzero, and residual entries, and
partitioning f and A accordingly, we can write ,LP as:

min[/ô f l l i i ] , r>ol

Using the basis inverse, B-t, we can isoÌate the basic rrariables of this vertex

rb : ã, - Éx' = B-rd - B-r Rs,',

and the value of the objective function at this vertex i:s

ó = C - t*' : 7bã + (f - fã)"' .

If we make a single element of rt positive, rï ) 0, the rralue of oô, the basic solution,
becomes  

ab :  ã -  ã * r : ã -qa . ,

and remains feasible if nonnegative. This sugge6É$ tfu simpl& meth,od, for going from a
feasible vertex to a better feasibÌe vertex. In one ste1r of tb simplex we:

o Look for a residual index j such that z; < O-
o Compute ri : Argminr A,,r2s {ã*/É.2ty-
o Make variable r| basic, and r! residrrql
o Compute the new basis inverse.

The simplex method cannot proceed if z > O in tfrÊ fiÌst step, or if it takes the minimum
of an empty set in the second step. The secud case c'oÌTesponds to an unbounded LP,
and in the first case the current vertex is an optimat mhion. Swapping the basic/residual
status of a pair of variables is called (to) piuoú. Àt enery pivot we have to update -É, i.e.

recompute the fundamental basis 
[, 

- et] of tbe nrrll space of lR 81. Historically the

first version of the simplex aÌgorithm, the &rlìl€nrrr simFlex, did exactly that, updating

the tableaux matrix / n al at every pivot- But we really do not need to carry the

fundamental null spacõ basis èxplicitly. It sfiae* to bave a factorization of B that allows
us to compute the one column of -filo i.e- +lp oe fimdamental feasible direction that we
need at every iteration: see [46]. Tbis È tbe rcryised simplex method of [13].

We can generalize this simple strategr to p,ohlems with nonlinear objective functions,
see [3] and [29], or even to problems with nonÌirrear constraints, see 131] and [8]. These

ï
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are calìed active set methods (ASMs) and they all need, in explicit or implicit form, the
fundamental null space basis of lR Bl. The best form in which to maintain and update
the fundamentaÌ nulÌ space basis is highly dependent on the form and structure of the
problem. In this paper we examine trhis question for problems whose constraint matrix, Á,
is in column block angular form. Minor variations of all our considerations and algorithms
apply to problems in row block angular form.

2. THE COLUMN BLOCK ANGULAR FORM

Optimization problems in BAF are very corrmon in practice, like multiperiod con-
trol, scenario investment planning, stoúastic programming, truss or circuit optimization,
economic stabilization, etc. [2], [15], [19], [261.[27],130], 138], [39], and [43]-.

A matrix in CBAF is a block matrix Á. with bx (b+ L) blocks, A*",1< lí < b,
1 < I < b+1, where only the diagonal blocks, Dk : Ak'k, and the (column) angular blocks,
pk - ak,b+1, contain nonzero elements (NZE's). Block Dk has dimension m(k) x na(k),
and block -Ek has dimension m(k) x na(ó + 1).

We define the concatenations, shown in Figure 1,

A ' , k  :  lA ' , o , - . .  .Áo ' * ]  f o r  1  (  k  <b+L

Akl  :  lA* ' t , - . . ,Á* 'u* t ]  for  1 < k < b.

The element in row i and column j of the matrix Dk is Df,r, and Df,. and D!,, are,

respectively, the block's ith row and jth column. In the same way, Ai',! and, Al;l are the
jth column and the ith row of A''k and ÁÈ''. respectively.

In an ASM we always have a special square and nonsingular matrix of columns of A,
the basis B. The nonbasic columns of Á form the residual matrix, R. We always assume
that the CBAF structure is maintained in B and R, as illustrated in Figure 1. If the kth
diagonal block of B, Bk, has n (À) coh*ns of Dk. and the /cth diagonal block of rt has the
remaining da(k) : na(k) -n(,t), we d€fine ôpk(l . . . 

"(k)) 
and rpk(1 . . . da(k)) as the basic

and residual column indices of DK , in the order they appear, respectively, in Bk and in the
kth diagonal blockof -&. So ãft' and ff,for 1 < k < b+ 1, are a compete characterization
of B and -R: The diagonal blod6 of the basis are Bk : Dk(:,bpk(l : n(/c))) and the
corresponding angular blodcs of thebasis are Ck : Ek(,,bçP+l(l: n(b+ 1))) t" the same
way, the diagonal and angular blods of the residual matrix ate Dk(:,rpb(l : do(,k))) and
Ek(:,rpb+L(L: da(b* 1))). Inthelast equations the colon (:) is to be interpreted as an
i n d e x r a n g e o p e r a t o r ,  I : n : f l , 2 , . . . , n l . a n d : - f ,  A l s m x n , A ( : , : ) : Á ( 1  : m , \ : n ) [ t Z ] .

We define d(k) : rn(k) -n(k). and since we assumed B to be nonsingular, d(k) > 0.
Also, since B is square, z(ô + 1) : Dï a(f).

3. BASIS FACTORIZATIONS

The basic numerical operation in an ASM is to compute and update the inverse, or

20L
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Figure 1. The Column Block Angular Form.

a factorization, of the current basis B. The factorization most commonly used is the
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Gaussian, L(J : B, that allows us to easily compute B-Lr : U-l(L-tx), from the lower
and upper triangr:ìar factors .t and t/. In fact, we usually have the LU f.actofizatíon of

QBP, where Q and P are (row and column) permutation matrices. 
'We 

need or can use
the permutations Q and P in order to:

o Maintain numerical stability.
r Preserve factors' sparsity.
r Preserve factors' structure.

