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Complex networks recently opened new ways for investigating how language use is influenced by the mental representation of word
similarities. This work adopts the framework of multiplex lexical networks for investigating lexical retrieval from memory. The
focus is on priming, i.e., exposure to a given stimulus facilitating or inhibiting retrieval of a given lexical item. Supported by
recent findings of network distance influencing lexical retrieval, the multiplex network approach tests how the layout of
hundreds of thousands of word-word similarities in the mental lexicon can lead to priming effects on multiple combined
semantic and phonological levels. Results provide quantitative evidence that phonological priming effects are encoded directly in
the multiplex structure of the mental representation of words sharing phonemes either in their onsets (cohort priming) or at
their ends (rthyme priming). By comparison with randomised null models, both cohort and rhyming effects are found to be
emerging properties of the mental lexicon arising from its multiplexity. These priming effects are absent on individual layers but
become prominent on the combined multiplex structure. The emergence of priming effects is displayed both when only
semantic layers are considered, an approximated representation of the so-called semantic memory, and when semantics is
enriched with phonological similarities, an approximated representation of the lexical-auditory nature of the mental lexicon.
Multiplex lexical networks can account for connections between semantic and phonological information in the mental lexicon
and hence represent a promising modelling route for shedding light on the interplay between multiple aspects of language and
human cognition in synergy with experimental psycholinguistic data.

1. Introduction for detecting patterns of word confusability in phonology

[12, 22], strategies of language learning in healthy and clini-

Cognitive network science is quickly rising as an interdis-
ciplinary field exploring psychology with the quantitative
tools derived from complex networks [1-4]. Through the
lens of network theory, many recent studies investigated
the cognitive representation of language, a system commonly
called mental lexicon [5] and deeply influencing processes
such as language learning [6-10], memory [11-14], crea-
tivity [3, 15], and language decline in cognitive impairments
[16-18]. It has to be underlined that these studies are only a
small part of a much wider literature on the mental lexicon
from psycholinguistics [5, 19-21].

Network science provided language scientists with quan-
titative ways of representing and analysing the structure of
lexical items within the mental lexicon [1, 4, 12, 22]. For
instance, concepts such as percolation techniques were used

cal populations of children [6, 23], differences in the levels
of creativity of individual healthy subjects [3, 11], or differ-
ences in the production of words in people with aphasia
[17, 18] or Alzheimer’s disease [24]. However, the above
studies considered only one aspect of language for establish-
ing similarities among words, e.g., building single-layer
networks including only phonological similarities among
words [12]. While this focus was valuable for investigating
on large scales how thousands of similarities among words
influenced processes such as word identification or memori-
sation tasks [12, 13, 25], the way humans store and memorise
words is inherently multirelational [1, 23, 26]. Multiple types
of semantic and phonological similarities among words are
present simultaneously, and they can either compete or assist
specific language processes in different ways [1, 5, 27, 28]. For
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instance, a recent empirical investigation indicated that tod-
dlers simultaneously exploit both phonological and semantic
features of words in early language learning [23, 29].

Phonological and semantic relationships can also affect
lexical retrieval in different ways. Lexical retrieval is a set of
cognitive processes and executive functions related to the
identification of a specific cognitive unit (e.g., a word) from
semantic memory [30] subsequently to a given visual or audi-
tory input (e.g., hearing or reading a given word) [15, 31-33].
Conceptual similarities can cause the so-called priming-
phenomenon, where one lexical item (a prime) facilitates
or inhibits the retrieval of another word (a target) [5, 32,
34, 35]. Priming can happen with different modalities
depending on how prime and target are processed (e.g.,
visual-visual, auditory-auditory, or crossmodal) and can
involve perceptual, semantic, or conceptual types of similar-
ities between prime and target [35]. Facilitative semantic
priming happens when a target word (e.g., “hawk”) is
processed faster and more accurately when preceded by a
semantically related stimulus (e.g., “dove”) than when pre-
ceded by an unrelated word (e.g., “prosthetics”) [34]. Empir-
ical work has shown that facilitative semantic priming
decayed more quickly over time when words were processed
individually compared to when words were processed in sen-
tences [35, 36]. This empirical evidence has been linked with
the richer structure of semantic associations among words in
a sentence [35, 36], indicating a positive correlation between
word-word associations and facilitatory semantic priming.
On the other hand, semantic inhibition or interference hap-
pens mainly through visual and perceptual modalities [35].
For instance, ignoring a picture representing a “dog” can pro-
duce subsequent slowing when responding to the word “cat”.

Semantic priming typically only considers primes and
targets belonging to the same semantic category (e.g., “hawk”
and “dove” are both types of birds). However, words can be
semantically related in other ways, which were often cap-
tured through free associations (e.g., “bed” and “pillow” are
often provided as free associations when talking about bed-
room furniture). Indeed, associative priming has been shown
to crucially depend on the time between the beginning of the
prime and the onset of the target [35, 37], a time window also
called stimulus onset asynchrony (SOA). A longer SOA
between prime-target pairs corresponded to stronger facilita-
tive priming effects, whereas nonassociated prime-target
pairs corresponded to inhibitory priming effects independent
to the SOA. Rather than exploiting taxonomical, semantic, or
cooccurrence similarities, perceptual priming depends on the
form of the stimulus. A similar priming effect occurs with
phonological similarities [28, 38]. Hearing primes can lead
to easier lexical processing of phonologically similar target
words [28, 35].

Inhibitory priming relies on mechanisms restricting
access to specific concepts, and the investigation of such
inhibitory dynamics still represents an open challenge in
the relevant literature [5, 28, 35]. Facilitative priming is well
explained by network models of semantic memory [5, 15,
28, 35, 39, 40] using spreading activation mechanisms.
Although its mechanisms remain an open challenge in
neuropsychology [5, 11], past attempts have successfully
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modelled semantic memory as a complex network in order
to obtain limited but meaningful insights of facilitative prim-
ing effects and lexical retrieval latencies in word identifica-
tion tasks [1, 2, 15, 39, 40]. Collins and Loftus represented
semantic memory as a conceptual network with links placed
between concepts that shared features. When a given stimu-
lus was activated (e.g., reading the word “animal”), then
many words in the semantic levels of the mental lexicon
received portions of activation, proportionally to their
semantic relatedness to the stimulus. The activation spread
across semantic similarities and it ensued until it converged
on a single target, more or less related to the stimulus, which
was then retrieved. Hence, lexical retrieval of an item was rel-
ative to a network node receiving a convergence of activation
from across its connections. Importantly, the spread of acti-
vation could cover far distances of time but decreased in
intensity. According to this model, the retrieval of target
words was facilitated by having primes close or adjacent to
the prime words. Furthermore, the model could interpret
empirical evidence of longer SOAs leading to stronger
facilitative priming [37] in terms of activation accumulating
over a given lexical item, leading to faster and more accurate
concept retrieval.

