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The F\rll Bayesia.n Significance Test (FBST) for precise hypotheses is pre-

sented, with some applications relevant to reliability theory. The FBST

is an alternative to significance tests or, equivalently, to p-ualue.s. In the

FBST we compute the evidence of the precise hypothesis. This evidence

is the probability of the complement of a credible set "tangent" to the

sub-manifold (of the para,rreter space) that defines the null hypothesis.

We use the FBST in an application requiring a quality control of used

components, based on remaining life statistics.

1. Introduction

The Full Bayesian Significa,nce Test (FBST) is presented in Pereira and

Stern (1999b) as a coherent Bayesian significance test. The FBST is intu-

itive and has a geometric characterization. It can be easily implemented us-
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ing modern numerical optimization and integration techniques. The method

is "Full" Bayesian and is based on the analysis of credible sets. By Full we

mean that we need only the knowledge of the parameter space represented

by its posterior distribution. The FBST needs no additional assumption,

like a positive probabiÌity for the precise hypothesis, that generates the

Lindley's paradox effect. The FBST regards likelihoods as the proper means

for representing statistical information, a principle stated by Royall (1997)

to simplify and unify statistical analysis. Another important aspect of the

FBST is its consistency with the "benefit of the doubt" juridical principle.

These remarks will be understood in the sequel.

Significance tests are regarded as procedures for measuring the con-

sistency of data with a null hypothesis, Cox (1977) and Kempthorne and

Folks (1971). p-ualues are a tail area under the null hypothesis, calculated

in the sample space, not in the parameter space where the hypothesis is

formuÌated.
Bayesian significance tests defined in the literature, like Bayes Factor or

the posterior probability of the null hypothesis, consider the p-ualue as a

measure of evidence of the null hypothesis and present alternative Bayesian

measures of evidence, Aitkin (1991), Berger and Delampady (1987), Berger

et aI. (1997),Irony and Pereira (1986, 1995), Pereira and Wechsler (1993),

Sellke eú al. (1999). As pointed out in Cox (7977), the first difficulty to define

the p-ualue is the way the sample space is ordered under the null hypothesis.

Pereira and Wechsler (1993) suggests a p-ualue that aÌways regards the

alternative hypothesis. One can find a great deal of objections agaist each of

these measures of evidence. The most important argument against Bayesian

tests for precise hypothesis is presented by Lindley (1957). The literature is

full of objections to the classical p-ualue. The book by Royall (1997) and its

review by Vieland et aI. (1998) presents interesting and relevant arguments

motivating statisticians to start thinking about new methods of measuring

evidence. In a more philosophical terms, Carnap (1962), de Finetti (1939),

Good (1983) and Popper (1989) discuss, in a great detail, the concept of

evidence.

2. Motivation

In order to illustrate the FBST we discus a well known problem. Given

a sample from a normal distribution with unknown parameters, we want

to test if the standard deviation is equal to a constant. The hypothesis
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o: cis a straight line. we have a precise hypothesis since it is defined by

a manifold (surface) of dimension (one) strictly smaller than the dimension

of the parameter space (two).

It can be shown that the conjugate family for the Normal Distribution

is a family of bivariate distributions, where the conditional distribution of

the mean, p,, for a fixed precisiot, P : lf o2, is normal' and the marginal

distribution of the precision, p, is gamma, DeGroot (1970), Lindley (1978).
'We 

use the standard improper priors, uniform on ] - oo, *oo[ for p', and 1f p

on ]0, +m[ for p, in order to get a fair comparison with p-values, DeGroot

(1970). Hence we have the parameter space, hypothesis and posterior joint

distribution:

O  :  { ( t r ,  p )  e  R x  Ã + } ,  O o  :  { j r , P ) €  O I P :  s }

f 0r, plr) o Jp erp(-np(p, - m)2 lz)erp(-bp)p"-'

n: l r t . . . rn l  ,o :+ ,  r r l : :0" t ,  b : l iA, -* )2

Figure 1 shows the plot of some ,"t"i:"..,,.rn"' of the posterior density

function, including the level curve tangent to the hypothesis manifold. At

the tangency point, á*, the posterior density attains its maximum, .f*, otr

the hypothesis. The interior of the tangent level curve, ?*, includes all

points with posterior density greater than /*, i.e. it is the highest proba-

bility density set tangent to the hypothesis.

