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DANIEL STEEL

BAYESIAN CONFIRMATION THEORY AND THE
LIKELIHOOD PRINCIPLE

ABSTRACT. The likelihood principle (LP) is a core issue in disagreements
between Bayesian and frequentist statistical theories. Yet statements of the LP are
often ambiguous, while arguments for why a Bayesian must accept it rely upon
unexamined implicit premises. I distinguish two propositions associated with the
LP, which I label LP1 and LP2. I maintain that there is a compelling Bayesian
argument for LP1, based upon strict conditionalization, standard Bayesian deci-
sion theory, and a proposition I call the practical relevance principle. In contrast,
I argue that there is no similarly compelling argument for or against LP2. I sug-
gest that these conclusions lead to a restrictedly pluralistic view of Bayesian con-
firmation measures.

1. INTRODUCTION

Despite a shared commitment to using Bayes’ theorem as the basis
for inductive inference, Bayesian statistics and confirmation the-
ory generally address very different questions. Bayesian statisticians
are primarily concerned to use Bayes’ theorem to resolve statisti-
cal inference problems, which involves finding well-motivated proce-
dures by which to compute posterior probability distributions over
sets of alternative hypotheses in various circumstances. In contrast,
Bayesian confirmation theory aims to evaluate and explicate such
maxims as passing a test counts in favor of a hypothesis only if the
test is severe, varied evidence confirms more strongly than narrow
evidence, and so on. Yet Bayesian statisticians are not silent on the
topic of rules concerning relative strength of confirmation. In par-
ticular, they generally regard the likelihood principle (LP) as a prop-
osition to which Bayesianism is committed. The LP has been stated
in many ways, but a common formulation goes like this: all of the
information an experimental outcome provides about a parameter θ
is expressed in the likelihood function.1 In this essay, I aim to dis-
ambiguate this proposition, to clarify in what sense a Bayesian is
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committed to it and explore the implications of these questions for
discussions of Bayesian confirmation measures.

I begin by explaining how statements of the LP like the one just
given can be interpreted in more than one way. I maintain that there
is a strong Bayesian argument for accepting one version of the LP
(what I call LP1). This argument flows from basic Bayesian princi-
ples – particularly, strict conditionalization and the proposition that
one should choose acts that maximize expected utility – together
with a premise concerning the relationship between evidence and
decision, which I call the practical relevance principle. In contrast, I
maintain that no similarly compelling Bayesian reasons can be pro-
vided for or against a second interpretation of the LP (what I call
LP2). Developing these arguments involves a discussion of Bayesian
confirmation measures, which have been a topic of some debate in
the recent Bayesian confirmation theory literature. I argue that LP1
constitutes a significant restriction on the class of acceptable Bayes-
ian confirmation measures. The case of LP2, in contrast, suggests
that there is no uniquely best Bayesian confirmation measure among
those that are acceptable. Rather, among the acceptable measures,
distinct measures may be suited for distinct circumstances, a view-
point that I dub restricted pluralism.

2. THE LIKELIHOOD PRINCIPLES

What does it mean to say that all of the information that data pro-
vides about a parameter is contained in the likelihood function? To
begin with, it is necessary to say what a likelihood function is. Let
H be a set of mutually exclusive, collectively exhaustive hypotheses,
and let H be a variable ranging over members of H. For instance,
the hypotheses in H might concern the value of the θ , which indi-
cates the years before present that a particular archeological site
was abandoned, while E is a result of a radiocarbon dating proce-
dure. The likelihood function L(H,E), then, is by definition equal
to kP (E|H), where k is any positive constant.2 One natural read-
ing of the LP is that there is no difference in evidence if there is
no difference in likelihood functions. Given the definition of like-
lihood function, it is easy to see that likelihood functions are the
same when they are proportional (cf. Birnbaum 1962, 271). Let E
and E∗ be two sets of data. Then the likelihood functions L(H,E)
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and L(H,E∗) are proportional exactly if there is a constant k > 0
such that P(E|H)=kP (E∗|H) for all H .

Let c(H,E) indicate the evidential support or confirmation that
E provides for H . The relevant sense of confirmation here is an
incremental one, which concerns the ‘boost’ that a hypothesis would
receive if the data were learned. Incremental confirmation is usually
contrasted with absolute confirmation, wherein the evidence estab-
lishes the hypothesis at or beyond a specified threshold (cf. Earman
1992, 64–67). For a Bayesian, incremental confirmation means that
the data, if learned, would raise the probability of the hypothesis,
while absolute confirmation means that learning the data would lift
the probability to or above, say, 0.5. The exact quantitative measure
of incremental confirmation is a matter of some debate, and one
purpose of this essay is to explore the implications of the LP for this
issue. Incremental confirmation should also be distinguished from
resilience, which concerns the stability of the probability of a prop-
osition in the face of new information (cf. Skyrms 1980). I think
that there are interesting connections between incremental confirma-
tion and resiliency, but I will have nothing to say about such matters
here. The term ‘confirmation’ should be read as ‘incremental confir-
mation’ throughout this essay except where otherwise indicated.

Given this set up, we can state the first interpretation of the LP
as follows:

LP1: If the likelihood functions L(H,E) and L(H,E∗)
are proportional, then for all H in H, c(H,E)=c(H,E∗).

Some statements of the LP are very clearly LP1 (Edwards et al.
1963, 237; Barnett 1999, 188; cf. Press 2003, 35). The LP1 is also the
operative interpretation in one of the most important papers ever
written about the LP, namely, Alan Birnbaum’s (1962) classic essay,
“On the Foundations of Statistical Inference.”