In Collins and Quillian’s experiments [40], subjects were
asked to read and verify statements relating to two concepts,
e.g., a canary is a bird. The time it took for participants to
verify a statement correlated positively with the distance
between concepts (e.g., canary and bird) in the conceptual
network representation of semantic memory [39, 40], ie.,
the smallest number of semantic similarities connecting con-
cepts. This represented preliminary evidence that network
distance in semantic networks correlates with lexical retrieval
patterns, although it was limited only to a rigid network
structure encompassing only semantic features of words.

More recent approaches have modelled a semantic net-
work as a web of free associations among concepts [3, 11,
15], i.e., relationships based on memory rather than on any
strict definition of feature sharing. The importance of net-
work distance for quantifying patterns of lexical retrieval
was recently underlined in the recent work by Kenett et al.
[15]. The authors showed that success in free- and cued-
recall experiments decreased dramatically with increasing
distance between concepts in a network of free associations.
Furthermore, network distance predicted success in recall
experiments considerably better than mainstream psycholin-
guistic techniques such as latent semantic analysis [34]. Net-
work distance has also been shown to influence lexical
retrieval when considering a phonological network. For
example, recent investigations showed how words at shorter
mean network distance were more promptly recognised in a
lexical decision task [14, 25]. These results strongly indicate a
cognitive advantage in processing concepts at shorter net-
work distances. In a spreading activation model of lexical
retrieval, network distance might capture how spreading
activation decays over the mental lexicon structure, further
promoting the usage of network models and network
distances for the investigation of lexical retrieval.

Additional empirical evidence has shown that phonolog-
ical similarities can reduce naming latencies in picture
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naming tasks, an effect known as phonological facilitation
[27]. This evidence led to the inclusion of phonological
aspects of the mental lexicon for obtaining more refined
models of lexical retrieval from the auditory input. In case
of hearing a word rather than reading it, more recent work
has proposed a spreading activation mechanism including
phonological similarities among words [12, 41-44]. Within
a bottom-up process, activation first spreads among phono-
logical neighbours of the stimulus and then moves up across
semantic memory, ultimately leading to word identification
and retrieval.

In agreement with the above approaches, the present
study adopts the assumption that the mental lexicon
encapsulates not only linguistic features of individual
words (e.g., their meaning, their orthography, their
phonology, etc.) but also their similarities. However, the
present investigation builds on the previous network
approaches to lexical retrieval [14, 15, 25] by considering
within the same network representation both semantic and
phonological similarities among words through the frame-
work of multiplex lexical networks [8-10, 16, 45]. In a multi-
plex lexical network, nodes represent words and links
connect words differently according to specific network
layers of similarities [8, 9, 45]. For instance, Stella et al. [8,
10] used a multiplex lexical network with layers representing
free associations, shared semantic features, cooccurrences,
and phonological similarities, which successfully predicted
early word acquisition in toddlers. The first large-scale appli-
cation of multiplex lexical networks was from Stella et al. [9],
where the mental lexicon of an adult was approximated as a
multilayer network with four layers of word similarities: free
associations, synonyms, generalisations, and phonological
similarities. Through a data-driven approach, intersecting
many large-scale datasets about word frequency, age of
acquisition, concreteness, and reaction times in lexical iden-
tification tasks, the authors identified a multiplex lexical core,
a set of words tightly interconnected with each other, appear-
ing suddenly during normative development around age
8yrs. This core made the whole multiplex lexical network
extremely resilient to cognitive impairments modelled as
progressive random word removal. Multiplex lexical net-
works were adopted also in a clinical population of people
with aphasia, revealing the importance of the multiplex
structure for predicting correct picture naming [16].

This paper adopts multiplex lexical networks for study-
ing two specific patterns of phonological priming in lexical
retrieval: cohort priming and rhyme priming. The term
cohort priming comes from cohort theory, a theory of lex-
ical retrieval by Marslen-Wilson and colleagues [31].
When hearing speech, the first phoneme heard “activates”
every word in the lexicon with that phoneme in an access
stage, resulting in a “cohort of words”. For instance, hear-
ing belief initially activates all words starting with the pho-
neme /b/, resulting in a very large cohort of possible
words. As the next phoneme is heard, the cohort is further
restricted, in this case, to words starting with /bl/ and so
on, phoneme by phoneme. As more phonemes are added,
fewer and fewer words are found as candidates until a
recognition point is reached such that only one word is

activated [31, 33]. This recognition point is known also
as isolation point or uniqueness point [31]. Cohort theory
assumes a quite strict definition of cohorts and it does
not consider lexical effects due to the structure of word-
word similarities in the heard input (e.g., phrasal context)
or in the mental lexicon [33]. However, empirical studies
have confirmed that the initial portion of a word activates
similar sounding words that compete for recognition and,
more importantly, are quicker to identify when primed by
words in the same cohort [31, 33, 46]. This facilitatory
cohort priming effect was detected in case either primes
were English words or nonwords sharing the first three
phonemes with the target [46], supporting the assumption
of activation of lexical items based on their initial phonetic
structure. Notice that the simultaneous activation of lexical
items corresponds not only to facilitatory priming effects
but also to lexical competition in distinguishing words
from the same cohorts [47]. In word identification tasks
without priming, targets in larger cohorts were found to
be recognised less accurately than targets in smaller cohorts
[47]. However, this competition effect disappeared when
words were presented in a phrasal context [28], indicating
that the semantic and syntactic features of words extracted
by sentences can interact with cohort structure and influence
lexical retrieval of words in cohorts. The above experimental
findings motivate further investigation of cohort priming
effects also in relation to the semantic and syntactic levels
of the mental lexicon.