Our main goal in this paper is to preserve the block structure in the factorization.
'We 

want to use the CBAF sfucture to parallelize independent "block operations" in our
algorithms, as explained in the nerçt sections. Preserving structure is also a first step to
preserve spa.rsity, i.e-, stnrcture can be seen as a block scale or "macroscopic" sparsity:
see 15] and 125]. Struchre and sparsity are aspects of a combinatorial nature, whereas
stability is an analytical one. Not surprisingly, the criteria for choosing P and Q that
wouÌd optimize the combinatorial and the analytical properties of the factorization are
conflicting. Let us CI<anine this point more carefuÌly:

In order to preserve the CBAF slructure in the factorization, we shall restrict the
choice of P, allowing column permrtations only within each diagonal block, or within the
angular coÌumns, refer to Figue 1- So doing we can implicitÌy give the permutation P by
the vectors bpk , rpk,1 < k < b + 1. as they are defined in Section 2.

The row permutation Q sill nm divide each diagonal block in two:
. an upper square blodq cbm€n to be nonsinguÌar, to be factored.
o a lower rectangular blocL of dimension d(k) x n(k).

As the ASM progresses, re hate to pivot, i.e. we have to replace a column of B by
a column of -8, and then update the frctorization. If we could guarantee that, at each
diagonal block, the upper block remains nonsingular; then it would be easy to do these
updates preserving the CBAF súructure of the factors. Unfortunately no such guarantee
exists. In fact, in order to achiere rnrmerical stability, we will need to permute upper and
Iower rows: see [20] and [aa].

These permutations between r4ryer and lower rows, in successive updates, lead to
a degeneration of the CBAF slnrcture in the factorization. Some strategies have been
suggested to preserve block angular strrrctures 

'n 
tlrc LU factorization, see [5] and [45],

and they all have to forbid this type of, pamutations. Some remedies are suggested to
preserve stability, nevertheless, sore pivots cannot be handled. This is very inconvenient
for, as explained in Section 1, we E-âú the pir-ot sequence to be determined by the ASM,
and have nothing to do with the detâitq of how we are carrying the implicit fundamental
null space basis of lR Bl.

4. THE ORTHOGONAL FACTORTZATION

In order to preserve the CBAF sfuucfure of B in the factorization, we will use the
orthogonal factorization QU : B. yke Q is oúhogonal and U upper triangular. The
orthogonal factorization of B is r:niqueÌy defined. up to a choice of signs [24]. Furthermore
a permutation matrix, P, is itself cthogonal. So the upper trianguÌar factor, U, in the
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orthogonal factorization QU : PB or (PïQ)U : Qtl : B must be independent of the
row permutation.

Once we have the QU factorization of B, only the U factor needs to be stored. What
we need is a factorization of the inverse' and instead of usitg

we can use

and

B - t  : U - r e t

gt _ u-tBt

B-1 : [J-LU-tBt_

Now, since (QU)'QU : TStqtQU : UtU : BtB, we can aÌso compute t/ by the

Cholesky factorization of the symmetric matrix BtB- b the orthogonal factor, Q, never
has to be explicitly computed: see [22].'We 

can see that [/ is itself in CBAF, Ì\rith ó n(/s) x n(/c) upper triangular diagonal
blocks, Vk, b corresponding n(k) x n(b + 1) rectangular angulax blocks, Wk , and the final
south-east n(b +l) x n(b+ 1) triangular block, S-

Bodewig has aìready considered the idea of symetrizing a matrix in order to solve a
Iinear system, i.e. solve BtBr : Btd instead of Br : d, in order to get a more stable
procedure that is independent of the row permutation, pl- For the same reasons Saunders
considered the use of the QU factorization in the simplex method, and observed that the

B : LQ factorization would preserve the block angularstructure ofproblems in row block
angular form, 140].

5. BLOCK OPERATIONS

In this and the next sections we derive some procedrnes to compute and update the
Cholesky factor, [/, for bases in CBAF using only a fer simple block operations. Moreover

our procedures allow many of these block operations to be performed in parallel. Our
procedures have better complexity bounds than fac'tcizations and updates that do not
explicitly use the block structure of the basis, as 1221, IU| or [40]. Our update procedure

will give us much better bounds even in a puely sequelúial environment.
Let us consider an efficient direct bloclç QR Íattmíatíot+ procedure bqrQ illustrated in

Figure 2, that takes advantage of the CBAF structure of B, in order to paralÌelize several
steps in the basis' factorization:

1. Compute (in parallel) the QU factorizations of the b diagonaÌ blocks,

2. Apply (in
puting

[u^*] = (Qu)'B*'t 0  t -

parallel) the orthogonal transformations to the angular blocks, com-

lwr zol = (Q\ck.
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Figure 2. The QR Factorization.
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3. Form and factor the "south-east" block Z, i.e.,

g :1qb+r ) t z ,  z  =

to get

w h e r e F :  f ' t  i s  n x n l  a n d G i s n x l .  T h i s r e q u i r e s  ( l l 6 ) n 3 + ( L l z ) n z l +
(1"12)nI2 *O(nz +12) FLoPs.