In this paper, Birnbaum proved that the LP is equivalent to the
conjunction of two propositions known as the sufficiency principle
and conditionality. Conditionality states, roughly, that experimen-
tal outcomes that might have occurred but did not should have no
bearing on assessments of evidence. The sufficiency principle will
be discussed below. Birnbaum’s proof was important because condi-
tionality and the sufficiency principle were far less controversial at
the time than was the LP.3 Here is how Birnbaum formulated the
LP:
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If E and E′ are any two experiments with the same parameter space, represented
by density functions f (x, θ) and g(y, θ); and if x and y are any respective out-
comes determining the same likelihood function; then Ev(E, x)=Ev(E′, y). (1962,
271)

Birnbaum’s ‘Ev(E, x)’ signifies the ‘evidential meaning’ of the out-
come x of experiment E with regard to the parameters in question,
in this case, θ . Thus, Birnbaum’s statement of the LP involves a
notion of non-comparative confirmation, very similar to that used
in the formulation of the LP1 above. Moreover, just like the LP1,
Birnbaum’s version of the LP addresses a situation in which one
is concerned to assess the relative bearing of two sets of experi-
mental data (denoted by x and y) with regard to a single partition
of hypotheses (where each hypothesis specifies values for θ ). And
just as in the case of the LP1, Birnbaum’s version of the LP says
that the two experimental outcomes have the same evidential import
with regard to the set of alternative hypotheses when the likelihood
functions are the same, which is to say, proportional. So, it was the
LP1 that Birnbaum showed is equivalent to the conjunction of con-
ditionality and the sufficiency principle.

Given this, one might be inclined to say that the LP just is LP1.
However, Birnbaum immediately followed the above statement of
the LP as LP1 with a much more ambiguous paraphrase.

That is, the evidential meaning of any outcome x of any experiment E is charac-
terized fully by giving the likelihood function cf (x, θ) (which need be described
only up to an arbitrary positive constant factor) without other reference to the
structure of E. (1962, 271)

Notice that this paraphrase sounds rather like the generic “the likeli-
hood function tells you all there is to know about evidence” version
of the LP. In particular, it omits the important restriction to cases in
which two sets of data are being considered with regard to one set
of alternative hypotheses. That leads us directly to LP2.

In addition to the different-evidence-same-hypothesis situation
addressed in LP1, the LP is often thought to imply something about
the import of a single set of data regarding the relative merits of a
pair of alternative hypotheses. For example, consider this formula-
tion of the LP.

Within the framework of a statistical model, all of the information which the
data provide concerning the relative merits of two hypotheses is contained in the
likelihood ratio of those two hypotheses on the data. (Edwards 1984, 30; italics
added)4
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That is, if E is a set of data and H and H ∗ alternative hypotheses,
then the ratio P(E|H)/P (E|H ∗) indicates the relative confirmation
that E confers upon H with regard to H ∗. Presumably, this implies
that when the ratio is equal to 1, the evidential relevance of E is the
same for both H and H ∗. This idea can be formulated in the follow-
ing manner. Let H and H ∗ be two hypotheses. Then:

LP2: If P(E|H)=P(E|H ∗), then c(H,E)= c(H ∗,E).

Although I regard LP1 as a better rendering of the LP, there is prec-
edent for associating both LP1 and LP2 with the likelihood prin-
ciple, and the vagueness of many formulations of the LP makes it
possible to argue that LP2 is part of what it entails. And there is
after all little point in debating the right way to use words. The
interesting question for our purposes is whether there is some rea-
son why a Bayesian should accept either of these two propositions.
Let us turn to that question now.

3. CONFIRMATION MEASURES AND THE LP

It is sometimes said that the LP follows from Bayes’ theorem (cf.
Mayo 1996, 345; Backe 1999, S354). However, it is clear that this is
not true, since the LP is a claim about relative confirmation, while
Bayes’ theorem is a proposition solely about probabilities. That is,
Bayes’ theorem says something about P(H |E) but nothing about
c(H,E). In Bayesian confirmation theory, it is standard to assume
that:

c(H,E)>0 if P(H |E)>P(H),

c(H,E)<0 if P(H |E)<P(H), and
c(H,E)=0 if P(H |E)=P(H).5

For convenience, I will call these the three desiderata. Yet Bayes’
theorem does not entail the LP even when conjoined with the three
desiderata, since they say nothing about relative strength of confir-
mation in the case when the evidence supports both hypotheses. In
contrast, both the LP1 and LP2 specify conditions under which evi-
dence is claimed to confirm to the same degree. Let us consider,
then, what reasons there might be for a Bayesian to accept either
of these principles.
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The Bayesian argument for LP1 rests on a consequence of Bayes’
theorem: if the likelihood functions L(H,E) and L(H,E∗) are pro-
portional, then P(H |E)=P(H |E∗), for every H . The proof of this
proposition is quite simple. Let Ha be an arbitrarily chosen member
of H, and suppose that for all Hi in H, P(E|Hi)=kP (E∗|Hi). Then
from Bayes’ theorem, we have:6

P(Ha|E)= P(Ha)P (E|Ha)∑
i P (Hi)P (E|Hi)

= P(Ha)kP (E∗|Ha)∑
i P (Hi)kP (E∗|Hi)

= P(Ha)kP (E∗|Ha)

k
∑

i P (Hi)P (E∗|Hi)
= P(Ha)P (E∗|Ha)∑

i P (Hi)P (E∗|Hi)

=P(Ha|E∗)

Thus, when the likelihood functions L(H,E) and L(H,E∗) are pro-
portional, there is no difference in the posterior probability distri-
butions. From this, LP1 follows provided we assume that:

(C) If P(H |E)=P(H |E∗), then c(H,E)= c(H,E∗).

This premise seems so obvious from a Bayesian perspective that it
is likely to be assumed without mention. However, (C) follows from
the three desiderata only in the special case in which P(H |E) =
P(H). In a subsequent section, I examine what reasons there are for
a Bayesian to accept (C).

Let us consider, then, the Bayesian case for LP2. Suppose we are
concerned with the relative bearing of the data E on two hypothe-
ses H and H ∗, which we can represent in our formalism by the ratio
c(H,E)/c(H ∗,E). The reasoning begins with the premise that only
those factors that can influence the ratio P(H |E)/P (H ∗|E) should
make a difference to c(H,E)/c(H ∗,E). Now from Bayes’ theorem,
we have:

P(H |E)

P (H ∗|E)
= P(H)P (E|H)

P (H ∗)P (E|H ∗)
.

From this equation it can be easily seen that when P(E|H) =
P(E|H ∗),P (H |E) can differ from P(H ∗|E) only if P(H) is not
equal to P(H ∗). But any difference between P(H) and P(H ∗)
would presumably be due to some prior information, and not to E.
Hence, it seems that differences between the prior probabilities of
H and H ∗ should make no difference to the question of whether
just this evidence E confirms H more strongly than H ∗. Thus, if
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the ratio of the likelihoods, P(E|H)/P (E|H ∗), equals one, then so
should c(H,E)/c(H ∗,E), which is LP2.