Rhyme priming is analogous to cohort priming, in that
sharing phonemes at the end of words can give rise to
facilitatory priming effects [46]. According to the relevant
literature of priming effects, primes rhyming with a target
lead to shorter and more accurate lexical retrieval
compared to nonrhyming primes [46]. A similar rhyme
facilitation of lexical decisions to real-world targets was
found also in nonfluent people with aphasia [48]. Rhym-
ing priming also has beneficial effects for the memorisa-
tion of words [49], especially in young children [38].
Empirical studies have shown that this type of priming is
weaker than cohort priming but still present during lexical
retrieval [49]. The current investigation of cohort and
rhyme priming differs substantially from previous analyses
of cohort and rhyme priming. Here, by assuming a
network representation of the semantic and phonological
subcomponents of the mental lexicon, the main aim is to
detect cohort and rhyme priming effects in thousands of
words by harnessing directly the structure of dozens of
thousands of word-word similarities of different types
rather than directly testing only a limited number of
words, as in previous lab experiments [31, 33, 38, 49].
This multiplex network approach has three main
strengths: (i) it can quantify which semantic or phonolog-
ical layers are predominantly involved in potential priming
effects; (ii) it can account for any potential interplay and
nonlinear effects over priming arising from combining
semantics and phonology, an interplay often neglected in
previous network studies; (iii) it can be performed at large
scales, testing a sample of words up to two orders of mag-
nitude larger than in previous lab experiments [47].
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FIGURrE 1: Network visualisation of a portion of the adopted multiplex lexical network. The whole multiplex representation contains 8546
words. Semantic layers are clustered together (free associations, synonyms, and generalisation) and represent multiple aspects of semantic
memory. Phonological information is represented as a network of phonological similarities, where words differing by one phoneme were
linked together. The resulting multiplex lexical network is an edge-coloured graph where links of different types coexist (see right panel).

2. Methods and Model

This section provides information on (i) the construction of
the multiplex lexical network, (ii) the linguistic datasets used,
(iii) the network metrics adopted and their psycholinguistic
interpretation, and (iv) the null models used as a reference.

2.1. Construction of the Multiplex Lexical Network. The men-
tal lexicon of an adult English speaker was represented as a
multiplex lexical network including 8546 words connected
over four network layers, analogous to previous approaches
[9, 16]. The layers have been selected according to the
spreading activation model for auditory input [12, 18, 21,
41, 42], in which language processing happens first over a
subcomponent containing phonological information about
words and subsequently over semantic memory. Hence, the
multiplex lexical network is chosen in order to combine pho-
nological and semantic aspects of language. More in detail,
information about phonology is mediated by a layer of pho-
nological similarities [4, 22], where words are connected if
they differ in the addition/substitution/deletion of one pho-
neme, e.g., “cat” would be connected to “cab” because of
the above operational definition of sound similarity. Notice
that other patterns of sound similarity are not directly cap-
tured by this metric (e.g., “cat” and “cob”, which are 2 pho-
neme substitutions apart). Information about semantic
memory is encapsulated within three different levels:

(i) overlap in meaning was encapsulated in a layer of
synonyms, where words were connected if they can
have the same meaning, e.g, “meaningful” and
“insightful” can have the same meaning

(ii) the linguistic hierarchy of concepts was encapsulated
in a layer of generalisations, where words were
connected if they belonged to either a more specific
or a more general semantic category, e.g., “dove” is
a type of “bird”

(iii) most of the remaining semantic similarities among
words were encapsulated within a layer of empirical
free associations, where words were connected if
they were associated by participants during a free
association tasks, e.g., “bed” reminds participants
of “sleep”

It is important to underline that free associations, gener-
alisations, synonyms, and phonological similarities were all
found to deeply affect lexical retrieval in several independent
studies [1, 2, 12, 44, 50], hence the importance of including
them in the current investigation. The free association
network was built as a subgraph of the Edinburgh Associative
Thesaurus [50]. The synonym, the generalisation, and the
phonological networks were built according to a dataset
managed by Wolfram Research and based on WordNet 3.0
[51]. All layers were treated for simplicity as undirected,
and no cost associated with between-layer transitions was
considered, analogous to previous studies in the relevant lit-
erature [8, 15, 16]. Word features such as frequency were
obtained from the large-scale repository Opensubtitles [52],
which computes word frequencies from subtitles in TV series
and movies.

As reported in Figure 1, the resulting multiplex network
represents an edge-coloured graph [53, 54]. The same set of
nodes is replicated on each layer but different types/colours
of links among nodes can be present, with each colour corre-
sponding to a specific layer. On this structure, transitions
between layers are allowed by transitioning between replicas
of nodes. The multiplex structure alters dramatically the lay-
out of similarities among words. Words disconnected on a
layer might be highly connected and central on the whole
multiplex structure, like for instance “say” in the layer of
generalisations and in the whole multiplex lexical network
(see Figure 1).

The imbalance in modelling the multiplex lexical net-
work with three semantic layers but only one phonological
layer is due to (i) the relative importance in distinguishing
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different semantic aspects of the lexicon (e.g., synonyms are
different from taxonomical relationships) and (ii) to the rel-
ative difficulty of considering measures of sound similarities
that provide more information than the definition of phono-
logical similarity adopted in this work (cf. [4]). However, it
should be noted that the free association layer overlaps more
than random expectation with the layer of phonological sim-
ilarities [8], indicating that the association layer is not purely
semantic but it contains also some sort of phonological infor-
mation in it. This reduces the imbalance between semantics
and phonology in the chosen representation. Nonetheless,
previous similarity results [9] indicated that the layer of free
association still contains patterns of word-word similarities
that were more similar to those encoded in the synonym
and generalisation layers rather than to the phonological
layer. For the present analysis, the free association layer was
considered as a semantic layer, compatible with what previ-
ous studies assumed [2, 3, 15, 55].