2. Compute the partial back transformotiot\ í-e- u- in

where v is n x nupper triangular and w is nx I, 0 and I are the zero and the

identity matrices, and u and 3r are column yectors. This requires (ll2)n2 'l nl *

O(n+ l )  FLOPs.
3. Reduce to upper triangular fortnan upper Eessenberg matrix, i.e., apply a se-

quence of Givens rotations to the row pairs {1,2}'{2,3}," '{n- L,n} of the

block matrix
lv wj

where v is n x n upper Hessenberg, and w b nx l, in order to reduce v to upper

triangular. This requires 2n2 + 4nI * O(nz + 12) FLOPs.

4. Rerl,uce to upper triangular fonn a coÌÌrmn-upper triangular block matrix, i'e.,

apply a sequence of Givens rotations to the row pairs {n,n- L},{n - 1',n -

2\,. . .{2,1} of the block matrix

l" vl

where u is an n x 1 column vector, and v is ? x n upper triangular, in order to

reduce u to a single NZE in the first row, so transforming v from triangular to

upper Hessenberg. This requires 2n2 + O(n) FLOPs.

lt,'f
lzo )

As we can see, almost all the work in bqrQ consists of the repetitive application of some

simple block matrix operations. In order to take a.dvantage of this block modularity in the

pro"edures presented in the next sections, rir'e rÌow define a few simple "block operations".

A detailed ãnalysis of each one of the basic block operations we need, and the number of

floating point operations (FLOPs) they require, can be found in [24]:
t. 

-Compute 
the parti,al Chotesky factorizatio4 eÌiminating the first n columns of the

blockmatr ix  
l r  Gl
lG ' 0 l

li Yl

lU Yl'l::l: [#]
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In the block QR factorization, many of the block operations we have to execute are
independent. Therefore, the bÌock angular structure gives us not only the possibility of
preserving sparsity, but also gives us the opportunity to perform several independent block
operations in paralleÌ. In order to study the advantages of parallelizing the independent
block operations required in our procedures we define a simple parallel computer. In our
parallel complexity analysis $/e use a network environment, consisting of b * 1 nodes, every
node having aprocessor (CPU) and local memory. For È:1...ó, we allocate the blocks
of matrices A and U to specific nodes, as follows:

o The blocks Dk Ek, Vk andWk are allocated at node &.
o The south-east blocks Z and ,9 a-re alÌocated at node 0 (or ó + 1).

In the next sections we will express our complexity bounds in terms of the sum and
the maximal block dimensions: 

b
dbsurn: 

I_(*)

dbmax :  max {m( l )  . . .  .  , n (b ) ,n (b  +  1 ) } .

In our compleÍty analysis we will not only account for the processing time measured
in FLOP-time r:nits, pTime. but also for the necessary internode communication, 1NC.
when b block operations, óopl ...bopb, can proceed in paralÌel (at different nodes). we
bound their processing time by nbrflops(@) : flops(bopt) n ... A flops(bof), *h"re
A is the maximum operator, and flops(ãrclf) is the number of floating point operations
necessary at bopk. In the equations that follow. Â has lower precedence then any multi-
plicative or additive operator. The expressions *At node &--l:b compute', or ,,Flom node
fr:í.'bsend" mean, "At (from) allthenodes I < È < b, inparallel, compute (send)". In
the complexity upper bounds we give in the next sections, we will always neglect lower
order terms.

6. BLOCK CHOLESKY FACTORIZATÏON

We can take advantage of the CBAF of B ir order do the Cholesky factorization of
Bt B with better performance, and parallelizing several block operations. We now give an
aÌgorithmic description of the block Choleskv factorization, bchj, in the simple farallei
environment defined in section 5. At each step we indicate by pTi,m,e : . . . an upper
bound to the required processing time. in FLOP units, and by INC :. . . an upper bound
to the required internode comunication. As shown in Figure 3, the steps of àcâ0 are as
follows:

1. At node k--./..b compute the btocks (Bk), Bk, (Bu)rck, arLd (Ck)tck.
pTi,me : m(k)n(k)2 + rn(k)n(k)n(á + 1) + m(k)n(b+ 1), < 3d,bmarT, I NC : 0.

2. Send (Ck\tgx from node k to node 0, where we accumulate Z0 :Dur(Co)tCn.
p T i m e : b n ( b + i ) ,  <  b d h n a x z  . I N C : b n ( b +  1 ) 2  <  b  d b m a x 2

3' At node fr compute the partial Cholesky factorization, eliminating the first n(k)
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vr

I

Figure 3. The Block Choleky Factorization'
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coÌurnns, of the block matrix

fo get

lv* wkl
lo  z r )

pifime : (t/6)n(k)s + (rl2)n(k)2n(ô + 1) + (rl2)n(k)n(b + 1)2 < (7 /6)dbmar3,
I N C : 0 .

4. Send Zk from node k to node 0 where we accumulat e Z : \f; Zk.
pTi.me : b n(b+ 1)2 < b dbmnê. INC : b n(b -f 1)" < b dbma*.

5. At node 0 factor the south-east corner ̂ 9 : chol(Z), where chol} indicates the
standard ChoÌesky factorization.
pTi.me: (l/6)n(b + 1)3 < (1/6)dhnazs.INC :0.

Theorem 6.1. The block Chnleskg Íadarízetiory bch), requi,res no rnore than (4 *
Ll3)dbmars *b d,brnax2 pocessing tiínc, andb dbmax2 i,ntemode commun'icat'íon.

At Steps 2 and, 4, if the the netrork allows paralleì internode communications, and
the topology of the network is riü enougb- we cân "fan in" the accumulated matrices in
only log(b) phases, see [6] a.rld [fO]- n'** phase requires x bf 2I parallel and independent
tasks, where at each task we trarrqïnit and add dhmn* reals. With this interpretation in
mind we can, in Theorem 6.1, subsitute ô bv tqg(ó) .