The posterior probability of.7", rc*, gives an indication of inconsis-

tency between the posterior and the hypothesis: Small values'of rc* indicate

that the hypothesis traverses high density regions, favoring the hypothesis.

Therefore we define Eu(H) - 1 - rc* as the measure of evidence (for the

precise hypothesis).

In Figure 1 we test c : 1 with n: 16 observations of mean rn : 10 and

standard deviation s :7.02, 1.1, and 1.5. we present the FBST evidence,

Eu, and the standard yz-test, chi2'

It is clear that this example is only an illustration: there is no need of

new methods to test the standard deviation of a normal distribution. How-

ever, efiÊcient numerical optimization and integration computer proglams'

make it straightforward to extend the FBST to more complex structures. In

sections 6 and 7 we present an important application involving the Weibull
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n=16 m=1O eí s=1.O2
evid=O.8g chi2=O.68
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Fig. 1. Tangent and other Highest Probability Density Sets

distribution, requiring a quality control test for used components' based on

remaining life data. This problem appears in engineering as well as biologi-

cal and pharmacological applications. The FBST is exact and performs well

even for small samples and low frequencies. In the next section we give a

more formal definition of the FBST.

3. The Evidence Calculus

Consider the random variable D that, when observed, produces the data d.

The statistical space is represented by the triplet (E, ̂ , O) where E is the

sample space, the set of possible values of d, A is the family of measurable

subsets of E a,nd O is the parameter space. We define now a prior model
(@,B,zra), which is a probability space defined over @. Note that in this

model Pr{Al0} has to be O measurable. As usual, after observing data

d, we obtain the posterior probability model (O,B,n6), where zra is the

conditional probability measure on B given the observed sample point, d.

In this paper we restrict ourselves to the case where the functions zra has a
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probability density function /.
To define our procedure we should concentrate onÌy on the posterior

probability space (O, B,ra).First, we define T, as the subset of the pa-

rameter space where the posterior density is greater than g.

Te: {0eo l l (d )>e}

The credibilíty of. T, is its posterior probability

rc : ra(Te) :  I  rp ld)dn:  I  r r ( t lo)ot
JTv Jo

where ïr(") 
-- 

/(r) if Í@) > I and zero otherwise.

Now, we define /* as the maximum of the posterior density over the

null hypothesis, attained at the argument á*,

0" €arsruB*/(d) , f*: Í(0*)

and define T* : TÍ- as the set "tangent" to the null hypothesis, fI, whose

credibility is n*.

The measure of evidence vre propose in this article is the complement of

the probability of the set ?a*. That is, the evidence of the null hypothesis is

E a ( H ) : L - K *  o r  1 - T d ( T * )

If the probability of the set T* is "large", it means that the null set is in

a region of low probability and the evidence in the data is against the null

hypothesis. On the other hand, if the probability of ?* is "small", then the

null hypothesis is in a region of high probability and the evidence in the

data is in its favor. In the next section we give an operational construction

of the FBST.

4. Numerical Optimization and Integration
'We 

restrict the parameter space' O, to be always a subset of Rn, and the

hypothesis is defined as a further restricted subset Oo C O Ç -R'. Usually,

Os is defined by vector valued inequality and equality constraints:

Oo :  {d  e O le(d)  < 0^h(9)  :  0} .

Since we are working with precise hypotheses, we have at least one

equality constraint, hence dirn(An) < dim(@). Let /(á) be the posterior

probability density fgnction, as defined in the last section.



The computation of the evidence measure defined in the last section
is performed in two steps, a numerical optimization step, and a numeri-
cal integration step. The numerical optimization step consists of finding
an argument d* that maximizes the posterior density /(á) under the null
hypothesis. The numerical integration step consists of integrating the pos-
terior density over the region where it is greater than /(á-). That is,

o Numerical Optimization step:

0* eargryqxf / )  t  g :  f .  - -  f@.)"  0 € O o -  
'  '

o Numerical Integration step:

^* : I re@ld)do
J E

where fo(r) : f @) if f (r) ) 9 and zero otherwise.

