
Lynn Andrea Stein Challenging the Computational Metaphor

1

Challenging the Computational Metaphor:
Implications for How We Think

Lynn Andrea Stein

Massachusetts Institute of Technology and the Bunting Institute, Radcliffe College

Abstract

This paper explores the role of the traditional computational metaphor in our thinking
as computer scientists, its influence on epistemological styles, and its implications
for our understanding of cognition. It proposes to replace the conventional
metaphor—a sequence of steps—with the notion of a community of interacting
entities, and examines the ramifications of such a shift on these various ways in
which we think.

1 Computation's Central Metaphor
In every endeavor that we undertake, we rely on a set of implicit or explicit principles
that guide our understanding and shape our course of action. In computer science, one
such idea is what I will call the computational metaphor. The computational metaphor is
an image of how computing works—or what computing is made of—that serves as the
foundation for our understanding of all things computational. Perhaps because
computation plays a central role in modern culture, the computational metaphor extends
beyond computer science and plays a role both in other disciplines and in our everyday
understanding of the world around us.

This paper addresses the need for a fundamental shift in the computational metaphor.
This shift is motivated by changes in the nature of computation as practiced and the
inefficacy of the traditional computational metaphor in describing current practice. We
are standing at the cusp of what Thomas S. Kuhn called a paradigm shift, in which the
very foundations of our field are being reconceived. This has profound implications for
all aspects of our understanding of computational science and, given its central role in
modern thought, for our broader understanding as well.

What is the computational metaphor? I think that it goes something like this:

Computation is a function from its inputs to its output. It is made up of a sequence of
functional steps that produce—at its end—some result that is its goal.

This is what I was taught when I was trained as a computer scientist. It is a model that
computer scientists by and large take for granted. It is something the members of the
field share. Sometimes we refer to it as Turing's or von Neumann's model; both men
were influential in elucidating this particular way of thinking about computation. Although
Turing’s machine was abstract and von Neumann’s concrete, each outlined a

Lynn Andrea Stein Challenging the Computational Metaphor

2

mechanism of execution that was strikingly centralized, sequential and result-oriented
(Turing 1936; von Neumann 1945).

Figure 1 depicts this image of computation iconically, highlighting several of its major
features. Computation is composed of steps. These steps are combined by temporal
sequencing. The computational process is evaluated by looking at its result (and, to
some extent, its resource utilization). To a first approximation, the computation's result
characterizes the computation.1 Throughout this paper, I shall refer to this as the
calculation model of computation.

This computational metaphor is an image by which we understand our field. It is a
common reference model that encodes how computer scientists see what we do and
how we think about our work. Computer scientists frequently use this model even when
talking about systems that are not, strictly speaking, sequential.2

The traditional computational metaphor preaches that—for almost all purposes—there
is a single thread of control and the programmer owns it. The programmer’s problem is
to figure out what happens next. The metaphor encourages us to ignore the fact that
computers are actually built out of analog components. It obscures the fact that each
component is fallible. It hides the ways in which the computer is physically coupled into
the world, and largely ignores any systems—social or mechanical or otherwise—within
which the computation is embedded.

As seen through this sequentialist metaphor, computation is a sort of glorified
calculation. A computer is, in this view, an extremely sophisticated (symbol-processing)
abacus. Historically, this is entirely appropriate. The first “computors” were people
assigned to perform mathematical calculations; mechanical computers were machines
that simulated the mathematical processing of these human calculators. Although some
early computers were used in actual physically coupled control systems, more
frequently they were used to provide data to human decision makers.

The calculation model of computation goes hand-in-hand with the idea of black box (or
procedural) abstraction. This is the equation of a computation with the functional result
that it computes over its input. Black-box abstraction is a powerful technique that
permits reasoning about systems at a fairly high level, e.g., combining functional pieces
without considering the details of their implementations. Without black-box abstraction,
it is difficult to imagine that much of the history of modern software development would
have been possible.

1 This is, of course, an exaggeration. Both resource utilization and side effects play a significant role in
our evaluation of a computation. Nonetheless, the functional behavior of a computation is generally taken
to be its most salient identifying characteristic. Further, taking a suitably broad reading of the term
"result"—subsuming both resource utilization and side effects—does not materially affect the point I wish
to make here.
2 In an otherwise forward-thinking book, Carriero and Gelernter explicitly equate programming and
problem-solving at the beginning of their How to Write Parallel Programs (1990). This is in spite of the
fact that the book discusses techniques that the authors believe to be at least as well suited to interactive,
distributed, and endpoint-less computation.