7. BLOCK UPDATE PROCEDI'RE

'We 
now address the problem of Wdating thie QU factorization of the basis when a

basic column, namely the ou,tj column of the auúlç block of B, gets "out" of the basis, and
the i,nj column of the inlç block of -R, q mes tn" to the basis. Actually, as explained
in Section 3, we onÌy really need [s maintain the triangular factor, [/. Therefore we want
an update procedure that recomputes U after a pivot. There are intuitive reasons for us
to hope for an efficient update

o A pivot can be seen as two rank one modifications of B, namely we delete a
column and then add a column to B. There are several procedures to update the
QU factorizalion of B in this case, like 1221, [24] or 140]. Therefore we could use
a generic "delete column, add olumn" two step update procedure, even without
taking into consideration the block structure of B.

o We know, from Section 4, that the (block) structure of [/ is uniquely defined by
the structure of B. ÀJso, del€ting a column from one block of B and adding
a column to a second blo{k, results in a "small" structural change, ín B or U.
Therefore there ought to be an eficient way to update the factor U after a pivot.

|  (Bo)rBu (B\,Ck1

L(co)rso o l
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Let us now present the block update procedure, bup\, tbat explicitly uses the coÌumn

block anguÌar structure of B, in order to achieve a much better performance than a generic

rank onÃpdate. The bÌock update procedure is described in terrns of the block operations

defined in Section 5. In bupQ we consider five different cases:

Case  I .  i nk f  ou t l c ,  i ' nk lb i t ,  ou t k t ' b+ l '

Case II. inlç : outk, ink I b * l.

C a s e  I I I .  i n k l b l t ,  o u t k : b + 1 .

C a s e  I V .  i n k : b ] - t ,  o u t k l b l l .

Case  V .  i nk  =  ou t l ç ,  i nk :b+1 .

Let us examine in detail case I, i.e., when in.,t and ouúÊ are distinct diagonal blocks,

as shown in Figure 4. In this case the only NZEs in the outgoing column arc in B!"*Ín, :

,outk(:,bpoutk(outj)) and the only NZEs in the incoming column, o ' are írt o'dnh :

Dink(:,rfnk(inj)), see Figure 1.
Let us define g : Btá,and u : Qta : (J-t Bta : fJ-tg. We notice that vector y has

the block structure of a row ín the 'i,nk block of B, and so does vector u' Namely the only

NZEs on u are in the blocks uink urr6 ub-rt ,

I urnr I I Vtnt" tyin*l-t I S-* I

L"o*'1:to s I l fr ' l '
In order to update u we remove the outj column of the oüú,t block, ui ffl!, and insert

u as the Ìast column oçryo,ink. Then we only have to reduce U to an upper triangular

matrix, by means of orthogonal transformations. The only orthogonal transformations we

use axe permutations and ihe reductions by Givens rotations defined is Section 5. Namely

we:
o Reduce lvoutk Woutkl from upper Hessenbeg to upper triangular.

o Reduce i.r'*t S1 to uppe, triangular'

o Insert thl first ráw of ryb-rr'o, as the the last rorr oç gink'o ' Then insert the last

row of f]outk' as the first row of 1Jb+t'o.
o Reduce S from upper Hessenberg to upper triangular'

The other cases are very similar. We now give an algorithmic description of the block

update procedure, bup\, inthe simple parallel environment defined in section 5' The steps

oi arp(fur" permutations, or the basic block operations defined in section 5. At each step

we indìcate by pTi.me: . . . an upper bound to the required processing time, in FLOP

units, and bv- INC: . . . arÌ upper bound to the required internode communication'

These are the stePs for case I:
1. At node ink, compute oink 

- (Stnkltotnte and g*t - (Cink)taink '

pTime : m(tnfiÃ(tnk) * m(ink)n(b + r) < Mhrnar2, INC : 0'

2. At node ink, compute the partial back transformation

I u;'"r"1 | Vn"r, Winkl-Ú 1- rtnt 1
L,l :Lo r l  Ls'* ' l
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Figure 4. The Blo& Update procedure, Case I.

Then insert únk as the last olumn of Vink.
pTi.me = (712)n(ink)z + n(;*)n(ó + t) < (Z/2)d.bmanz, INC :0.
F}om node i,nlç send z to node 0.3.

Dr

ouúf = I

B
cr

Dt

ink=2

C2

È Ca

wr

W2

-w '
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t 1 t

pTi.me :0, INC : n(b + t) < dbmar'

4. At node 0 comPute ub+L - S-tz'

pT'ime : (l l2)n(b + 1)' < (l l2)d,bman2, INC :0'

5. (a) At node outk, remove the column V!,i!fi, fromVoutk ' Then reduce

lvoutk 1ryoutk] from upper Hessenberg to upper triangular'

(b) At node 0, reduce h'b+1 S] to upper trianguÌar'

observe that the block operations at steps 5a and 5b a,re independent' so

pT ime : Zn(ink)2 + an(ink)n(b + 1) A 2n(ô + 1)2 < 6dbman2' IlüC : 0'

6 .F Ìomnode0sendvec to r ,g r , . t onode in / c ,whe re i t i s i nse r tedas the las t row
of Wink. FYom node 0 send element tï*t to nodei.nk, where it is inserted as