The question of whether a Bayesian should regard either of these
two arguments as sound is closely tied up with something called
confirmation measures. A confirmation measure provides an order-
ing of c(H,E), for different H ’s and E’s. Given a confirmation mea-
sure, one could address such questions as whether E supports H
more strongly than H ∗, whether E and E∗ confirm H equally, and
so forth. All of the confirmation measures we will consider in fact
assign specific numbers to c(H,E), but it is only the ordinal rank-
ings that matter. Two measures that disagree about the precise num-
bers, but which always agree about the orderings will be judged to
be equivalent.

Let us call a measure of confirmation Bayesian if it satisfies the
three desiderata: confirmation is positive when the data raise the
probability of the hypothesis, negative when they lower the proba-
bility of the hypothesis, and neutral or irrelevant when they make
no difference to the probability. There are in fact many measures
that fulfill these requirements (cf. Fitelson 1999). For example, con-
sider these three:

d(H,E)=df P (H |E)−P(H)

r(H,E)=df log
[
P(H |E)

P (H)

]
= log

[
P(E|H)

P (E)

]

l(H,E)=df log
[

P(E|H)

P (E|¬H)

]
.7

Each of these Bayesian confirmation measures entails (C) and hence
LP1,8 but among them only r is consistent with LP2.9 Moreover,
d, r, and l are far from the only Bayesian confirmation measures,
and among the others are several the violate (C). For instance, con-
sider these:10

ρ(H,E)=df P (H&E)−P(H)×P(E)

n(H,E)=df P (E|H)−P(E|¬H)

s(H,E)=df P (H |E)−P(H |¬E).11

The question of whether a Bayesian is committed to the LP1 or
LP2, then, can be posed in terms of confirmation measures. For
LP1, the issue is whether there is some principled Bayesian rea-
son why any confirmation measure that violates (C) is misguided.
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Likewise, are there acceptable Bayesian confirmation measures that
violate the LP2?

4. WHY DOES A BAYESIAN NEED TO SAY ANYTHING ABOUT
CONFIRMATION MEASURES?

A Bayesian might take one of several stances on confirmation mea-
sures.

• Indifference: Bayesians have no need to take any position
regarding the merits of distinct confirmation measures.

• Monism: There is one true measure of confirmation, and a cen-
tral task of Bayesian confirmation theory is to figure out which
one it is.12

• Restricted Pluralism: There is no single confirmation measure
that is best for all purposes. Nevertheless, there are restrictions
that significantly limit the field of acceptable Bayesian confir-
mation measures.

I defend restricted pluralism. In this section, I argue (contra indiffer-
ence) that Bayesians cannot merely suspend judgment on the topic
of confirmation measures. In particular, since it is impossible for an
observer to record everything, a theory of inductive inference should
provide some guidance regarding which details an observer may and
may not disregard in a given context. Yet propositions of this sort
invariably have consequences for what confirmation measures are
acceptable. Against monism, I argue that there is no single best con-
firmation measure among those that satisfy (C). Specifically, I main-
tain that there is no general, compelling Bayesian argument for or
against LP2.

Discussions of Bayesian confirmation measures often do not
address the challenge posed by the indifferent perspective, but rather
presume that it is important to decide upon a single best confirmation
measure, or at least some relatively restricted set of measures. I think
that this way of proceeding is unfortunate, because it diverts attention
from a question that is fundamental to the enterprise. Why is it impor-
tant to take a stance regarding the merits of distinct confirmation mea-
sures at all? In other words, why not adopt the indifferent perspective?
An adequate answer to this question involves specifying some prob-
lem that a Bayesian is obliged to address, a problem whose solution
has unavoidable implications about which confirmation measures are
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acceptable. But as long as this problem is left unspecified, the point
of insisting on a unique measure, or even a small set (say, d, r, and
l), is unclear. Let us consider what answer might be given to this
challenge.

One possible suggestion is that Bayesian confirmation theory is
committed to evaluating proposed rules of scientific method and
that this cannot be done without making claims about the relative
merits of confirmation measures. The Bayesian confirmation litera-
ture is filled with attempts to explicate and justify such common-
sense rules of scientific method as diverse evidence confirms better
than narrow evidence, severe tests are required for strong confirma-
tion, and so forth. Moreover, it has been observed that the validity
of such accounts often depends upon a particular choice of con-
firmation measure (cf. Fitelson 1999). So, it might be claimed that
agreement on the right confirmation measure, or at least a restricted
set of measures, is required for Bayesian evaluations of (purported)
rules of scientific method.

This argument presupposes that Bayesian evaluations of meth-
odological rules can go forward only if one, or a relatively small
number, of confirmation measures are agreed upon. Although many
assessments of rules of scientific method in the Bayesian confirma-
tion literature do proceed by attempting to show that one type of
evidence confirms better than another under certain circumstances,
it is far from clear that this is the only or best strategy for a
Bayesian to pursue. For instance, suppose one could show that, in
certain circumstances, varied evidence is necessary for convergence
of opinion among Bayesian agents. Then one might propose that
the methodological value of varied data stems from its ability to
create evidence driven consensus from an initial state of disagree-
ment. Yet such an argumentative strategy is entirely independent
of claims about confirmation measures. To say that data of cer-
tain types facilitate convergence, and are to be preferred for that
reason, entails nothing about degrees of confirmation. A Bayesian
who was utterly indifferent with regard to confirmation measures
could pursue such an explanatory strategy. So, the desire to assess
rules of scientific method is a good argument against the indiffer-
ent perspective only given the unsubstantiated premise that there are
no other Bayesian strategies for evaluating alleged rules of scientific
method. Is there some other reason why a Bayesian cannot simply
be indifferent about confirmation measures?
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Consider a scientist recording the results of an experiment. Such
a record can be given in greater or lesser detail: more detail means
more work, but an excessively abbreviated description might leave
out something important. This scenario is unavoidable for any
human who wishes to learn from experience. Some things are taken
note of while others are disregarded, and that leads to the inevitable
challenge of deciding which details matter and which do not. Any
theory of inductive inference, then, ought to provide some guidance
about what aspects of data can be ignored and which should be
recorded. Furthermore, there is an immediate connection between
confirmation and relevance: if some data E is irrelevant or does not
matter to H , then E neither confirms nor disconfirms H , that is,
c(H,E) = 0. Likewise, if the difference between E and E∗ is irrel-
evant or does not matter to H , then E and E∗ confirm H equally,
that is, c(H,E)= c(H,E∗). These are aspects of any plausible sense
of “confirmation.” It would be bizarre to say, for instance, that E is
irrelevant to H but that E nevertheless confirms H .