Lynn Andrea Stein Challenging the Computational Metaphor

3

A corollary of this approach is modular-functionalism. Since a computation is defined in
terms of the functional result that it computes over its input, each piece of calculation
can be identified with its associated function. Modular-functionalism is a method for
constructing systems in which the problem is decomposed into its constituent functions
and a solution is constructed by sequencing calculations associated with each of the
constituent functions. That is, the structural decomposition of the program is identical to
the functional decomposition of the problem that it solves. Within the context of
computation-as-calculation, modular-functionalism seems almost tautological. Later in
this paper, we will see an alternate view of computation in which modular-functionalism
is only one possible approach.

This approach is also consonant with Turing's abstract machine, with its step-at-a-time
processing, or von Neumann's architecture for manipulating memory-based data.
Hendriks-Jansen (1996) has observed that Turing worked at the time of, and was quite
possibly influenced by, the advent of assembly line manufacturing. Von Neumann
maintained a clean separation between instruction and data while placing both squarely
within the machine’s memory. This prefigures the 1960s and 70s notions of pure
“thought” (process) operating on memory-based data, and stands in stark contrast to
the messy intertwining more typical of 1940s and 50s cybernetics and early control
systems.

2 The Power of the Paradigm
The tremendous simplifications afforded by the traditional computational metaphor were
historically crucial. From the digital abstraction to procedural abstraction, from high
level languages to abstract program design, the conceptual vocabulary of computer
science today was facilitated by the computational metaphor. As a consequence,
computer technology has revolutionized much of the world.

Certainly, the computational metaphor enabled computer science to focus on the
organization of sequences of steps into larger functional units without worrying about
transient voltage levels or multiple simultaneous transitions within the hardware. This
way of thinking about computation also let us ignore the occasional power fault, the
mechanical misfire, delays in operator feedback, or other human activities. By hiding
the details of hardware's actual behavior behind artifices such as the digital abstraction,
tremendous advances in computational science were made possible.

If we had to directly manage the variations in voltage across each individual component
in our computer’s motherboard, we would be hard pressed to write even small
programs. The digital abstraction—looking at those voltages only when in stable
configurations and even then regarding them as ones and zeros—allows us to treat the
computer as a discrete logical artifact. The von Neuman machine architecture and, in
turn, higher level programming languages, were subsequent advances that removed us
still further from the actual analog machine. Memory mapping is a technique that allows
us to access complex peripheral devices—often containing their own processors—as
though they were simple storage cells.

Lynn Andrea Stein Challenging the Computational Metaphor

4

Or consider parallel programming. Parallel processors today are benchmarked on how
well they emulate the ideal of a sequential machines (while improving its performance).3

A particularly extreme example of this approach is automatic program parallelization.
This is an attempt to make multiple processors look, to the programmer, like a single
sequential machine of much the sort that the computational metaphor prescribes. That
is, it is a way to enable a programmer to harness the power of multiple processors
without ever knowing that there are many things going on at once.

The structures contributed by Turing's and von Neumann's machines were
tremendously empowering during computation’s first half-century, and not just for
computer science itself. The computational metaphor also plays a major role in
shaping how we, our students, and colleagues in other disciplines, see computation. As
some of today's most advanced technology, computation has become a significant
model system for interpreting many complex phenomena. It influences how we—all of
us—see the world. It is a filter through which we view everything from cognition to
economics to ecology. Whether or not we impute explicit computation to these
phenomena, we often conceptualize them in computational terms. In certain
disciplines—from the cognitive sciences to fields as disparate as organizational science
and molecular biology—computation has become a central metaphor for organizing
work in the field. It dictates the questions we ask and the answers we are able to
imagine.

In a variety of disciplines, the computational metaphor has had equally striking impact.
For example, in molecular biology, Keller (1995) points to an analogy between what in
biology is called the central dogma and what I here call the computational metaphor.
The central dogma (Crick) refers to the idea that DNA is the blueprint for RNA, which in
turn produces cytoplasmic proteins, in an unremittingly unidirectional process. She
argues that the central dogma has been modeled as a theory of information much like
computation and that biology’s notion of nuclear regulation of the cell owes much to
computational notions. Traditional organizational science, with its notions of
centralized, hierarchical control, is similar.