Üfrko*y.(u,,")tl Flo node outk send vector wftllxl,' to node 0' where it is

insèrtéd as the first row of 5'
pTime:0 , INC:2n(b + 1)  + n(outk)  <Sdbnor '

7. At node 0, reduce S from upper Hessenberg to upper trianguìax'

pTime :  2n(b+ 1)2 < 2dbmar2,  INC :o '

These are the stePs for case II:

Steps 1-5 are exactlY as in case T-

6. (a) IYom node ink send Vlifrrs,,(;,k) md W#o* to node 0'

(b) At node 0 reduce to upper triangular the 2 x n(b + 1) + 1 matrix

pTime:4n(b+ 1)  S  dbmar ,  INC :n(b+1) l  dbmat '

7. (a) Flom node 0 send the modified vector

Irf ink 
' l

I v n(ink),n(ink) llãïf'*l''l

back to node in.k.
(b) At node 0, reduce ,9 from upper Hessenberg to upper triangular'

pTi,me :2n(b + 1)2 < 2dbman2 , INC : n(á + l) < d'bmat'

These are the stePs of case III:

Steps 1-4 are exactlY as in case I'

5. (a) At node k: 1 :b remove the column W!,*ri fromWk'

(b) At node 0 reduce luó+1 s] to upper triangular. Then remove sc,outi from ,s.

pTime :2n(b + 1)' < 2dbmat2, INC :0'

6. Flom node 0 send toìode i'nk, u\+r to be inserted ioyi'nk as Vlifior*',^(ink)+L'

and ,9r,. to be inserted as the last row of Wínk '

pTime :0 , INC : n(b + l) < d'bmax'

7. At node 0, reduce S from upper Hessenberg to upper triangular'

pTime : 2n(b+ 1)2 < 2dbmarz, I l[C : 0'

vlT,!.rtrtn ot 
e,']
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',,,H

cr'

Figure 5. The Blo& UpdÀte Procedure, Case II and III.

These are the steps of case fV:
1. At node ,t--1.'ô, compute ç : 1Bk)tok and rk : (Ck)tak.

pTime : nl m(k)n(itl*) + m(k)n(ô + 1) 1 2dbmar2, I NC : 0.
2. At node k---1:ó, compute the partial back transformation

[::] : [ï \-)'lr;rl
a.nd insert ue as the last column of Wk.
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pTime : A\ Gl2)n(N)2 + n(Qn(ó + 1) < (31\dhrnat2, INC :0.

3. Fïom node k:-1"ô s ì^á 
"r 

to node 0, where we accumuÌatt ' : D\'k '

pTi.me : b n(b+ 1) S b dbmax, I NC : b n(b + l) < b dAmat'

4. At node 0 compute ub+r - S-tz, and insert ub+l as the last column of ^9.

pif ime : (l l2)n(b + 1)2 < (l l2)dbmarz, I NC :0-

5. Remove the column V:,2:,"\; from Voutk , and reduce lvoutk \ryoutk] to upper

triangular.
pili,me : 2n(outk)2 'f  n(outk)n(b + 1) < 6dbm'or2, INC :0'

6. Send vectot Wiii[j1,. from node outk to node 0. where we insert it as the first

row of ,9, and reduce ,9 to upper triangula.r-
pTime :Zn(b + 1)2 < 2dbman2, INC : n(b + 1) < dbtwt'

These are the stePs of case V:
Steps L-4 are exactly as in case IV'
5. At node k:/:b, remove the column W!,ouri fror Wú, and insert uk as the last

column of Wk. At node 0 remove the col'mn S.,otj from ^9, and insert ub+1 as

the last column of ,9'
p T i m e : 0 ,  l N C : 0 .

6. At node 0, reduce S from upper Hessenberg to upper triangular'

pTime :2n(b + 1)t < 2dbman2, INC :0-
'We 

summarize the complexity of bup0 in the following theorem:

Theorem 7.L. In the block update proced,ute, htp}, @*ing lower order terms, we haae

the following upper bounds for the requ'íred proezssittg üme onil internod,e commun'ícat'ion:

Case Processing T'i,mes húçnúc Communicat'ion
f

II
III
IV
V 6dbmar2 *b dbmax b dbnal

As in Theorem 6.1, if the network allows pa.rallel internode communication' we can

substitute bby log(b) in our complexity expressions.
In light of Theorem 2, and the previous sections, we c:n compare bzp0 with other

basis factorization and update techniques:
o In the standard LU factoúzation updates used in ASMs, the original factorization

B: LU is replaced, after s pivots, by asequence B: LLLL'"'L"U", see [1],

[31], [41], and [42], where trú is lower triangular with a single nontrivial column.

So the L(J f.actorization is maintained as a product sequence with an increasing

number of factors. In our case we would also have the progressive degrading of

the CBAF structure in Us, as explained in Section 3. That makes it undesirable

to continue to update the factorization for la.rge walues of s, even in the absence

of numerical errors. Instead we would frequently start a fresh factorization, i.e.

:

!2dbmax2 Hhnaz
l2dbmar2 klhmo
Sdbmar2 fuIhrwo
I2dbmaaz *b dbmar bilbnúe



ACTIVE SET METHODS

Figure 6. The Block Updafe Procedure, Case IV and V.