These simple observations concerning the relation between rele-
vance and confirmation are illustrated by one of the central disputes
among the Bayesian and Neyman–Pearson schools of statistical
inference. According to the Neyman–Pearson theory, stopping rules
– that is, rules specifying when the researcher will cease collect-
ing data and commence analyzing it – are highly relevant to what
inferences can be legitimately drawn from statistical data. From the
Bayesian perspective, stopping rules are, aside from a few rare cases,
generally irrelevant.13 The Bayesian argument for the irrelevance of
stopping rules is based upon LP1. For example, consider an exper-
iment consisting of a sequence of independent and identically dis-
tributed14 binary observations, such as flipping a coin, in which the
outcomes are labeled by 1s or 0s. Then one stopping rule might
specify that the researcher stop after 100 observations are made,
while an alternative rule specifies that the researcher stop after 50
1s have been observed. Let E and E∗ be the data collected in accor-
dance with these two stopping rules, respectively, and suppose that
both datasets consist of 100 observations 50 of which are 1s. Sup-
pose that the rival hypotheses specify the probability of obtaining a
1 on a given observation. Then P(E|H) equals p50(1 −p)50 multi-
plied by a constant (call it a), where p is the probability of obtain-
ing a 1 on any observation according to H . In this example, a is the
number of possible ways of getting 50 1s in 100 observations. The
case of P(E∗|H) is the same except that p50(1 − p)50 is multiplied
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by a different constant (call it b). That is, given the second stop-
ping rule, the hundredth observation had to be a 1, so b is the num-
ber of ways of getting 49 1s in 99 observations. Thus, where k =
a/b,P (E|H) = kP (E∗|H) for every H . The LP1, therefore, entails
that the difference in stopping rules makes no difference to confir-
mation in this case. Moreover, it is easy to see that the same conclu-
sion will ensue in any example involving a series of independent and
identically distributed outcomes. In such a case, differences in stop-
ping rules affect likelihoods only by changing the number of ways
the outcome in question could have been attained, a difference that
can always be expressed by a positive constant.

Notice that the general proposition concerning relevance and
confirmation stated above was that no relevant difference in the data
entails no difference in confirmation. However, the converse – that
no difference in confirmation entails no relevant difference what-
ever – is not so obviously true, since the data might differ in some
important way that does not affect confirmation. For example, it
was noted in Section 2 that confirmation and resilience (the stabil-
ity of a proposition’s probability in the face of new information) are
distinct. Hence, it is conceivable that a difference between two sets
of data might matter for resilience but not for confirmation. But if
one supposes that only evidential relevance is of concern in disputes
about stopping rules, then the LP1 provides a Bayesian rationale for
regarding these rules as irrelevant. The supposition that any differ-
ence in data is relevant to confirmation or else not relevant at all is
also reasonable with regard to the sufficiency principle.

Consider an experiment consisting of a sequence of binary out-
comes, like the ones considered above. Given this set up, the most
detailed description of the experimental outcome is simply the com-
plete sequence of the values of the variables (e.g. 10110010. . .). Let
E represent this description of the outcome. In contrast, let E∗ be
some more abbreviated description of the outcome, for instance, the
number of 1s. The sufficiency principle then asserts the following.15

(S) If P(E|E∗&H)=P(E|E∗), then c(H,E)= c(H,E∗).

When the antecedent of (S) is satisfied, E∗ is said to be a suffi-
cient statistic. So, the principle says that if E∗ is a sufficient statistic,
then recording it rather than E makes no difference to evidence. For
instance, the number of 1s is a sufficient statistic when the outcomes
are independent and identically distributed. The sufficiency principle,
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therefore, justifies disregarding certain types of information when col-
lecting data – in this case, the exact order of the outcomes. Like the
LP1, (S) can be easily derived from Bayes’ theorem, provided that
(C) is presumed.16 Moreover, the three confirmation measures listed
above that violate (C) – namely, ρ, n, and s – also violate the suffi-
ciency principle.17

Contrary to the indifferent perspective, therefore, a Bayesian can-
not simply suspend judgment about confirmation measures. For
any adequate theory of inductive inference should provide guidance
about which aspects of observed outcomes are relevant and which
can be ignored, and Bayesian principles of this sort significantly
restrict the range of acceptable confirmation measures. For instance,
two of the most important rules of this kind in Bayesian statistics –
LP1 and (S) – tacitly presume (C), a proposition that significantly
restricts the class of admissible confirmation measures. But is there
some general, compelling reason why a Bayesian must accept (C)?

5. THE ARGUMENT FOR (C)

According to (C), a difference in data that makes no difference to
the posterior probability distribution is irrelevant, does not matter
to the hypotheses in question from an evidential standpoint. But
what is it for some information to matter for evidence? There is a
very straightforward and practical way to interpret this notion. Let
us say that a decision depends on H exactly if which action should
be chosen varies according to whether H is true or false. If H is
true, you should choose one thing; if it is false, something else. A
given bit of information matters or is relevant to H only if it can
make a difference to decisions that depend on H .

This line of reasoning suggests an immediate Bayesian argument
for (C). Information that makes no difference to posterior proba-
bilities can have no effect upon calculations of expected utility, and
hence, according to Bayesian decision theory, cannot matter for evi-
dence. Let us consider this reasoning more carefully. The argument
relies on what I will call the practical relevance principle, or (PRP)
for short.

(PRP) If learning E rather than E∗ can make no difference to
decisions that depend on H , then c(H,E)= c(H,E∗).
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This proposition is a formulation of the idea that information is
evidentially relevant to H only when it can influence decisions
that depend on H . Following Patrick Maher (1996, 159), I inter-
pret “learning evidence E” to entail learning it with practical cer-
tainty. That is, although E’s probability may be strictly less than
1, it is close enough to make no practical difference under the
circumstances. Now consider a decision that consists of choosing
among a set of alternative actions {a1, . . . , an}. According to stan-
dard Bayesian decision theory, one should choose the action that
maximizes expected utility, which is defined as follows.