This way of thinking—this computational metaphor—has serious implications for how
our own students learn to think. Beginning programmers have historically been taught to
decompose problems logically into sequences of steps. Primary school mathematics
instruction emulates programming, including the teaching of "algorithmic thinking" in
elementary schools. Goal-directed, endpoint-driven planning is seen as preferable to a
more fluidly serendipitous exploration (Lawler 1985; Papert 1980). This approach
privileges certain epistemological styles over others and leads successful students to
fluency with one particular set of techniques, discouraging others.

The traditional computational metaphor affects our models of thinking as well. In “Good
Old-Fashioned Artificial Intelligence” (GOFAI), the single-minded result-oriented model
predominates. Newell and Simon’s (1972) “Physical Symbol System Hypothesis” gave

3 But see (Hillis 1989) for a competing view.

Lynn Andrea Stein Challenging the Computational Metaphor

5

credence to the idea that the brain was appropriately modeled as a computer or, more
specifically, as a symbolic calculator. The emphasis in much of the early days of AI was
on problem solving, game playing, and other forms of “puzzle-mode” intelligence. That
is, early AI systems were concerned with well-defined problem domains in which the
task of an ostensibly intelligent system was to deduce the correct answer from the
problem as presented: cognition as computation as calculation.

 During the 1970s, nearly the whole of cognitive science followed, adopting this
computational model as a prototype for human cognition. In its most extreme form, this
view revolves around the notion of "thinking" as a separately modularized system
communicating with perceptual and motor "peripherals". (Dennett and Kinsbourne 1992)
refer to this approach somewhat disparagingly as the "Cartesian Theater", the place
where it all comes together. This is the cognitive analog of the computer's central
processing unit distinct from von Neumann’s memory module.

3 Computation In Crisis
The computational metaphor was tremendously valuable in the first half-century of
computation’s history, fostering emulation across a wide range of fields. But while it
was both empowering and arguably essential for the early progress of the field, it was
never completely true. Initially, it was an extremely useful way of making sense of the
many constituents of a dynamically interacting community of hardware. By focusing on
activity within the CPU, insisting on the purity of the digital abstraction, and ignoring the
vicissitudes of erratic hardware components and I/O devices, we were able to progress
from electrical engineering to a discipline of discrete and controllable algorithmic
computation. Innovations like timesharing made it possible for multiple users each to
operate under the assumptions of the central metaphor (while in fact the virtual
machines on which these users worked were artifacts established by a more complex
underlying program). The few overt exceptions to the central metaphor—hardware
interrupts, networking, and eventually parallelism—were assiduously hidden from the
end user.

Increasingly, however, the traditional computational metaphor limits rather than
empowers us today. It prevents us from confronting and working effectively with
computation as it actually occurs. This is true both within computer science, which still
clings fervently to the metaphor, and in other disciplines where dissatisfaction with the
computational metaphor has in some cases caused an anti-computationalist backlash.

With the advent in turn of timesharing systems, of smart peripherals, of increasingly
networked computers, and of computational boxes containing more than one central
processing unit, the single-minded myopia of the traditional metaphor has become less
and less viable. It has become increasingly difficult to argue that things outside the
program itself "don't matter". The introduction of the activity of another user on the
same timesharing system did impact computation, and the virtual machine model went
to great lengths to minimize this interaction and so sustain the traditional metaphor for
another two decades or so. But rigid adherence to the computational metaphor can

Lynn Andrea Stein Challenging the Computational Metaphor

6

impede the progress of software engineering. More and more, computations involve
multiple virtually or actually simultaneous activities.

Today, computations that involve coordinated concurrent activity are poorly explained in
terms of the traditional computational metaphor. Those computations that necessarily
take place across multiple computers, such as the world-wide web, are only the most
visible examples. If we construe a computation as a sequence of steps designed to
produce a result, what is it that the world-wide web calculates? What are its constituent
functions? While these questions are a clear mismatch for the behavior of the world-
wide web, they are hardly more appropriate for virtual reality, an autopilot system, or
almost any other computation of interest today. Even word processing now involves the
logically concurrent execution of formatting, layout, spelling and grammar checking,
and—coming soon to a PC near you—bibliographic suggestions or other “agent based”
assistance.