"reinvert" the Basis. rn couhast, the QU factorization maintains the CBAF
structure of B, and the factorizatbn is given by a single matrix, u, instead of
the product sequence in the rÃI factorization. Moreover we know that the eu
factorization has much better numerical stability then the LU f.antorization: see
[2a] and [28].
A generic delete.column ad&column QLr update as 1221, [2a] or [a0], would require
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O(d,bsum2) time. Even using sparse data structures for the matrices involved, the

generic updates require the rotation of all rows of u, so they would still require
"o(d,usum 

aumar) processing time in all the 5 pivot cases. Moreover those dbsum

rotations have tr6, úe done sequentially. The ca,refr:l use of the CBAF structure of

Bbybup() ,g ivesusthemuchbet terboundsofTheorem2.F}omcomputat ional
expãriencà v/ith ASMS for large block anguÌar problems, we know that in real

application problems, most of the updates wiÌl be of case II, i.e. i,nk : outkl

ink f b*1, see [34] and [14], where bzpQ requires or:ty O(dbmar2) time' even in

a purely sequential environment!

Fïom the above we can expect the bupO to outperform the standard LU arld QU

updating techniques, specially lf d'bsum'>) d'bmar and s ) dhnar, i'e'' when the basis is

much laiger than its larger block, and we have to pivot many more times than there are

columns in a singìe block.

When pivoting, by putting the entering column at the end of its block, we are imposing

a particulai column permutation on B. We prefer this fixed column ordering strategy for

its small overhead and simplicity of the subsequent Hessenberg updates' It is however

possibìe to consider more elaborate column orderi.g stratqies at updates and reinversions

[11] ,  [21] .

S. REINVERSIONS

In any ASM, after a given number of pivots, the accumulation of errors in the up-

dates forces us to ,,reinvert" the basis, i.e. recompute the Cholesky factor U directly from

B. Fyom Section 7 we know that most of the factorization work consists of independent

factorizations of the diagonal blocks Bk. Moreover, it is a well known fact that in ASMs

for problems in CBAF,lhe basis pivots frequently replace a coìumn from one block by

u 
"olr*r, 

from the same bÌock, i.e. usually i,nk: outk, see [3a] and [14]. Therefore, we

will probably have some blocks that have been updated more times, and have accumu-

lated ìarger errors then others. when reinverting we can take advantage of these facts by

checking the accuracy of each diagonal block factorization, (fJk)tuk : (B\t Bk , and only

r"irrlr"rúh" diagonal blocks that have accumuìated large errors. Of couÍse' we always have

to reinvert the final south-east block Z '

Before a reinversion, we should address the question of how to order the columns of

the basis B. As explained in section 4, the orthogonal factorization of a row and coÌumn

permutation of B, QBP, is independent of the row permutation, I' But ìrr'e can still take

udrrantage of the column permutation, P, in order to preselve spa,rsity. As mentioned

above, at each reinversion, only a few blocks of the basis may need a fresh refactorization'

Therefore we do not waú to pay the time to nrn a columa ordering algorithm for each

irrairriaouf block Bk to be reinverted. This situation is studied in [40]: At the beginning of

the simplex, we order the columns of each rectangular block, Ák,k :- 1 ' ' ' b, into a "near

,rfp", t.iungular form" (NUTF), and then at eacúeinversion' order the columns in Bk as

they are ordered in Á& [33].
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9. NUMERICAL EXPERIMENTS

In this section vr'e compare the performance of the simplex algorithm, using the .L[/ or
the QR factorization, when solving linear programs in CBAF. Our test problems have the
structure of the ô-scenarios investment problems, Iike the example we gave is Section 1.
Our test problems have diagonal blocks of dim ensíon dbmar x2 dbman, b angular columns,
plus an embedded identity matrix. In order to have a large set of test probìems, we use
random numbers to generate (arìmisqible) numerical vaÌues to the NZEs. The simplex
always begins at the identity basis whiú. from the way the problem is formulated, gives
us a feasible vertex.

In the folÌowing, qr-simplex is an implementation of the simplex algorithm using the
QR factorization and updates. as described in the previous sections, and lu-simplex is
an implementation of the simplex algorithm rr5ing a sparse ,L[/ factorization and rank one
updates [1]. The two aÌgorithms were implemented in different environments) so we can not
directly compare ru:ring times. nor do we har-e direct access to a FLOPs counter. However
the runing time of both algorithms is dominated by the back solves of the form Bn : d,
where B is the current basis. using the arailable factorization of B. But the number of
FLOPs necessary for those back solves is essentialÌy proportional to the number of NZEs
in the factors. Therefore we will use the fill in the basis factors as an indirect measure of
the cost, in FLOPs or runing time. of a step in the simplex. Our analysis will not take
into account all the pa.raJlelism intrinsic to the qr-simplex. Even so, in a purely sequential
environment, the qr-simplex seems to be a better alternative to the standard lu-simplex.

In the gr-simplex we only carry the upper triangular Cholesky factor R : 8ú8. So
we only monitor the number of NZEs n R- p: nze(R). In the lu-simplex we carry the
upper triangular factor [/, the initial lower triangular factor, L, ând a sequence of rank
oneupdates,  L ' ,  L ' ,  . . . ,  L tuP,wherecupisthenumberof  t imesweupdatedthebasis.
Each rank one update is a lower triangular matrix that only differs from the identity at
one column. We keep the nontriüal columns of these rank-one transformations sequence
in a dbsum x cup matrix, LSEQ, where dbsum : b dbmar. Since our starting basis is
the identity, the initial lower triangular factor is trivial, and we only monitor u : nze(U),
\: nze(LSEQ), and the totaÌ fi.ll r : u * À-

Before we analyze statistical data, let us examins in detail a small example. In this
example we have dbmar: 6 and b : 3. Each ror,. in Table 1 (next page) is one pivot step.
The columns in Table 1 are as folÌows. Column 6 is the value of the objective function.
Column 2 is the fiÌl in the Cholesky factor, p. Column 3, 4 and 5 are the fill in [/, in LSEQ,
and the total, i.e., u, À, and r. Column 7 is the pivot's "case", as defined in Section 7.
Column 1 is the order in which the vertex was visited by the simplex.