(Exp) EU(ai)=P(H)U(ai(H))+P(¬H)U(ai(¬H))

In (Exp), U(ai(H)) is the utility of performing the ith action when
H is true. Given this set up, if the decision depends on H , then
there is at least one pair, ai and aj , such that U(ai(H))>U(aj (H))
and U(ai(¬H))<U(aj (¬H)). The argument, then, proceeds as fol-
lows.

For a Bayesian, today’s prior probabilities are yesterday’s pos-
teriors. Hence, P(H), and thereby P(¬H), in (Exp) derive from
the earlier probability of H conditional on what was learned. In
this context, then, it is convenient to write the antecedent of (C)
as Pold(H |E) = Pold(H |E∗). Since we are concerned with cases in
which the evidence is learned with practical certainty, we can apply
the rule of strict conditionalization. So, if E was learned, P(H) =
Pold(H |E), and if E∗ was learned, P(H)=Pold(H |E∗). Obviously, if
Pold(H |E)=Pold(H |E∗),P (H) is the same in either case. Hence, in
this case learning E∗ rather than E can make no difference to deci-
sions that depend on H , and so by (PRP), c(H,E)= c(H,E∗).

I view this as a compelling Bayesian argument for (C), but let us
consider whether there is any Bayesian way to circumvent it. The
argument does contain a few implicit premises. In particular, it is
assumed that which evidence was learned has no effect on utilities
and that which action is chosen is independent of the probability
of the hypothesis. Although there are some circumstances in which
these premises would not be appropriate, they seem entirely innoc-
uous here, since none of the confirmation measures under consid-
eration allows such matters to affect confirmation. Consequently,
removing these premises would simply create needless complications.
Since I presume that Bayesians accept the principle of strict condi-
tionalization and the proposition that rational decision-making is a
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matter of acting to maximize expected utility, criticisms would focus
on (PRP).

One objection to (PRP) is that the notion of confirmation is
purely cognitive and hence disconnected from practical issues about
decision-making. I am skeptical that such a purely cognitive notion
of evidence is tenable. Nevertheless, if one wished, one could view
the decisions in question as cognitive choices about which hypothe-
sis to accept. Maher (1993, chapters 6, 7, and 8) develops a Bayes-
ian theory of acceptance, according to which one should accept the
hypothesis that maximizes expected cognitive utility. If the utilities
in (Exp) were interpreted as cognitive utilities in Maher’s sense, the
argument would go through as before. Thus, the thought that evi-
dence is cognitive in a sense that practical decisions are not poses
no real challenge to (PRP).

A different concern about the argument focuses on the inter-
pretation of ‘learning E’ as learning with practical certainty. This
interpretation of ‘learning’ is required for the application of strict
conditionalization. But suppose instead that ‘learning E’ only
requires that the probability of E be raised though not necessarily
practically certain. In this case, the new probability of H would be
derived from what is known as ‘Jeffrey conditionalization,’18 accord-
ing to which:

Pnew(H)=Pold(H |E)Pnew(E)+Pold(H |¬E)Pnew(¬E).

So when the evidence remains uncertain, P(H |¬E) matters to the
new probability of H . Thus, even if P(H |E) were equal to P(H |E∗),
learning E rather than E∗ could make a difference to decisions that
depend on H if P(H |E) differed from P(H |¬E∗). As a result, infor-
mation that makes no difference to the posterior probability might
nevertheless matter to decisions when data is not learned with prac-
tical certainty.

However, I think that it is quite reasonable in the present con-
text to require that a proposition qualify as evidence only if it
is practically certain. Recall that ‘confirmation’ here is understood
to mean incremental confirmation, which concerns the impact that
learning some data would have on a given hypothesis. But if those
data remain in serious doubt, then it is unclear why they should
be regarded as evidence that has been learned. For instance, sup-
pose E is a proposition concerning the outcome of some experiment
and that c(H,E) is significantly greater than zero (that is, if learned,
E would strongly confirm H ). Yet imagine that the experiment is
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inconclusive. After it has been carried out, the relevant experts judge
the probability of E to have been raised but still consider E to be
only somewhat more probable than not. The most natural thing to
say about this situation is that E is not yet evidence, though it may
become such through further experiments. Consequently, it is rea-
sonable that, when considering the impact of learning some poten-
tial evidence, one should consider what changes in belief ought to
ensue from its becoming practically certain. Indeed, I think that this
is how evidence is normally construed in the Bayesian confirmation
literature. For example, the problem of old evidence is founded on
the idea that the old evidence O is practically certain, which entails
that P(H |O)≈P(H), where H is any hypothesis whatever.

In sum, I think that the argument presented in this section pro-
vides a strong Bayesian case for (C), and consequently for LP1.
Of course, the argument does not demonstrate that LP1 is beyond
question. For example, the crucial role of the premise that ratio-
nal choice consists in acting to maximize expected utility shows that
one who accepted some distinct account of decision-making might
consistently reject LP1. Indeed, this is the situation one finds in
Neyman–Pearson statistics. This theory recommends decision rules
concerning the rejection and acceptance of hypotheses in which such
matters as stopping rules and censored data – irrelevant by the
lights of the LP1 – matter to which choice should be made.

6. BAYESIANISM AND LP2

In the foregoing section, I endeavored to show that there is an argu-
ment for (C) based upon core Bayesian principles, and hence that
Bayesians should indeed accept LP1. In this section, I argue that
no similar Bayesian case can be made for or against LP2. The most
common objection to LP2 is the so-called ‘tacking paradox,’ which
points out that, according to LP2, E confirms H equally well as
it confirms the conjunction of H and any irrelevant addendum.19 I
show that the tacking paradox cannot arise in the standard type of
case treated in Bayesian statistics. Hence, even if the tacking para-
dox is a genuine problem, it cannot be a reason for rejecting LP2
in these typical statistical examples. As a consequence, it is doubt-
ful that any compelling, across the board Bayesian argument against
LP2 exists. On the other hand, I maintain that the argument for
LP2 described in Section 3 is highly problematic. Thus, I conclude
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that the prospects for a compelling, general Bayesian argument for
or against LP2 are dim.