A concrete example of the limitations of the calculation metaphor was provided by a
senior developer at a major software company. Although his company is able to hire
some of the best computer science graduates produced, he complained of difficulty
finding students who can write programs in which many things are happening
simultaneously. I originally assumed that he meant that their new hires had difficulty
with some of the finer points of synchronization and concurrency control. He corrected
this impression, explaining that his problem was “journeymen programmers” who didn’t
know how to think concurrently.4 Our students are learning to decompose and solve
problems in a way that is problematic even for today's software market.

Today, the line between hardware and software is blurred beyond recognition. We can
now construct almost any computation either in silicon or in software; we choose based
on the needs of the particular application. Custom silicon makes any program
realizable in hardware. Field-programmable gate arrays promise software-like flexibility
in hardware itself. (Waingold et al. 1997) have even suggested dynamically
reconfigurable silicon. The von Neumann architecture is no longer the clear choice,
though any report of its precipitous demise would surely be exaggeration. Any new
metaphor for computation must give equal precedence to hardware and software
implementations, to traditional architectures and novel ones as well.

If the hardware-software line is fading, the line between the computer and its
environment is following rapidly. In ritualized or regimented transactions, we are
increasingly replacing people with computers. Computers answer our telephones,
supply our cash, pay our bills, sell us merchandise. Computers control our cars and our
appliances. They cooperate and collaborate with one another and with the world
around us. The traditional metaphor, with its “what happens next?” mentality, leaves
little room for the users or environmental partners of a computation. A new theory of
computing must accommodate this fluidity between computer and user and physical
environment.

4 Bob Atkinson, personal communication.

Lynn Andrea Stein Challenging the Computational Metaphor

7

The traditional computational metaphor is also problematic as a guiding epistemology.
In our classrooms, certain styles of thinking and understanding are discouraged for
deviating from the unrelenting sequentialism of the computational metaphor. Turkle
(1984; Turkle and Papert 1990) studied how programming is presented as a rigidly
linear, sequential, and logical process. For some students—those she identifies as
bricoleurs or tinkerers—this way of decomposing problems is uncomfortable. These
students prefer to experiment with partial programs, piecing them together to build
larger structures only as they become comfortable with how they interact. Frustrated by
black-boxing and modular-functional linear design, many of Turkle's tinkerers
abandoned computer science. Those who did remain succeeded by suppressing, or at
least hiding, their epistemological style. Turkle notes that this style is disproportionately
observed among female students, giving rise to one possible explanation of the
differential representation of women within the field. Further, componential tinkering
may be precisely what is needed in today’s toolkit- and library-rich programming
environment.

Early historical attempts to capture computation and computation-like processes were
not exclusively sequentialist (nor were they exclusively digital). Work in fields such as
cybernetics was contemporaneous with the early days of computation, but has not
become a part of computer science's legacy. (See Weiner 1948; Ashby 1954, 1956.)
Cybernetics took seriously the idea of a computation embedded in and coupled to its
environment. These were precisely the issues suppressed by the computationalist
approaches. In the intellectual battles of mid-century, cybernetics failed to provide the
necessary empowerment for the emerging science of computation and so was lost,
dominated by the computational metaphor. The nascent field of computational science
was set on a steady path, but its connections to the world around it were weakened.

It was this disembodied information-processing approach that gained prominence both
within computer science and as a reference model for neighboring disciplines.
Research in cognitive science today is still defined either within it or in opposition to it.
But its influence is declining. Recent perspectives on artificial intelligence and cognitive
science have accepted that GOFAI’s puzzle-mode intelligence is only one, and
probably not the central, form of intelligent behavior.5

Increasingly, a more communal, contextual, interactive approach to cognitive science is
coming into its own, particularly among those whose research is informed by
neuroscience. These new-school cognitive scientists reject the traditional metaphor’s
centralized architecture, in some cases rejecting computationalism as a result.
Scientists like Smithers (1992), Port and van Gelder (1995) and Beer (1995) have even
begun to rediscover—and sometimes reinvent—the work of the cyberneticists. They
argue that dynamical systems provide a promising route to understanding and building
intelligent systems. Any new computationalist theory of intelligence must provide the
infrastructure to reconcile their advances with more traditionally computational theories
of intelligence.