In Figure 7 we plot columrÌs 2,3. 4 atd õ of Table I, p, u, À and r, versus the pivot
sequence order in column 1. The walues in these four columns are plotted, respectively,
with a solid line, a dashed line, a dotted line. and a dash-dotted line.
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Tâble 1. Vertex sequence of the exarnple in Figure 7'

Pivot
0

2
3
4
5
6
,7

R

q

Ì

18
35
40

52
69
t l

85
99
t02
90
94
103
1 1 1
l l D

1 n Á

t27
133
t37
154

10 67 62 28
68 66 28
75 69 34
77 71. 40
80 75 40

100.0000
87.4386 4

76.7990 2

56.3810 2

47.4169 3

39.1938 4

36.1511 2

32.8104 2

31.6119 2

26.1915 1

25.6787 3
24.7787 2

23-9997 2

21.6801 I

20.774L 2

t9.7974 2

19.1210 3

19.1169 2

18.4936 2

17.0904 3

p
18
35

U

18
35

40 39 1
4 5 4 3 2
4 9 4 8 4
6 5 6 2 7
69 65 L2
76 67 18
82 75 24
82 77 25

Cost Funct.À
0
0

1 1
12
13
1 À

15 84 77 47
16 72 74 53
t7 7L 76 57
18 74 73 64
19 69 81 73
20 68 78 73 151 16-8475 2

21 68 83 82 165 16.7994 2

Let us first compare nze(R) versus nze((I). There are two important effects con-

tributing to filI the upper triangular factor, each favoring one of the factorizations:

1. Let us consider the factorization of M, a 2 x n matrix. In t}re LU factorization

we add a multiple of the first to the second row, in order to eliminate M(z,I).

After this ,,elementary row transformation" the sparsity structure of the first row

remains unchanged, and the sparsity structuÌe of the second row becomes the

Boolean sum of ihe structures of the two rows. In the QR factorization we apply

a Givens rotation to eliminate M(2,7). But now the sparsity pattern of both

rows become the Boolean sum of the sparsity structure of the original rows of

M (except for the eliminated element, of course). FYom this we can see why

orthogonal transformations tend to produce much more fill than eÌementary row

transformations, which tends to favor the LU factoizatíon'

2. The eR factorízation preserves the CBAF structure of B in the ChoÌesky factor'

.R, as extensively analyzed in the previous sections. Therefore the fill in Ã is

confined to the nontrivial blocks in its CBAF structure. On the other hand, the

LtJ factorization progressively degenerates the CBAF structure' allowing fill to

occur anywhere in [/. That tends to favor the Q'R factorization'
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We could observe, in our experiments, that the first effect is more important at the
first pivots of the simplex. But as the nontrivial blocks of the Cholesky factor become
denser, there is a saturation of this effect, and the the filÌ in R stabilizes, or grows very
slowly. The second effect has a cumulative nature, and as the algorithm progresses, it tends
to fill I/ at increasing rates. We also observe that as the simplex approaches optimality,
the block structure of the basis becomes very well equilibrated, i.e. all diagonal blocks
have approximately the same number of columns; this benefits the qr-simplex, but not
necessarily the lz-simplex. In accordance which the comments above, we usually observe a
spaxser U factot at first steps of the simplex, and a sparser rQ at the end of the algorithm.
'We 

could also observe that the greater the ratio dbsumf dbmac, or just b if as in our
test problems the blocks have a constant mr-rnber of rows, the sooner the second effect
dominates the first.

rg)

t4{,

rü)

Figure 7. Fill in the factors at the first example in TabÌe 2.

The fill in LS EQ of the lz-simplex is easier to analyze; nze(LS EQ) is a monotonically
increasing function, beginning at z,ero, but growing always faster. When nze(LSEQ)
becomes larger then nze(U), a basis reinversion is probably due, as explained in Section 8.

252015lo

160

lm

80

60

40

20

0 L
0

F
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In our test problems that usually happens at the final steps of the algorithm. Moreover,

because the non-identity part of the diagonal blocks in the investment problem are dense,

and because close to optimality many identity columns have been driven out of the basis,

the P3 heuristic applied to a basis at the final steps of the simplex produces almost only

spikes, making the reinversion very expensive. As expected from these reasons' in our test

problems, more frequent reinversions do not improve the rudng time of the lu-simplex' For

ih" ,"u6or6 above, and in order to simplify the comparative analysis, we reinvert neither

the lu-simplex nor the qr-simplex.