2.2. Testing Cohort Theory. According to the cohort model,
lexical retrieval happens when the isolation point (see Intro-
duction) is reached, corresponding to a peak time inactiva-
tion [31, 33]. Phonemes heard prior to the peak time
determine the onset of the word and, consequently, the num-
ber of words in that word’s cohort. While the peak time may
change for each word based on its context, empirical evi-
dence indicates that the average peak time of a word is
around 200 ms from when the word gets pronounced [31]
and corresponds to having information about the first 3 or
4 phonemes of the word [28, 33]. Note that the above num-
bers represent average estimations, since the number of pho-
nemes occurring in the 200 ms window can vary depending
on the phoneme types (e.g., stops vs. fricatives vs. nasals).
Since in the current dataset considering onsets made of 4
phonemes led to quite small cohorts, the focus shifted on
onsets made of 3 phonemes, as tested also in previous stud-
ies [46]. For every onset available in the current dataset, a
cohort of words was built. In order to reduce the extent of
systematic errors due to small sample sizes, only cohorts
with more than 10 words were considered. This led to the
selection of 2526 words from the multiplex lexical network.
Selected words were subdivided into 99 cohorts of average
size 30 + 10 words.

2.3. Testing Rhyme Priming. Rigid definitions like consider-
ing only the overlap in phonemes in the last positions of
words cannot capture the wide variety of rhyming patterns
in English [49]. Rhymes depend not only on phoneme struc-
ture but also on additional features, like stress. In order to
overcome this issue, the online rhyming dictionary Rhyme-
Zone was used for selecting groups of rhyming words [56].
RhymeZone is partially based on WordNet [51] but it is also
enriched with additional data from quotes and lyrics. The
complete corpus of RhymeZone includes semantic and
phonological information over almost 19 million words from
1061 dictionaries; hence, it represents a large-scale and cross-
checked source of current rhymes in the English language.
The current analysis focused on true rhymes, i.e., words with
identical sounds after a stressed vowel. Homophones,

different words having exactly the same phonemes, were
not considered as rhyming words. According to this choice,
2247 rhyming words were selected from the multiplex lexical
network. Selected words were subdivided into 51 rhyme clas-
ses (e.g., all words rhyming with “authorisation”), of average
size 40 + 10 words. In order to reduce the extent of systematic
errors due to small sample sizes, only classes with more than
10 words were considered.

2.4. Network Metrics. As indicated in many recent investiga-
tions about lexical retrieval in semantic and phonological
subcomponents of the mental lexicon, network distance is a
reliable proxy of word relatedness as it is predictive of lexical
retrieval [3, 11, 15, 57]. Network distance dl-j between nodes i

and j in a given network N is defined as the shortest number
of links connecting i and j [58]. In cases where there is no
path connecting i and j, then nodes 7 and j are said to be dis-
connected and d;; is assumed to be equal to co. As reported in

Figure 1, in the multiplex lexical network, paths can be made
of links of different layers/colours. Therefore, there can be
additional, nontrivial “multiplex” paths emerging from the
multiplex structure, so that the network distance between
two words on any individual layer can be dramatically differ-
ent from the network distance between the same words on
the whole multiplex network. For instance, bed and sleep
might be disconnected on the phonological layer but con-
nected on the free association layer. This richer behaviour
of network distance on the multiplex network represents
the interplay between phonological and semantic aspects of
the mental lexicon. Notice that the whole multiplex lexical
network is fully connected in the sense of De Domenico
et al. [54], i.e., there is always a multiplex path connecting
any two words when transitions across layers are allowed.
However, individual layers are not fully connected, so that
some words might be disconnected and hence correspond
to a divergent distance d;; = co. In order to overcome the

issue of having infinite distances, the closeness c;; of nodes i
and j [58] is used, namely, the inverse of network distance:

1
Cij= 5> (1)
j dij

where ¢;; = 0 when i and j are disconnected. Considering the

inverses of network distance gets rid of divergences, so that
average finite estimators of distance can be computed. Pro-
vided that in the analysis individual network layers might
be disconnected, a valid proxy for the central moment of
the distribution of closeness is represented by the mean [58]:

1
"= NZ —, (2)
5 di

ranging from 0 (all nodes are disconnected) to 1 (all nodes
are adjacent with each other). c* represents the harmonic
mean of the distances of all node pairs in a given network,
a measure also called efficiency [58]. Notice that ¢* is analo-
gous but not equivalent to closeness centrality C;, which is
the arithmetic mean of distances of node pairs (for a



comparison see [58]). In disconnected networks, the har-
monic mean is a better estimator of closeness compared to
the arithmetic mean; hence, in the following, ¢* is adopted
for estimating how close words are on the multiplex lexical
network. We assume that primes and targets that are closer
on a network topology are processed faster and more accu-
rately than words at greater network distance, as supported
by recent empirical studies [15, 25, 57]. Closeness is com-
puted among words in specific subsets: (i) words in the same
cohort and (ii) words having the same rhyme (i.e., composing
a rhyming class).

2.5. Null Models. Quantifying the average closeness of words
in cohorts and in rhyme classes requires a suitable null model
for comparison and statistical testing. Since phonological
information is important for defining both cohorts and
rhymes, considering randomised lists of words satisfying
constraints at the phonological level is an intuitive choice.
As a viable approach, randomised cohorts/rhyme classes
are built by sampling at random real words sharing at least
m phonemes in any position. Both consecutive and noncon-
secutive shared phonemes had to be considered, since limit-
ing the null model to consider only overlapping consecutive
phonemes outside of the onset/end resulted in sample size
issues, e.g., too few words for statistical comparisons with
cohorts and rhyme classes. Randomised cohorts/classes have
the same size of the original ones. For cohorts, m is equal to,
because in the operative definition of cohorts onsets are
defined as having the same first three phonemes as a
consequence of the average peak time. For rhymes, m can
range between 2 and 4; the appropriate value is computed
by calculating the number of phonemes that all words in a
rhyme class have at their ends. The same m phonemes
defining a cohort/class are used for building its rando-
mised counterpart. For instance, consider the cohort
“belief”, “belong”, “beloved”, ... defined by phonemes /b/,
M1/, /1. A randomised cohort will include words sharing
these phonemes but in positions different from the onset,
e.g., “automobile”, “abolish”, “assembly”, Preserving
phoneme identity is important because different phonemes
might lead to differences in phonological awareness and
influence lexical processing [20].

The phonological constraint on the randomised lists
guarantees that the same phonemes are present in both
original cohorts/rhyme classes but in positions different from
the onset/end of the word. Therefore, the considered null
models allow us to test how phoneme sequences at the begin-
ning and at the end of individual words influence lexical
processing in relation to the multiplex structure. Hence, the
proposed methodology investigates to what extent the multi-
plex lexical network is nonrandomly structured to cluster
onset-sharing and rhyme-sharing words. To this aim, differ-
ences among individual phoneme sequences are averaged
across cohorts/rhyme classes and a statistical test is
performed between the average closeness of cohorts/rhyme
classes and random expectation from the above null models.
Nonparametric statistical testing, specifically a sign test, is
adopted in order to obtain results robust to violations of nor-
mality due to the low sample size of cohorts or rhyme classes.