5 For a clear articulation of this argument, see (Agre 1988), (Brooks 1991), or (Clark 1997).

Lynn Andrea Stein Challenging the Computational Metaphor

8

Molecular biologists now accept that their equivalent to our computational metaphor,
Crick’s central dogma, DNA to RNA to cytoplasmic protein, is only an approximation. In
fact, there are many examples of feedback along this path. Keller (1983) argues that
one early recognition of this feedback—McClintock’s work on transposition, involving
cytoplasmic influence in the production of RNA—was made relatively inaccessible to
molecular biologists as long as they insisted on rigid adherence to the central dogma.
Schuman (1998) descr ibes how the dogmatic assumption of
centralized—nuclear—control obscured existing evidence for cytoplasmic protein
synthesis in hippocampal learning. Keller argues that biology’s reliance on the
sequential information processing metaphor has limited its disciplinary vision. I would
argue that some of computation's "central dogma" similarly blinds us to some of the
truths of modern computer science.

4 Changing the Metaphor
Today's computations are embedded in physical and virtual environments. They
interact with people, hardware, networks, software. These computations do not
necessarily have ends, let alone results to evaluate at those ends. They are called
agents, servers, processors, entities. As an evocative example, consider a robot. For a
robot, stopping is failure. A robot is not evaluated by the final result it produces;
instead, it is judged by its ongoing behavior. Robots are interactive, ongoing, partners
in their environments.

But this observation is not limited to such obviously animate computations as a robot.
Consider a video game, a spreadsheet, an automobile’s cruise control system, a cellular
telephone network. Like robots, these computations are interactive. What we care
about is their ongoing behavior. We do not wait for some hypothetical endpoint to
decide whether they have done the right thing, past tense. Instead, expect them to
work with us (or with each other, or with our automobile or toaster oven). When we sit
down at the computer, we may well have goals. What we expect from a computer is not
that it fulfill this goal independently (i.e., compute a "result") but that it cooperate and
collaborate with us in our tasks.

If the traditional computational metaphor (as depicted in Figure 1) is computation as
calculation, I would argue instead for something one might call computation as
interaction. This is illustrated in Figure 2. Time again runs vertically, but in this
illustration, an additional spatial dimension has been added. The bars in the figure are
intended as spread out over space, with arrows representing communication from one
entity to another. Again, the figure is a schematic illustration highlighting some of the
main features of this model.

The pieces of this model are persistent entities coupled together by their ongoing
interactive behavior. It is the behavior of the whole system that constitutes grounds for
evaluation of that system. Beginning and end, when present, are special cases that can
often be ignored. The focus is on interactions among these entities. The computation
cannot be said to reside in any one of the entities; instead, it is the result of the

Lynn Andrea Stein Challenging the Computational Metaphor

9

interactions among them. In the calculation model, inputs come at the beginning;
outputs are produced at the end. In the interactive model, inputs are things you
monitor; outputs are things that you do. The computational system is open: it may
influence, or be influenced by, things outside of the system as depicted.

If today's computations are interactive, we need a way to think about how to build such
systems that corresponds to the traditional story but encompasses this richer metaphor.
Such a metaphor will be the starting point for thinking about a wide range of disciplines.
I wish to suggest that an appropriate metaphor is that of a community of interacting
entities. Computation is an entity with ongoing interactive behavior (i.e., providing
ongoing services). This entity may itself be made up of entities interacting to produce
its behavior. The problem of programming is the problem of designing this community:
Who are its members? How do they interact? What goes inside each one?

Many computational systems already incorporate some aspects of this decomposition.
Examples include robots, user interfaces, embedded systems, video games, web
browsers, control systems, information access utilities, and operating systems. In some
research communities, these entities are called servers; in others they are agents, or
behaviors, or actors. I have chosen "entities" as a relatively neutral term, although it too
has its baggage.6 Nor is the community that is the computation restricted to software.
Hardware, physical artifacts, even human beings can be participants in this
computational community.

This is the picture of computation that I think best characterizes today's computational
system. (By this I mean to include everything from spreadsheets and video games to
the control systems for automobiles and nuclear power plants.) In fact, this model
characterizes a very wide range of systems, including many without apparent
computers involved.