Consider an archeologist who wishes to estimate the date at which
a site was abandoned. Let θ be a random variable representing that
date in years before present.20 Then each hypothesis consists of an
assignment of a particular value to θ , for instance, 3000, 3001, 3002,
and so on. In this case, the set of alternative hypotheses are mutu-
ally exclusive, collectively exhaustive, as well as what I call structur-
ally identical. I say that two hypotheses are structurally identical just
in case each consists of an assignment of values to the same set of
random variables. Hence, θ =3000 and θ =3001 are structurally iden-
tical, since each assigns a value to θ . In contrast, hypotheses concern-
ing the values of distinct variables are not structurally identical. For
instance, if H is θ =3000 while H ∗ is the claim that the height of the
Eiffel Tower is 1000 feet, then H and H ∗ are not structurally identi-
cal since they do not consist of assignments of values to the same set
of random variables. Similarly, H and H ∗ are not structurally iden-
tical if H is θ = 3000, while H ∗ is the conjunction of θ = 3001 and
the claim that the height of the Eiffel Tower is 1000 feet. That is,
the sets {θ} and {θ , Height of Eiffel Tower} are distinct. In the C14

dating example, then, the problem is to assess the relative evidential
impact of a body of data upon a set of mutually exclusive, structur-
ally identical alternatives. Furthermore, it is not difficult to show that
the tacking paradox cannot arise in such a case.

The tacking paradox can be formulated as follows. Suppose that
E confirms H , while H ∗ is the conjunction of H and some entirely
irrelevant proposition. Then P(E|H) = P(E|H ∗), but in conflict
with LP2 many – though not all (cf. Milne 1996; Maher 2004) –
have the intuition that E confirms H alone more strongly than the
conjunction of H and the irrelevant proposition. However, since H ∗

is the conjunction of H and some irrelevant proposition, H and H ∗

must be consistent (otherwise the conjunct would not be irrelevant
to H ). Thus, in the course of comparing mutually exclusive alter-
natives, one will never need to ask about the relative confirmation
of some data upon a hypothesis and that same hypothesis conjoined
with something irrelevant. The same point holds for a related objec-
tion to the confirmation measure r. Braden Fitelson (forthcoming)
proposes the following criterion for confirmation measures:
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(*) If E provides conclusive evidence for H1, but non-conclu-
sive evidence for H2 (where it is assumed that E,H1, and
H2 are all contingent claims), then E favors H1 over H2.

For example, consider a case of the tacking paradox in which E
entails H1, and in which H2 is the conjunction of H1 and some
irrelevant addendum not entailed by E. Then E conclusively estab-
lishes H1 but not H2. Yet since P(E|H1)=P(E|H2), LP2 entails that
E confirms H1 and H2 equally, which contradicts (*). It is easy to
see that the situation addressed by (*) can only occur when H1 and
H2 are compatible. For when two hypotheses are mutually exclusive,
evidence that conclusively establishes one refutes the other.

However, mutual exclusivity does not suffice to eliminate the
concern raised by the tacking paradox, since one might also tack
irrelevant addendums on to one of a mutually exclusive pair of alter-
natives.21 That is, suppose that H1 and H2 are mutually exclusive
alternatives and that c(H1,E) = c(H2,E) > 0. So, if A is an irrele-
vant addendum, then P(E|H2)=P(E|H2 & A), and hence from LP2,
we have that c(H1,E)= c(H2,E)= c(H2 & A,E). But a person who
regarded the tacking paradox as a genuine counterexample would
claim that c(H2,E) > c(H2 & A,E) and therefore that c(H1,E) >
c(H2 & A,E). In this example, H1 and H2 & A are mutually exclusive
but not structurally identical. It is easy to see that irrelevant adden-
dums cannot pose a problem when one is solely concerned to assess
the relative support that evidence confers upon structurally identi-
cal alternatives. For whenever one hypothesis under consideration is
conjoined with some irrelevant addendum while others are not, the
alternatives being compared are not structurally identical. The tack-
ing paradox, therefore, cannot arise in contexts in which one is con-
cerned to assess the evidential impact of some data upon a set of
mutually exclusive, structurally identical alternatives.

Yet assessing the relevance of some evidence upon a partition of
structurally identical hypotheses is stock and trade in Bayesian sta-
tistics and in statistics more generally. Nearly, any case of a practical
application of Bayesian statistics in science would share this char-
acteristic. For instance, consider the textbook Bayesian Approach
to Interpreting Archeological Data (Buck et al. 1996). Chapter 2
of this volume contains a general discussion of how to model a
statistical inference problem from a Bayesian perspective, and this
discussion explicitly treats alternative hypotheses as assignments to
distinct values to parameters (Buck et al. 1996, 20–21). That is, it
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is presumed that all of the inference problems of interest in that
book will involve the comparison of structurally identical alterna-
tives. The C14 dating example alluded to above is a case that they
discuss (Buck et al. 1996, chapter 9).

Consider, then, a person who is solely interested in utilizing
Bayesian methods in scientific applications, such as those described
in Bayesian Approach to Interpreting Archaeological Data, and who
furthermore wished to presume LP2 in that context. All of these
applications would raise questions of the form: to what extent does
the evidence E support (or undermine) H vis-à-vis its mutually
exclusive and structurally identical alternatives? Yet neither the tack-
ing paradox nor instances of Fitelson’s principle (*) can arise in
such a context. Therefore, for a person whose use of Bayesian sta-
tistics does not extend beyond such situations, these objections can
provide no reason whatever to reject LP2. In fact, some statements of
LP2 are explicitly phrased in terms of mutually exclusive, structur-
ally identical alternatives (cf. Royall 1997, 24). In sum, since there is
a large, scientifically important class of cases in which the objections
raised against LP2 are not relevant, it is doubtful that there is any
compelling, across the board argument that Bayesians should reject
LP2.

However, there are many scientifically interesting cases that do
not involve the comparison of structurally identical alternatives.
This is most obvious when one is concerned to assess the relative
merits of large-scale theories, say, Newtonian Mechanics and Ein-
stein’s General Theory of Relativity. The disagreement between these
two theories is hardly a mere matter of what values to assign to
certain parameters. Rather these theories disagree about the basic
constituents of the world and about the meaning of physical con-
cepts such as time, space, and mass. The alternative theories might
also rely upon distinct auxiliary hypotheses when generating pre-
dictions.22 Examples involving large-scale rival theories that are not
structurally identical, including Newtonian Mechanics and General
Relativity, are often discussed in the Bayesian confirmation litera-
ture (cf. Earman 1992, 173–180). In addition, there are cases that
involve comparing two mutually consistent hypotheses. For instance,
one might wish to know whether the evidence E supports incorpo-
rating A as part of the hypothesis H . This question can be con-
strued as asking which E confirms better: H or the conjunction
of H and A. In such circumstances, a Bayesian might reasonably
think that, if A is an irrelevant addendum, then E confirms the
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conjunction of H and A less strongly than it confirms H alone.
Likewise, a Bayesian could reasonably agree with Fitelson’s princi-
ple (*). So, a defense of LP2 for cases involving structurally identi-
cal alternatives is not a defense of that principle generally.