Complexity

On the layers of free associations, synonyms, and generalisa-
tions, the distribution of average closeness for words in
cohorts and rhyme classes was found to violate normality
(Kolmogorov-Smirnov test, D> 0.08,p>0.09) at a 0.05
significance level.

Comparison with the null models also enables one to test
whether potential differences in closeness between cohorts/
rhymes and the randomised lists can be explained either by
individual aspects of language or by the interplay between
them, e.g., phonology and semantics or different aspects of
semantics. This is achieved by computing network distance
on individual layers and on the whole multiplex network rep-
resentation separately. These results are then compared
against another set of null models for the network layers
where links are randomised. In each randomised layer, words
have the same number of connections as in the respective
empirical layer but connections are rewired uniformly at
random. Hence, random rewiring preserves the degree distri-
bution of words on a layer. Since the same word can have dif-
ferent degrees on different layers [9], then different rewired
null models have to be adopted for the different layers of
the multiplex network. These null models are also called con-
figuration models in the network literature [59], and they
preserve the number of total word-word similarities of indi-
vidual words (i.e., nodes degrees) and also the heterogeneity
in the number of similarities individual words can have
(i.e., degree heterogeneity). Randomly rewiring every indi-
vidual layer is expected to disrupt both intralayer correlations
between nodes and interlayer correlations between links.
Therefore, configuration models allow quantifying to what
extent differences in closeness between cohorts/rhyme classes
and random lists of words are due to either global patterns of
network structure (which are disrupted by random rewiring)
or just by heterogeneity in link allocation (which is fixed even
under random rewiring).

3. Results

Results are presented in two stages. First, the suitability of the
adopted representation from a language perspective (consid-
ering word frequency) and from a network perspective is
reported. Cohort and rhyme priming effects are then ana-
lysed by using network distance and by considering specific
reference null models as a comparison.

3.1. The Relevance of the Multiplex Lexical Representation.
The selected multiplex network representation of the mental
lexicon is composed of layers including semantic and phono-
logical aspects of the mental lexicon of relevance in the liter-
ature about lexical retrieval (see also Methods). However, this
structure needs further validation since it must: (i) corre-
spond to commonly used words, and also (ii) correspond to
a structure that cannot be further aggregated, i.e., network
layers should display different patterns of word similarities
in order to further motivate the choice of considering them
as separate multiplex layers.

Figure 2 reports the frequencies of words in the multiplex
lexical network and in reference datasets from Opensubtitles
[52]. The probability of finding words with a frequency
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higher than 10 is one order of magnitude larger in the multi-
plex network than in the whole Opensubtitles dataset. The
multiplex lexical network is richer in terms of commonly
used words compared to the language used in movies, which
can also contain more specific and less frequent words (e.g.,
specific jargon, geographical names, etc.). Furthermore, the
words in the multiplex lexical network are almost as frequent
as the most frequent words in Opensubtitles (see for refer-
ence the probabilities of finding words with a frequency
higher than 10® in Figure 2). Based on these results, the con-
clusion is that, in terms of word frequency, the multiplex lex-
ical network includes commonly used words and is the
representative of the most common semantic and phonolog-
ical features of spoken English.

The choice of keeping free associations, synonyms, gen-
eralisations, and phonological similarities as separate is sup-
ported by a structural reducibility analysis, an entropy-
based technique for establishing the information about net-
work paths that is lost when layers are aggregated in a given
multiplex network (see De Domenico et al. [60] for the
technical details). Analogous to previous investigations with
multiplex lexical networks based on other datasets [8, 45],
the multiplex lexical network used in the current study (cf.
[9]) is irreducible. In other words, a significant number of
patterns of word-word similarities could be lost in case any
two or more layers of the multiplex lexical network were pro-
jected onto one layer only. The free association layer is also
found to be distinct compared to generalisation, synonyms,
and phonological similarities, so that it should not combine
with any of these three layers. This finding confirms that

the considered layers are representative of different aspects
of the mental lexicon, which should be kept as distinct.

All in all, the frequency analysis indicates that the
investigated multiplex lexical network is almost as rich in
commonly used English words and poorer in terms of more
infrequent lexical items when compared to the larger sample
of words from Opensubtitle, which includes with 5-10° lexical
items and is the representative of currently spoken English.
The irreducibility analysis is another important element as
it motivates the consideration of the chosen aspects of
semantics and phonology through separate layers in the mul-
tiplex network. Hence, both the frequency and the structural
reducibility analyses confirm the suitability of the multiplex
lexical representation for investigating patterns of the mental
lexicon for the English language.

3.2. The Multiplex Lexical Network Identifies Cohort Priming.
As reported in the introduction, facilitative semantic,
associative, and phonological priming effects are well
explained by activation spreading models over shorter net-
work paths of word-word similarities in the mental lexicon
[35, 37, 39, 41]. There is additional evidence that also inhib-
itory semantic priming depends on the proximity of concepts
on semantic networks [61]. Furthermore, as confirmed by
recent studies [15, 25, 57], closeness is a reliable estimator
of the efficiency of lexical processing; closer words on seman-
tic and phonological networks tend to be retrieved faster and
more accurately than words farther apart.

Figure 3(a) compares the median closeness of cohorts
(orange bars) and of random lists (blue bars) on individual
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layers and over the whole multiplex structure. Error bars
indicate error margins over the median. At the significance
level «=0.05, the differences in closeness between words
in cohort and words in null models are not statistically
significant on the free association layer (sign test, n, =52,
p=0.65) and on the synonyms layer (sign test, n, =56,
p=0.23). Statistically significant differences are observed
on the generalisations layer (sign test, n,=72, p<107°)
and on the phonological layer (sign test, n, =63, p =0.008).
A statistically significant difference is found also on the whole
multiplex structure (sign test, n, =73, p < 107°).