6

Note, however, that an entity in my terminology is not the same as an object in the sense of object-
oriented programming. First, not all objects are autonomous and self-animating. It is customary to
explicitly distinguish such animate objects by means of labels such as “research on concurrent objects.”
(See, e.g., Yonezawa and Tokoro (1987) or Agha (1990).) Second, an entity in my terminology need not
have the explicit data-plus-invocable-methods structural interface generally associated with object-
oriented methodology, i.e., animate entities need not be objects at all. Agha and Hewitt’s (1988; Agha
1986) actors or other concurrent object approaches are good representative examples of what I mean by
entities, but so are Brooks's (1990) augmented-finite-state behaviors. Entities capitalize on, rather than
hide, inherent concurrency.
Just as entities are not objects, what I am advocating here is not a shift to object-oriented thinking, though
it bears some resemblance to what (Kay 1997) claims originally to have intended by that term. The
current practice of object-oriented programming has largely been coopted by the traditional metaphor.
This is why the phrase “concurrent objects” is not redundant, but a necessary further specification.
Object-oriented programming encapsulates data with function; but this function is generally sequential
and largely contextually oblivious. Because objects are generally seen as passive, act-only-when-
invoked kinds of creatures, they have become a part of the traditional metaphor’s mainstream.

Lynn Andrea Stein Challenging the Computational Metaphor

10

Changing the computational metaphor—moving from computation as calculation to
computation as interaction—has far-reaching and fundamental effects on the way that
we think. I mean this in three senses:

• It changes how computer scientists view computer science. This has particular
implications for how and what we teach.

• It changes how we all approach problem solving and software design as well as the
domains from which we draw our models and solutions. This has implications for the
kinds of epistemological styles that we consider acceptable and, as a result, on the
kinds of answers that future generations will produce.

• It changes how scientists—especially but not exclusively cognitive scientists—use
computation as a reference model. This affects our understanding of thinking itself.

This argument—that computation-as-interaction is an important motivating
metaphor—is one that I wish to make in the remainder of this paper.

5 How We Think
The remainder of this paper explores the ramifications of this shift in the computational
metaphor, from traditional computation-as-calculation to today’s computation-as-
interaction. Throughout this journey, I will use the single motivating example of a
navigation-based mobile robot. It will be developed from a basic community of
interacting entities suitable for classroom presentation to a more complex artifact that
gives us insight into how biological systems might think. Along the way, I will make
several detours to explore related issues.

This example has been personally motivating, as it reflects my route into these issues.
It also unifies many of the issues that I wish to highlight, including the urgency and
feasibility of changing our approaches to introductory pedagogy, the epistemological
styles necessitated by this alternate computational paradigm, and the ways in which this
shift both reflects and is reflected by the newest approaches to cognitive science.7

My research into cognitive architectures led directly to significant frustrations with the
inapplicability of my training as a computer scientist for those problems of cognitive
science. As I have described above, I found the sequentialist, centralized, disembodied
nature of the tradit ional metaphor—and i ts corol lary modular-
functionalism—inappropriate for the artifacts—robots—with which I worked. My
empirical work in robotics pushed me to explore alternate approaches to cognitive
architectures At the same time, I realized that the problems that I saw in cognitive
robotics mirrored architectural difficulties my research group was having in such

7 Three threads of my own history converge in this work. The first is an ongoing investigation of cognitive
architectures: How might intelligent systems be put together? (Stein 1994 1997) The second thread is
an investigation of the semantics of sharing in object-oriented systems, including the tradeoff between
flexibility and behavioral guarantees. (Stein 1987; Stein et al. 1988; Stein and Zdonik 1999) The final
thread involves the use of simple, inexpensive robots to enhance the classroom experience of
undergraduates in computer science (Hendler and Stein; Stein 1996 1999).

Lynn Andrea Stein Challenging the Computational Metaphor

11

different arenas as software agents (Coen 1997) and information retrieval (Karger and
Stein 1997).

These problems in turn sounded like what my colleagues across computer science
increasingly described: the importance of interface, the inevitability of implicit or explicit
concurrency, the valuation of behavior by ongoing invariants rather than end-products.
The watchwords of cognitive robotics—embedded, embodied, situated—applied equally
to what most of my colleagues were doing. Though they used terms like “server” rather
than “agent”, they, too, were building communities of interacting entities. Their
systems, like mine, were not well-described by computation’s central dogma.