Efficient computational algorithms are available, for local and global
optimization as well as for numerical integration, Bazaraa et aI. (1ggg),
Horst eú al. (1995), Luenberger (1984), Nocedal a.nd Wright (1999), Pin-
ter (1996), Krommer and Ueberhuber (1998), and Sloan and Joe (1994).
Computer codes for several such algorithms can be found at software li-
braries as ACM, GSL and NAG, or at internet sites as www.ornl.gou and,
www-rocq.inria.fr.

We notice that the method used to obtain ?* and to calculate rc* can be
used under general conditions. Our purpose, however, is to discuss precise
hypothesis testing, i.e. dim(@s) < dim(@), under absolute continuity of the
posterior probability model, the case for which most solutions presented in
the literature are controversial.

5. Weibull Distribution

The two parameter Weibull probability density, reliabiìity (or survival prob-
ability) and hazard functions, for a failure time ú ) 0, given the shape, and
characteristic life (or scale) parameters, B ) 0, and 7 ) 0, are:

u(tl  p,7) : (BtÊ-r l tB) "*p(-(t/ ìP)
r(t l  P,t) :  erp(-(t l ìB)
z(t l  p,t) = uOlrO : BtF-t 1r0
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The mean and variance of a Weibull variate are given by:

p :11(r + Llp)
oz : f çr(r + 21 0+ r2(1 + tl i l)

By altering the parameter, B,W(t I B,7) takes a variety of shapes, Dod-
son(1994). Some values of shape parameter are important special cases: for

0 : L,I,7 is the exponential distribution; for B : 2, W is the Rayleigh
distribution; for B - 2.5, W approximates the lognormal distribution; for

Ê : 3.6,1I/ approximates the normal distributionl and for 0 : 5.0, W ap-
proximates the peaked normal distribution. The flexibility of the \Meibull
distribution makes it very useful for empirical modeling, specially in quality

control and reliability. The regions P < 1, 0 : l, and B > 1 correspond
to decreasing, constant and increasing hazard rates. These three regions
are also known as infant mortality, memoryless, and wearout failures. 7 is
approximately the 63rd percentile of the life time, regardless of the shape
parameter.

The \ü'eibull also has important theoretical properties. If n i'i.d. ran-
dom variables have Weibull distribution, Xi - w(tl|,7), then the first
failure is a Weibull variate with characteristic life lfnr/p, i.e. X1r,,1 -

w(tl P,.,r lnL/01. This kind of property allows a characterization of the Weibull
as a limiting life distribution in the context of extreme value theory, Barlow
and Prochan (1975).

The affine transformation ú : ú' + o leads to the three parameter tmn-
cated Weibull distribution. A location (or threshold) parameter, o ) 0
represents beginning observation of a (truncated) Weibull variate at ú : 0,
after it has already survived the period [-o,0[. The three parameter tmn-
cated Weibull is given by:

w(t la,  g, t )  :  @ (t  + Qe-r 1ra;  erp(-(( t  + a)11)B) l r ("1g,t)
r(t I a, g, t) : erp(-((t + a) I :)B) I r(" I g, t)

6. Display Panels
'We 

were faced with the problem of testing the wearout of a lot of used
display panels. A panel displays 1,2 to 18 characters. Each character is dis-
played as a 5 x 8 matrix of pixels, and each pixel is made of 2 (RG) or 3

293



T. Z. Irong, M. Lauretto, C. A. B. Pereim and J. M. Stern

(RGB) individual color elements, (like a light emitting diode or gas plasma

device). A panel fails when the first individual color element fails. The con-
struction characteristics of a display panel makes the \Meibull distribution
specially well suited to model its life time. The color elements are ((burned

int' at the production process, so we assume they are not at the infant mor-
tality region, i.e. we assume the \Meibull's shape parameter to be greater

than one, with wearout or increasing hazard rates.
The panels in question were purchased as used components, taken from

surplus machines. The dealer informed the machines had been operated
for a given time, and also informed the mean life of the panels at those
machines. Only working panels were acquired. The acquired panels were
installed as components on machines of a different type. The use intensity
of the panels at each type of machine corresponds to a different time scale,
so mean lifes are not directly comparable. The shape parameter however is
an intrinsic characteristic of the paneÌ. The used time over mean life ratio,
p : a/F, is adimensional, and can therefore be used as an intrinsic measure
of wearout. We have recorded the time to failure, or times of withdrawal
with no failure, of the panels at the new machines, and want to use this data
to corroborate (or not) the wearout information provided by the surplus
equipment dealer.