Furthermore, the positive, argument for LP2 (which was
described in Section 3) is highly problematic. That argument
proceeds by canvassing the possible factors that could be rel-
evant to c(H,E)/c(H ∗,E). The first premise states that only
those things capable of influencing P(H |E)/P (H ∗|E) are rel-
evant to c(H,E)/c(H ∗,E). By Bayes’ theorem, the only fac-
tors that affect P(H |E)/P (H ∗|E) are the ratios P(E|H)/P (E|H ∗)
and P(H)/P (H ∗). But, the argument continues, since P(H) and
P(H ∗) merely reflect prior information while c(H,E)/c(H ∗,E)
concerns only the relative evidential impact of E upon H and
H ∗,P (H)/P (H ∗) should not influence c(H,E)/c(H ∗,E). Therefore,
the relative confirmation of E upon H and H ∗ should be determined
by the ratio of the likelihoods P(E|H)/P (E|H ∗), which leads directly
to LP2.

The chief difficulty with this argument is the premise that the
ratio of the priors, P(H)/P (H ∗), should have no influence on the
relative confirmation of E upon H and H ∗, c(H,E)/c(H ∗,E). It
is precisely this claim that is called into question by the tacking
paradox and Fitelson’s principle (*). Let E be the evidence, H
the hypothesis, and A the irrelevant addendum. Since A is irrele-
vant, we may presume that P(E|H)=P(E|H & A) and P(H & A)=
P(H)P (A). Hence, by Bayes’ theorem we have:

P(H |E)

P (H & A|E)
= P(E|H)P (H)

P (E|H & A)P (H & A)
= 1

P(A)
.

Given the mild assumption that P(A)< 1, it follows that P(H & A)<
P(H). Moreover, this difference in priors is solely responsible for the
ratio on the left-hand side of the equation being greater than 1. In
the special case in which P(H |E) = 1, we have an example of Fitel-
son’s principle (*). So, anyone who regards the tacking paradox as a
genuine problem or who accepts Fitelson’s principle must reject the pre-
mise that the ratio of the priors is irrelevant to relative confirmation.

The argument for the LP2 motivated the premise that
P(H)/P (H ∗) is irrelevant to c(H,E)/c(H ∗,E) on the grounds that
prior probabilities reflect information that has no bearing on the
evidential impact of E upon H and H*. This line of reasoning is
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advanced by Elliott Sober (1993, 52) and echoed by Peter Milne
(1996, 22–23). Milne writes:

Let us suppose that two theories both entail evidence statement E and E is found
to be true. The fact that E is the case is then powerless to discriminate between
the two hypotheses: both entail it so there is nothing in the nature of the evidence
itself that yields grounds on which to differentiate between them. (1996, 22; italics
in original)

Since the evidence cannot discriminate between the two hypotheses,
Milne reasons, it must confirm them both equally. However, Milne
does not provide any precise definition of what it is for evidence
to ‘discriminate between two hypotheses.’ There are several possible
interpretations of this phrase, but none as far as I can see results a
valid, non-question begging argument.

Evidence could discriminate between two hypotheses by confirm-
ing one and disconfirming the other. Clearly, the evidence cannot
discriminate in this sense when it is entailed by both hypotheses.
However, even if the evidence confirms both hypotheses, it need
not confirm both to the same degree, which is precisely the issue
at stake in the tacking paradox and Fitelson’s (*). So, if discrim-
ination means confirming one hypothesis and disconfirming the
other, Milne’s argument has not established that c(H,E)=c(H ∗,E)
if P(E|H) = P(E|H ∗). One might say that evidence ‘discriminates
between two hypotheses’ when it confirms them to different degrees.
Given this interpretation, Milne’s argument is valid but obviously
question begging, since the issue in question is whether evidence
entailed by two hypotheses might confirm one more than the other.
What other senses of ‘discriminate between two hypotheses’ might
there be? One possibility is that evidence discriminates between two
hypotheses only if it has distinct logical or probabilistic relation-
ships with each. However, this condition is clearly satisfied in the
tacking paradox, even if one supposes that the evidence is entailed
by both hypotheses. For example, P(H |E) > P(H & A|E), while in
examples of Fitelson’s principle E logically entails H but not the
conjunction of H and A. Indeed, it seems quite reasonable to say
that the evidence discriminates between two hypotheses when it
entails one but not the other. In short, there appears to be no sense
of ‘discriminate’ that will do the work required in Milne’s argument,
while there is a plausible interpretation of that term that leads to a
conflicting conclusion.
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Objections that have been raised against LP2 are inapplicable to
the sorts of examples typically dealt with in applications of Bayes-
ian statistics. Meanwhile, the positive argument for LP2 relies upon
the inadequately supported premise that P(H)/P (H ∗) is irrelevant
to c(H,E)/c(H ∗,E), a premise that is called into question by objec-
tions to LP2. The prospects of a compelling, across the board
Bayesian argument for or against LP2, then, appear bleak indeed,
and consequently there is ample basis to doubt the existence of a
one true measure of confirmation.

7. CONCLUSION

This essay has endeavored to clarify the sense in which Bayesians
are committed to the LP. I examined two propositions associated
with this principle. The first, LP1, asserted that E and E∗ sup-
port H equally when the likelihood functions L(H,E) and L(H,E∗)
are proportional. I argued that there are good reasons for a Bayes-
ian to accept this proposition. Furthermore, this result significantly
restricts the space of acceptable Bayesian confirmation measures,
and rules out one that has been recently advocated.23 The second
proposition associated with the LP, which I dubbed LP2, states
that E supports H and H* equally when P(E|H) = P(E|H ∗). In
contrast to LP1, I maintained that there is no general, persuasive
Bayesian argument for or against this principle. Thus, although the
likelihood principle places some real constraints on Bayesian confir-
mation measures, it does not reduce the field to a single one.