In Table 2 we present ratios for the total frll, pfr, and for the upper trianguÌar fill,

pf u, after 20%, 40ya, 60%,80% and 100% of the pivots, for some test problems. The first

oi thur. problems is the problem at Figure 7, and they all have the same structure, with

d b m a n : 6  a n d  b : 3 '

Table 2. Examples with 3 blocks of size 6.

rlp 20% 40% 60% rOn%80%
--1J000 

0.8941 0.7282 0.5669 0-4t2r
1 1.0465 1.1343 1.0870 0.9730 0.8193

2 t 3 4 2 0------iT

2 1,0000 1.0465 0.9130 r.üno 1.0000
0 8 2 1 0----r3i

3 1.0370 0,9600 0.8586 0.8687 0.7636
6  I  4  2  . p - -

r.ozso 1.0167 0.7922 0.7027 0.6429
4 1,t026 1.1509 1.0339 r.0196 1.0189

1 1 0 3 1 0------irt
5 1.0545 0.9672 1.0000 0.942CI 0.8902

2 L 0 4 3 0---lÌ

6 1.0196 1.1311 1.1143 0.9844 0.9863
3 7 4 3 0----- 

1"0
7 1.0256 1.0000 1.0308 1.0476 1.0145

3  1 0  1  0  _ 2 _
r.oooo 0.9273 0.7581 0.8125 0.6864

8 1.0256 1.0625 0.9400 1.0833 1.0000
2 8 3 2 1--ll

9 1.0256 1.1389 1.1356 0.9344 l.t2t2
1 6 5 3 1--1Jt

10 1.0000 1.0408 1.0000 1.0426 t.0426
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Table 3 is similar to Table 2, only for larger test problems, with dbmar : 6 and ô : 9.
The first problem in Table 3 is the one in Figure 8.

Table 3. Examples with 9 blocks of size 6.

rlp 20% 40% 60% 80% 100%
0.4L28 0.3179 0.2650
0.7237 0.5924 0.5619

1 0 4 4

0.4409 0.3148 0.2878
0.8363 0.6706 0.6588

1 1  6  3

0.5500 0.3288 0.2981
0.9747 0.7259 0.6602

1 i 7 5

0.5379 0.3699 0.2538
0.8765 0.7370 0.5651

13  8  11
0.3546 0.2887 0.2382
0.6429 0.5869 0.5272

1 1  5 4
o.57t4 0.4980 0.4295
0.9947 0.9213 0.8281

9 5 1

0.4959 0.3758 0.3284
0.8237 0.7740 0.7696

1 3 8 1

0.6735 0.4325 0.3830
1.r5ffi 0.9463 0.8968

9 6 6

0.3984 0.2277 0.L942
0.7297 0.5074 0.4709

1 3 7 5

0.4745 0.3037 0.2495
0.8381 0.6138 0.5482

L 4 7 7

Table 4 has even larger problems, with dbmar : 6 and à : 18. The first problem in
Table 4 is the one in Figure 9.

10

t.0296 0.7903
r.1767 1.0692

t 4 2

0.9297 0.7085
1.0620 1.0641

4 3 2

0.9852 0.8939
1.1050 1.16í1

15 25

0.8667 0.6829
r.0443 0.9tÌ94

8 2 8

0.9866 0.7103
1.0889 1.0510

73 r
1.0617 0.9603
1.1570 Lm46

2m
0.9845 0.6675
1.0641 0.95$

5 2 6
0.9731 0.8320
1.0824 1.1514

10 27
1.0089 0.8049
1.0900 1.1898

7 2 6
1.0000 0.6098
1.1565 0.9336

4 3 1
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18 blocks of size 6.
r/p 20% 40%
u/p 20% 40%

80% 1.00%
80% 100%

60%
60%

C a s e 1 2 3 4 5
0.9564 0.5m

1 1.1573 0.8922 0.6236 0.6014 0.5339
16 62 25 L4 11

2 1.0950 0.9196 0.5169 0.4335 0.4247
6 7 4 2 3 1 2 8

3 r.I434 0.9576 0.7011 0.4828 0.4270
3 5 6 4 2 7 1 5 9

ffi-
4 L.0925 1.0121 0.6651 0.5664 0.5139

19 61 28 17 13

5 1.0462 1.0309 0.6279 0.4&15 0.4512
1 0 5 7 2 1 9 1 2

6 1.2098 0.9335 0.6482 0.5010 0.4219
23 69 28 16 L7

0.8868 o.
7 1.0583 0.8081 0.7282 0.7308 0.7053

2 0 6 2 2 0 1 3 9
0.9822 o.Sffi

8 1.1156 0.9425 0.6216 0.4157 0.3907
1 5 7 t 2 3 l t 7

0.824t 0.3
I 1.0898 0.7560 0.4L40 0.3401 0.3077

16 83 26 14 13
0.9782 0.7@

10 1.1681 1.0203 0.7610 0.5525 0.5600
6 6 4  l a ç . 2

After the back solves, the most fisle çopsrrming operation in a simplex step is the
update of the upper triangular factor. In general this update can be as time-consuming
as a back solve. However we know that for some of the pivot ,,cases,, in the qr_simplexl
nameÌy cases L, 2 or 3 but not 4 or 5, the qr-update is very inexpensive, involving Èlock
operations locaÌ to the blocks receiving or losing a column. We hãve argued that, in real
probÌems, most of the pivots should be of case 2. In Tables 2 and 3 the third line for each
test problem gives the number of pivots of each case, confirming this hypothesis.
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Figure 8. FilÌ in the ãctqs at the first example in Table 3'

The reported numerical experiments had the QR-Simplex implemented in Sparse-
Matlab (Matlab is a trademark of The Mathworks, Inc.). Ìffe are currently implementing
the QR-Simplex in C and PVM, a neüwork "Paralìel Virtual Machine" process manager

[a]. This implementation, on an heterogeneous Sun SPARCstation network, is intended to
solve large portfolio planning financial probleus [19], [43].
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35m

3000

o
o 20 40 60 g) 100 120 140

Figure 9. Fill in the factors in the first exa,mple in Table 4.
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