Words in cohorts are found to be on average closer than
random expectation on specific layers, indicating the pres-
ence of a cognitive influence when processing them together
and hence a priming effect. The gap observed in the phono-
logical layer can be attributed to a tendency for words in
the same cohorts to persist in the same connected compo-
nent. In fact, the lower inverse network distance/closeness
of the null model relates with the fragmentation of the pho-
nological network (cf. [22]), so that words in the same cohort
can have zero closeness, and this ultimately lowers the aver-
age closeness score. Therefore, despite both phonological
links and cohorts being based on measures of phonological
similarities, the observed gap between empirical and random
average closeness of words is an indication of the clustering
of cohorts over the same connected components in the mul-
tiplex lexical network. Interestingly, also cohorts in the gen-
eralisation layer are closer than random expectation.
Provided that cohorts are based on word forms, this cluster-
ing over a semantic layer might be the consequence of a
form-meaning correlation, a phenomenon called form-
meaning nonarbitrariness and empirically traced in English
and many other languages [62]. The magnitude of the gaps
in closeness found over the multiplex network and over the
generalisations and the phonological layer do not correlate
with the cohort size (Kendall Tau |z] < 0.07, p values > 0.4).
This analysis is directly based on the layout of hundreds of
thousands of word similarities in a multiplex lexical network
representative of commonly spoken language.

Notice that the difference in closeness between cohorts
and random lists persists also when the phonological layer
is not included in the analysis. This is an effect arising from
the nonlinear combination of the shortest paths in the multi-
plex structure. While on individual layers (free associations
and synonyms), there is no statistical difference when they
are considered together with generalisations, the resulting
multiplex representation displays a higher closeness for
words in cohorts rather than for randomised lists (sign test,
n,=71, p=107°). Importantly, this difference is not due to
generalisations. A difference in closeness between cohorts
and random expectation arises also in the multiplex network
having only free associations and synonyms as network
layers (sign test, n, =69, p=0.001). Although individual
layers do not display indications of cohort priming, the mul-
tiplex lexical network structure does. Since in the model all
layers except the phonological one represent semantic mem-
ory, this finding is an indication that cohort priming is not
exclusively due to phonology but is present also in the com-
bined semantic aspects of the English language.

When network links are rewired at random in configura-
tion models (see Methods), differences in closeness vanish on
all individual layers. Figure 3(b) reports the average closeness
of empirical cohorts on the randomised network structure.
The sign tests give the following results for the layers:
n,=52, p=0.69 for free associations, n, =55, p=0.31 for
synonyms, #n, =53, p=0.55 for generalisations, and #, =60,
p=0.05 for phonological similarities. The above results
indicate that the cognitive advantage expressed by closeness
[14, 15, 25] depends on the global structure of individual
layers and not on the heterogeneity in the allocation of simi-
larities words might have on each layer when considered
individually (e.g., heterogeneity on phonological neighbour-
hood sizes on the phonological layer, number of associates
to a word, etc.). However, even in the configuration models,
words in cohorts are closer than random expectation on the
whole multiplex structure (sign test, n, =63, p=0.009). On
the whole multiplex structure, the degree heterogeneity of
individual layers gets combined together, so that preserving
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degree correlations across layers ultimately still leads to
traces of cohort priming effects. This finding indicates that
degree heterogeneity determines the availability of shortcuts
among words in the same cohort. It also further indicates that
priming emerges from the multiplex combination of different
aspects of language.

3.3. The Multiplex Lexical Network Identifies Rhyme Priming.
As with cohorts, comparisons of the average closeness of
words in a rhyming class against one of the words from
randomised lists are performed (see Methods).

Figure 4(a) compares the median closeness of words in
rhyme classes (orange bars) and in random lists (blue bars)
on individual layers and over the whole multiplex structure.
Error bars indicate error margins over the median. At the sig-
nificance level a=0.05, the differences in closeness between
words in rhyme classes and words in null models are not
statistically significant only on the free association layer (sign
test, n, =30, p = 0.26). Statistically significant differences are
observed on the synonyms layer (sign test, n, =42, p < 107°),
the generalisations layer (sign test, n, =36, p=0.005), and
the phonological layer (sign test, n, =41, p=10"). A statisti-
cally significant difference is found also on the whole multi-
plex structure (sign test, n, =42, p < 107°).

Analogous to cohorts, words in rhyme classes are on
average closer than random expectation, indicating a cog-
nitive advantage [14, 15, 25] in processing them together
and hence a priming effect. More in detail, this structure
suggests a cognitive advantage in lexical processing,
assuming cognition is driven by similar network structures
and assumptions based on lexical similarity. The magni-
tude of the gaps in closeness between rhyme classes and
random expectations do not correlate with class size (Kendall
Tau |7] < 0.06, p values > 0.5).

Interestingly, rhyme priming persists on one layer more
than cohort priming. The layer of synonyms does not dis-
play cohort priming but features rhyme priming instead.
Notice that rhyme priming persists also in the structure of
semantic memory represented by free associations, syno-
nyms, and generalisations (sign test, n, =37, p=0.002),

again indicating that the multiplex interplay between indi-
vidual aspects of language can provide evidence of priming
effects that might be partially absent when these aspects are
considered separately.

When network links are rewired at random in configura-
tion models (see Methods), differences in closeness vanish on
all individual layers. Figure 3(b) reports the average closeness
of empirical cohorts on the randomised network structure.
The sign tests give the following results for the layers:
n,=32, p=0.09 for free associations, n, =32, p=0.09 for
synonyms, #n, =29, p = 0.40 for generalisations, and n, =33,
p =0.05 for phonological similarities. Even in the configura-
tion models, words in rhyme classes are closer than random
expectation on the whole multiplex structure (sign test,
n, =35, p=0.01). Analogous to what happens with cohorts,
this result indicates that degree heterogeneities of individual
layers get combined together and provide shortcuts to rhym-
ing words that still relate to rhyme priming effects. It has to
be underlined that in configuration models rewiring is ran-
dom but it is always constrained by degree, so that some
core-periphery structure induced on the network by the
degree distribution can still be present even under randomi-
sation of links. Here, random rewiring does not disrupt
shortcuts among words in the same rhyme-class. This indi-
cates that the degree of heterogeneity in the allocation of
word-word similarities and the multiplex combination of
layers are both important factors for determining rhyme
(and cohort) priming.