APPENDIX

THE CONFIRMATION MEASURE s VIOLATES (C)

Recall that s(H,E) = P(H |E) − P(H |¬E). Some elementary proba-
bility theory and algebra shows that P(H |E) − P(H |¬E) is equiv-
alent to (P (H |E)−P(H))/(1−P(E)).24 This formulation makes
the conflict with (C) easy to see. When the likelihood functions
L(H,E) and L(H,E∗) are proportional, P(H |E) equals P(H |E∗)
and there is a positive constant k such that P(E∗) = kP (E).
Thus, s(H,E) = (P (H |E)−P(H))/(1−P(E)), while s(H,E∗) =
(P (H |E∗)−P(H))/(1−P(E∗))= (P (H |E)−P(H))(1−kP (E)). So,
when the likelihood functions L(H,E) and L(H,E∗) are proportional,
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P(H |E)=P(H |E∗) but s(H,E) differs from s(H,E∗) whenever k is not
equal to 1. That s violates (C) is also shown by the probability model
provided below.

THE CONFIRMATION MEASURE s VIOLATES (S)

Recall that (S), the sufficiency principle, asserts that if P(E|E∗ & H)
=P(E|E∗), then c(H,E)= c(H,E∗). The following is a probability
model that demonstrates that s violates the sufficiency principle.

E E∗ H p

T T T .2
T T F .05
T F T 0
T F F 0
F T T .2
F T F .05
F F T .2
F F F .3

In this model, the antecedent of (S) is satisfied, since

P(E|E∗&H)= P(E&E∗&H)

P (E∗&H)
= .2

.2+ .2
= .5

= .25
.5

= P(E&E∗)

P (E∗)
=P(E|E∗).

Yet s(H,E)= .4
.5 − .2

.5 = .4, while s(H,E∗)= .2
.25 − .4

.75 ≈ .267. It is also
easily seen that this is an example in which s violates (C), since
P(H |E)=P(H |E∗)= .8.

NOTES

1 For example, see Birnbaum (1962, 271), Savage (1962, 17), and Berger and
Wolpert (1988, 19).
2 For a Bayesian, P(E|H) is given by P(E&H)/P (H). Bayarri et al. (1988) point
out that it is often unclear how a probability model that defines a likelihood
function can be separated from the prior distribution. That poses a difficulty for
statistical theories that rely on the likelihood function but seek to eschew prior
probabilities, like P(H). However, since my interest here is solely the relationship
between Bayesianism and the LP, I will assume that conditional probabilities like
P(E|H), and hence the likelihood function, are defined in reference to a com-
plete joint probability distribution.
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3 Frequentist statisticians would avoid the LP by rejecting conditionality
(cf. Mayo 1996, chapter 10).
4 See Royall (1997, 24–25) and Hacking (1965, 219) for similar formulations of
the LP. Both Royall and Hacking indicate that they regard their formulations of
the LP as equivalent to Birnbaum’s. But as we will see, the LP1 and LP2 are
importantly distinct.
5 For example, see Howson and Urbach (1993, 117) and Fitelson (1999, S363).
6 For convenience, I assume here that H is countable. The same reasoning works
for a continuous set of alternative hypotheses, since integration, like summation,
has the property

∫
kf (x)dx = k

∫
f (x)dx, where k is constant.

7 For example, see Fitelson (1999, 362) and Maher (1999, 55).
8 See Steel (2003, 220).
9 See Fitelson (1999, S368–369).
10 A version of ρ was proposed by Carnap (1962, 360), while n was suggested
by Nozick (1981, 252). The measure s is advanced by Christensen (1999) and
Joyce (1999, 205) as a solution to one aspect of the old-evidence problem. See
Eells and Fitelson (2000a) for an argument that s is not in fact helpful for this
purpose.
11 See Steel (2003, 219–221) for a demonstration that ρ and n violate (C). The
appendix explains why the same is also true of s.
12 The best example of this type of view is undoubtedly Milne (1996). Other
Bayesians advocate their favored confirmation measures in somewhat less strident
fashion (cf. Schlesinger 1995; Christensen 1999; Eells and Fitelson 2000b; Fitelson
2001).
13 See Mayo (1996, chapter 10), Kadane et al. (1996a, 1996b), Howson and Urbach
(1993, 241–243), and Berger and Wolpert (1988) for discussions of this issue.
14 That is, each outcome is probabilistically independent of all other outcomes and
the probability of getting any given outcome is the same for each observation.
15 See Howson and Urbach (1993, 188–192). Unlike the LP, the sufficiency prin-
ciple is accepted by Bayesian and Neyman–Pearson statistical school alike.
16 See Steel (2003, 224).
17 See Steel (2003, 225) for a demonstration that this is so for ρ and n. That
this is also true of s is shown in the appendix.
18 See Earman (1992, 34).
19 For example, see Fitelson (1999, S368-S369). Discussions of the tacking par-
adox typically presume that H entails E. But this assumption is not necessary,
since the complete irrelevance of the addendum A presumably suffices to ensure
that P(E|H)=P(E|H&A). This construal of the tacking paradox makes it equiv-
alent to the problem of irrelevant conjunctions (cf. Fitelson 2002; Hawthorne and
Fitelson 2004).
20 A frequentist statistician would think of θ as an unknown fixed quantity or
parameter, rather than as a random variable. For a Bayesian, θ is a random var-
iable because its values correspond to subsets of the probability space covered by
the agent’s probability function.
21 I thank Susanna Rinard for bringing this point to my attention.
22 Of course, one might argue that it is precisely for such reasons that it is diffi-
cult to provide a useful Bayesian analysis of such cases. Disagreements about
auxiliary hypotheses create significant difficulties for assessing likelihoods. And
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given that there is no mechanical procedure for generating the complete set of
theories of gravitation, we do not even know what all the alternatives are.
23 The victim is the measure s(H,E) = P(H |E) − P(H |¬E), favorably discussed
by Christensen (1999) and Joyce (1999, 205). Joyce (personal communication)
agrees that s is inadequate as a measure of incremental confirmation but
maintains that it is nevertheless an acceptable measure of what he terms ‘effective
evidence’ (cf. Joyce unpublished manuscript). Whereas incremental confirmation
concerns the impact on H of learning E, effective evidence concerns the extent
to which the agent’s belief in H depends upon a current firm belief in E.
24 See Christensen (1999, 450).
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