7. The Model- -.

The problem described at the preceding sections can be tested using the
FBST, with parameter space, hypothesis and posterior joint density:

O :  { (o ,  0 ,1)  e  ]0 ,oo]  x  [1 ,oo]  x  [0 ,* [ ]
Os  :  { (a ,  0 ,1 )  e  O  la :  pp (0 ,1 ) }

n m

f (o, g,r I D) o |Ir(tul o, 0,t) fIr(tt I o, g,t)

where the data D are all the recorded failure times, ta ) 0, and the times
of withdrawal with no failure, ti ) 0.

At the optimization step it is better, for numerical stability, to maximize
the log-likelihood, /l( ). Given a sample with n recorded failures and m
withdrawals,

wh:1st1B1+@ - 1)log(ú; +o) -Élos(r) - ((ú, + o)lìB + ("lt)p
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r t j : - ( ( t j+41 ìB+( "1 ìB
n n

f I :Dr[*DrI i
i : r  j :L

the hypothesis being represented by the constraint

h (o ,  Ê ,7)  :  p1 t ( I  +  I l  0  -  a  :  0

The gradients of /l( ) and h( ) a.nalytical expressions, to be given to the

optimizer, are:

d ,w l :

Í@ - L)l(t+ o) - ((t + oòlìP Bl(t + a) + (alf iB Bla,
rlÊ +tosft+ o) - los(?) - ((t + a)ll7 log((ú + 4lt) + @lìB rog(al1) ,
-Llt + (t+ a)lìBllt - @lìPïlt l

d,rl :

[ -((t + a)1.òB Pl(t + o) + (olúB 01",
-((t + ")lìB 

log((ú + 4lú + @lìP rog(alì ,
((t + o)lìB olt , -@lìB Blt l

d,h :

[  -1,  -prr '  $ + U rDrQ + U 0 I  92,  Pt(r  + r l  0]

For gamma and digamma functions efficient algorithms see spanier and

Oldham (1987).

8. Numerical ExamPle

Table 1 displays 45 failure times (in years), plus 5 withdrawals, for a small

lot of 50 panels, in a 3.5 years long experiment. The panels have suppos-

edly been used, prior to acquisition, for 30% of its mean life, i'e' we want

to test p : 0.3.In general, some prior distribution of the shape param-

eter is needed to stabilize the model. Knowing color elements' life time

to be approximately normal, we consider B € [3.0,4.0]. Table 2 displays

the evidence of some values of p. The maximum likelihood estimates of the

Weilbull's parameters are a : I'25, P: 3'28 and I - 3'54; so the estimates

I.r:3.L7 and, p:0.39. The FBST corroborates the hypothesis p - 0'3 with

an evidence of.98%.
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Table 1. Failure times and withdrawals in years, n: 45,m:5

0.01 0.19 0.51 0.57 0.70 0.73 0.75 0.75 1.11 1.16
t.2t t .22 I.24 1.48 1.54 1.59 1.61 1.61 1.62 t.62
1,.7t L.75 L.77 L.79 1.88 1.90 1.93 2.Ot 2.16 2.18
2.30 2.30 2.4L 2.44 2.57 2.6t 2.62 2.72 2.76 2.84
2.96 2.98 3.19 s.25 3.31 +1.19 +3.50 +3.50 +3.50 +3.50

Table 2. Evidence for some values of p

p 0.05 0.L0 0.2O 0.30
Evid 0.04 0.I4 0.46 0.98

0.40 0.50 0.60 0.70 0.80 0.90
1.00 0.98 0.84 0.47 0.2t 0.01

9. Final Remarks

The theory presented in this paper, grew oì.rt of the necessity of the au-
thors' activities in the role of audit, control or certification agents, Pereira
and Stern (1999a). These activities made the authors (sometimes painfully)

aware of the benefit of the doubt juridical principle, or safe harbor liability

rule. This kind of principle establishes that there is no liability as long as
there is a reasonable basis for belief, effectively pÌacing the burden of proof

on the plaintiff, who, in a lawsuit, must prove false a defendant's misstate-

ment. Such a rule also prevents the plaintiff from making any assumption
not explicitly stated by the defendant, or tacitly implied by existing law or
regulation. The use of an a priori point mass on the null hypothesis, as on
standard Bayesian tests, can be regarded as such an ad hoc assumption.