Notice that the closeness of words is lower in the phono-
logical network compared to other network layers for both
cohorts and rhyme classes. This indicates that words in
cohorts/thyme classes tend to cluster more on semantic
layers rather than on the phonological layer, even though
the considered groups of words are relative to phonological
priming. This difference is compatible with the fact that the
phonological layer includes words with an average of six
phonemes, so that even words sharing on average three pho-
nemes in their onsets or at their end might not have edit dis-
tance equal to one and hence they might not be connected
with each other. Furthermore, the phonological layer is
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significantly more disconnected than the other semantic
layers (cf. [9, 22]), so that the lower closeness might be due
to words being in different connected components of the
phonological network. Notice that if word clustering was a
consequence of the definition of the phonological layer, then
also randomly selected words should be clustering to a simi-
lar extent when compared to words in cohorts and rhyme
classes. Instead, the presence of a closeness gap on the pho-
nological layer indicates that words in cohorts and rhyme
classes tend to belong to the same connected component of
the phonological layer.

4. Discussion

Through the framework of multiplex lexical networks, this
paper provides an elegant model to account for and predict
potential cognitive advantages [14, 15, 25] in processing
together words sharing the same onset or rhyme together.
Comparison against null models indicates that these priming
effects can be detected already, but not exclusively, at the
structural level of word-word similarities when multiple
sources of linguistic relations are integrated together rather
than indirectly measured with latencies in a laboratory task.
The results reported in this analysis correspond to previous
work on priming in the psycholinguistic literature and open
novel modelling challenges in the investigation of priming
through complex networks.

First, the persistence of phonological priming patterns
also outside of the phonological layer is an additional confir-
mation of a nonarbitrariness of language in terms of form-to-
meaning correspondences [5, 62] (e.g., English words sharing
the onset “sn-” expressing mainly concepts related to “nose”).
For a given language, nonarbitrariness refers to the existence
of statistical relationships between sound patterns and
semantic usage of classes of words. This systematicity corre-
sponds to facilitatory effects in terms of early word learning
[62], 1.e., children learning words more accurately when spot-
ting systematic and language-specific relations between form
and semantic category. The result of phonological priming
effects arising also from the combination of hundreds of
thousands of semantic, multiplex word-word similarities
provides quantitative and large-scale evidence of a nonran-
dom semantic organisation of language that is influenced by
phonological regularities such as onset sharing or rhyming.

It is important to underline that cohort and rhyme
priming effects have long been detected and investigated in
experimental psychology [31, 33, 38, 49], although evidence
for them was based only on small samples of hundreds of
words being tested in memory-related tasks. The novelty of
the current approach is that it is directly based on the large-
scale structure of hundreds of thousands of word-word sim-
ilarities among thousands of commonly used English words
interrelated across several semantic and phonological aspects
of language. The current network approach is therefore dif-
ferent from an experimental setup from psycholinguistics;
in that the network paradigm scales up and tests thousands
of words in a considerably easier way compared to the time
and effort required in working with subjects in experiments.
Also, network representations rely on experiments, but once
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built, a network can then be used for testing a wide variety of
conjectures. For instance, the same network of free associa-
tions has been used multiple times for detecting patterns of
word learning [7-9], identifying individual creativity levels
[2,3, 11], or even predicting word production in clinical pop-
ulations [16]. The increasing adoption of complex network
models in the cognitive sciences can be beneficial in terms
of quantifying large-scale patterns of language usage and
acquisition, mainly because of the high versatility of network
models [4, 6, 11, 17, 55]. It must also be underlined that net-
work representations bear some assumptions with them and
are indeed approximated representations of complex sys-
tems. For instance, the multiplex lexical network assumes
that all links are weighted equally and are always present over
time but this might not be the case in a structure as dynamic
as the mental lexicon [5]. Understanding to which extent a
network approach is valuable always requires comparison
with empirical evidence, often provided by smaller-scale
experimental studies. A synergy between theoretical network
models and experimental psycholinguistic data represents a
valuable combination for future cutting-edge research, a pos-
sibility made more appealing by the recent availability of
larger digital corpora and massive online psycholinguistic
datasets like Opensubtitles [52].

Network approaches must work in synergy with experi-
mental data and more specific experimental setup in order
to answer the challenges revealed by network structure. An
important example is the attribution of a facilitatory or inhib-
itory nature to the closeness gaps identified in the current
investigation. In fact, a shorter distance among words in
cohorts or rhyme classes could also mean higher competition
levels among words and hence have an inhibitory, rather
than facilitatory, effect on word processing [28, 38, 46]. How-
ever, previous experimental studies found that cohort
competition effects are stronger for larger cohorts [28, 38]:
the more words are activated the stronger the competition
effect. This competition is present at phonological and also
at semantic levels, and it leads to slower performance on lex-
ical decision tasks. In the current investigation, both smaller
(i.e., comprising 20 words) and larger (i.e., comprising 100
words) cohorts consistently displayed the same priming pat-
terns reported in the manuscript. Differently put, words in
cohorts are always closer than random expectation on the
multiplex lexical structure and this gap is independent of
cohort size. Since competition effects are size-dependent
[28, 47] while priming effects are not [46], this finding might
be an important indication that the differences in the shortest
path lengths found in this work represent mainly priming
effects rather than lexical competition. Assessing the facilita-
tory or inhibitory nature of these priming patterns requires
additional empirical data and represents an interesting future
research direction.