As audit, control or certification agents, the authors had to check com-
pliance with given requirements and specifications, formulated as precise

hypotheses on contingency tables, In Pereira et al. (7999b) we describe sev-

eral applications based on contingency tables, comparing the use of FBST
with standard Bayesian and Classical tests. The applications presented in
this paper are very similar in spirit, but we are not aware of any standard
exact test in the literature. The implementation of FBST is immediate and
trivial, as long as good numerical optimization and integration programs

are at hand. In the applications in this paper, as well in those in Pereira
et aI. (I999b), it is desirable or necessary to use a test with the following

characteristics:

Be formulated directly in the original parameter space.
Take into account the full geometry of the null hypothesis as a manifold
(surface) imbedded in the whole parameter space.

a

a
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o Have an intrinsically geometric definition, independent of any non-

geometric aspect, like the particular parameterization of the (manifold

representing the) null hypothesis being used.

r Be consistent with the benefit of the doubt juridical principle (or safe

harbor liability ruÌe), i.e. consider in the "most favorable way" the claim

stated by the hYPothesis.

o consider onÌy the observed sample, allowing no ad hoc artifice (that

could lead to judicial contention), like a positive prior probability dis-

tribution on the precise hypothesis.

o consider the alternative hypothesis in equal standing with the null

hypothesis, in the sense that increasing sampìe size should make the

test converge to the right (accept/reject) decision'

o Give an intuitive and simple measure of significance for the null hy-

pothesis, ideally, a probability in the parameter space'

FBST has all these theoretical characteristics, and straightforward (com-

putational) implementation. Moreover, as shown in Madruga et aI' (200L),

the FBST is also in perfect harmony with the Bayesian decision theory

of Rubin (1987), in the sense that there are specific loss functions which

render the FBST.

We remark that the evidence calculus defining the FBST takes place

entirely in the parameter space where the prior was assessed by the sci-

entist, Lindley (1933). we call it the ((original" parameter space, although

acknowledging that the parameterization choice for the statistical model

semantics is somewhat arbitrary. We also acknowledge that the FBST is

not invariant under general change of parameterïzation'

The FBST is in sharp contrast with the traditional schemes for dimen-

sional reduction, like the elimination of so called "nuisancett parameters'

In these ,,reduced" models the hypothesis is projected into a single point,

greatly simplifying several procedures. Problems with the traditional ap-

prou"h are presented in Pereira and Lindley (19s7). The traditional reduc-

lion o, projection schemes are also incompatible with the benefit of doubt

principle, as stated earlier' In fact, preserving the original parameter space'

in its full dimension, is the key for the intrinsic regularization mechanism

of the FBST, when it is used in the context of model selection, Pereira and

stern (2000,2001).

of course, there is a price to be paid for working with the original pa-

rameter space, in its full dimension: A considerable computational work
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load. But computational difficulties can be overcome with the used of effi-
cient continuous optimization and numerical integration algorithms. Large
problems can also benefit from program vectorization and parallelization
techniques. Dedicated vectorized or paralÌel machines may be expensive
and not always available, but most of the algorithms needed can benefit
from asynchronous and coarse grain parallelism, a resource easily available,
although rarely used, on any PC or workstation network through MPI,
Portable Parallel Programming Message-Passing Interface, or similar dis-
tributed processing environments, Wilson and Lu (1996).

Finally we notice that statements like (íincrease sample size to re-
ject (accept) the hypothesis" made by many users of frequentist (stan-
dard Bayesian) tests, do not hold for the FBST. Increasing the sample
size makes the FBST converge to the Boolean truth indicator of hypoth-
esis being tested. In this sense, the FBST has good acceptancefrejection
symmetry, even if the safe harbor rule prevents this symmetry from being
perfect, introducing an ofset for small samples. We believe that the exis-
tence of a precise hypothesis test with the FBST's symmetry properties has
important consequences in knowledge theory, given the role played by the
completely asymmetric standard statistical tests in some epistemological
systems, Carnap (1962), Popper (1989).
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