Notice that cohort priming is not the only effect driving
lexical retrieval. The cohort model neglects important aspects
of language such as syntactic structure, which can signifi-
cantly alter access to semantic memory [3, 11, 33]. Recently,
experiments from cognitive neuroscience have indicated that
cohort effects and lexical competition levels are present when
words are processed individually while competition is absent
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when words are heard in short sentences [28]. Also, semantic
information aided the discrimination process of words in
larger cohorts [47]. The disappearance of cohort competition
effects in sentences or in presence of semantic information
indicates that word similarities and syntactic structure are
both highly important in driving activation to specific target
words, thus ultimately having a facilitatory, rather than
inhibitory, effect on lexical retrieval. Although not fully coin-
cident with the same richness of semantic information from
sentences, the adopted multiplex representation does not
consider words as disconnected units but rather provides
information also about word context through similarities,
e.g., the link between “play” and “act” represents the context
of theatrical plays and the link between “play” and “football”
represents the context of games. Hence, previous findings of
context [28] and semantic word similarities [47] reducing
lexico-phonological competition might represent an addi-
tional indication that the patterns found in this investigation
are facilitatory rather than inhibitory. Notice also that in the
relevant literature there is strong evidence for facilitatory
priming to correlate positively with concept relatedness
[35-37] and for inhibitory priming to be mainly driven by
ignoring unrelated concepts [5, 35, 61]. Combining this liter-
ature with the recent studies indicating that shorter network
distance is a valid proxy for closer conceptual relatedness [15,
57] further indicates that the priming effects detected on the
multiplex structure are mainly facilitatory. This is in agree-
ment also with the previous experiments specifically focused
on phonological priming and indicating that cohort effects
facilitate word memorisation [31, 33, 46] while rhyming
facilitates phonological awareness, specifically in children
[38]. In order to fully address the nature of the patterns
highlighted by the multiplex structure, a psycholinguistic
experiment involving the cohort/rhyming words analysed
in this investigation would be an important future research
direction. By considering reaction times in a lexical decision
task, it would be interesting to understand if there is any crit-
ical threshold c* of closeness above which lexical competition
might overcome facilitation, e.g., lexical items being so close
that they can be confused, thus inhibiting retrieval of the cor-
rect item. Another interesting research direction would be
correlating closeness gaps to competition effects in cohort
priming arising by interactions of specific word suffixes,
which can inhibit one another [63].

From a network perspective, the current investigation
provides additional empirical evidence that multiplex net-
works can highlight phenomena that cannot be detected by
single-layer networks. In fact, for both cohorts and rhyme
classes, individual layers do not always display priming
effects, while the multiplex network obtained by combining
together these layers always highlighted statistically signifi-
cant differences in terms of network distances. By assuming
that these differences indicate a cognitive facilitation in pro-
cessing words together, as indicated by many recent studies
[15, 25, 57], then the above results quantitatively indicate that
cohort and rhyme priming can arise from an interplay
between either different aspects of semantic memory (e.g.,
synonyms and free associations) or by an interplay between
different aspects of whole mental lexicon (e.g., phonological
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similarities and free associations). More in detail, assuming
that lexical retrieval is influenced by a multilayer network
structure of the mental lexicon, phonological priming
effects might then be an emergent property of the adopted
multiplex representation of the lexicon as it arises from
the multiple interactions among words across different
aspects of language.

Notice that the gap in closeness between cohorts/rhyme
classes and random expectation in the empirical multiplex
network is almost an order of magnitude larger than in the
randomly rewired multiplex network, containing random
links between words. This indicates that the detected gaps
in closeness are mainly due to the empirical structure of
word-word similarities in the real layers rather than to the
act of combining layers, instead. Notice also that the current
investigation cannot provide any causality link, since the
structure itself is unable to fully identify the nature of the
priming patterns found in the literature, as these patterns
are heavily influenced by other aspects of lexical retrieval
such as attention [35], modality [28, 36], and timing between
prime and target [37]. Addressing through experiments
the challenges opened by the current multiplex network
investigation on priming would also require a more thorough
investigation of the factors influencing priming beyond the
mental lexicon structure, such as different stimulus onset
asynchrony determining the strength of positive priming
[35, 37] or different modalities affecting the extent of negative
semantic priming [35]. This rich variety of priming patterns
underlines the importance of further multilayer modelling
efforts for the understanding of priming effects in language-
related tasks.

One limitation of the original cohort model was that it
neglected the influence that semantics exerts over lexical
retrieval in perceptual tasks [31, 41], an element that is
taken into account in more refined models of word process-
ing [41, 43] and confirmed also by experimental studies
[28]. Interestingly, the fact that free associations displayed a
significant gap in closeness for rhyming but not for cohorts
might be a consequence of the different positions of pho-
nemes. Relying on the last phonemes would allow for a tem-
poral unfolding to occur, during which the first part of the
word would be acquired and some of its semantic features
would be available for processing, features that cannot be
available when the first phonemes are heard instead. This dif-
ference reconciles the finding that in rhyme priming there is
a closeness gap also in free associations, a gap that is absent
when cohorts are considered. This quantitative difference
indicates that rhyme priming is more heavily influenced by
semantic information compared to cohort priming.

A limitation of the multiplex approach is that it does not
consider individual variability. It is expected for lexical
retrieval to be influenced also by individual factors such as
fluid intelligence or other active cognitive search strategies
[28, 42, 43]. Even creativity levels have been recently shown
to deeply influence lexical retrieval and word identification
in healthy populations [3, 11, 55]. One possibility for over-
coming this limitation could be the substitution of the
layer of free associations with other empirical layers,
always of free associations but obtained from subjects
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belonging to a specific population, like for instance highly
creative people. Previous research has shown that more
creative people tend to associate even semantically unre-
lated concepts [3, 11, 55], so that new shortcuts might
appear in the free association layer. These paths might
alter the results found in the current investigation for norma-
tive subjects. Considering other ad hoc layers of free associa-
tions could also be a valuable research direction for
generalising the model in order to incorporate ageing. Recent
work has shown that over time the mental lexicon undergoes
some substantial changes and some word-word similarities
get lost [19], thus potentially altering the shortcuts connect-
ing words in cohorts or rhyme classes. A reduction of prim-
ing effects with age is expected, particularly the one due to
rhyming which has been empirically shown to decrease in
strength from childhood to adulthood [38].

Also, the investigation of clinical populations could be
interesting for future research [17, 24]. In case the shortcuts
allowing for cohort and rhyme classes were resilient to pro-
gressive word failure in people with aphasia, these word-
word associations might be used for designing strategies of
intervention for restoring or mending the functionality of
the mental lexicon. The framework of multiplex lexical net-
works has been already applied to clinical populations with
aphasia [16], and it showed that word production in subjects
with aphasia crucially depends on the closeness that words
have over the multiplex lexical structure. Words with higher
closeness centrality were easier to pronounce in picture nam-
ing tasks compared to words with lower closeness. Investigat-
ing potential differences between words in cohorts/rhyme
classes and specific null models would represent an interest-
ing research direction.

All in all, multiplex lexical networks represent a powerful
framework for the quantitative investigation of psycholin-
guistic patterns where the interplay between different seman-
tic and phonological aspects of language is relevant. The
multiplex structure of these linguistic networks opens new
important challenges for the large-scale understanding of
the cognitive processes driving language usage.
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