The world in which cognitive robotics resides is the world of interactive systems. This
domain, which includes real-time systems and user interfaces, computational hardware
and distributed systems, software agents and servers, is largely outside the traditional
computational paradigm. In this world, the time- rules of modular construction do not
always make it apparent how to combine such functions to produce desired behavior in
a principled way. Others have noticed the interconnectedness of software systems as
well. (See, e.g., the recent Workshop on the Interactive Foundations of Computation at
Washington University St. Louis, Wegner’s recent article in the Communications of the
ACM or any of the recent work in component architectures.) New approaches to
computation are needed at many levels, from theoretical foundations to design
methodologies.

In the next three sections, I will use the idea of a navigation-based mobile robot to talk
about the three kinds of thinking that conclude the previous section. First, I will look at
the content of our conceptualizations: What problems are the rightful domain of
computational thinking? A robot is evocative of the community-based
conceptualizations that I believe provide today’s answer to this question. Second, I will
turn to the ways in which we approach these phenomena: What questions we ask
about these problems, and what techniques we bring to bear on them? Third, I will ask
what this alternate conceptualization says about cognitive architectures, the
mechanisms by which thinking is accomplished.

6 Implication: Thinking Like a Computer Scientist
Introductory computer science education is the place where we as a community
articulate the principles that underlie our field. It is in this course that we lay out the
foundations of computation and teach students to think in computational terms. The
traditional computational metaphor has—literally and figuratively—been a central part of
this course. If computation today is more appropriately construed as a community, we
must rethink the story that we tell our community's newest members.

Although robots are not common in the introductory programming curriculum, they
prove a wonderfully effective vehicle for illustrating important principles, both rhetorically
and in actual classroom practice. (See, e.g., Resnick 1988; Martin 1994; Stein and
Hendler.) This section begins with a simple example of the interactive approach: a

Lynn Andrea Stein Challenging the Computational Metaphor

12

robot that wanders without bumping into walls. The particular example is a common
one in reactive robotics, but also derives from Braitenberg (1984) and from my own
experiences using simple robots in undergraduate education (Stein 1996).

6.1 Constituting a Community
This problem —like every problem of interactive computation —is specified in terms of
ongoing behavior. The robot—depicted in figure 3—has two distance sensors, one
angled to the right of forward and one to the left. It has two motors, one controlling its
left rear wheel and one its right. By driving both wheels forward, the robot moves in a
straight line; by driving only one wheel, the robot turns. The job of this robot’s control
program is to keep moving without running into obstacles. 8

Like a traditional mathematical program, this robot’s behavior is amenable to recursive
decomposition—breaking it down into like-styled parts. In a traditional functional
decomposition, the constituent pieces are the steps to be sequenced. In this interactive
environment, the programmer’s question is instead to identify the entities whose
ongoing interactions constitute the behavior of this robot. The programmer’s questions
are: Who are these entities? How do they interact? And how is each of these
constituent entities in turn implemented?

A first approximation to such a decomposition—sufficient for our pedagogic
purposes—involves one entity to control each motor and one to monitor each sensor.
The sensor-monitoring entities are tasked with reporting danger to the contralateral
motor whenever an obstacle looms near. Each motor-monitoring entites are
responsible for driving its motor in reverse while it is being warned. (This situation is
depicted in Figure 4.) The result is that when an obstacle is visible ahead to the left, the
left-sensor-monitoring entity reports this to the right motor monitor, which in turn stops
the motion of the right motor. This causes the robot to turn toward the right, away from
the obstacle on the left. When the robot moves far enough that the obstacle clears, the
left sensor monitor ceases its report and the right motor monitor resumes the forward
motion of the robot. We can further constrain the robot’s behavior, e.g., by relating the
latency of the notification and response to the robot’s speed and turning radius.

There are many ways to implement a variety of increasingly sophisticated navigation
behaviors. For example, there might be intervening entities between the sensor-
monitors and the effector-monitors, allowing a more complex decision-making process.
Alternately, the processing of a single sensor might be accomplished by an entity that is
actually itself a community. (If this seems overkill for a simple distance sensor, consider
instead the processing of a camera image.) Of course, there are many variants
implementing increasingly sophisticated behaviors. We will revisit this example in
section 8, below.

8 This description elides certain issues, such as the necessary relationship between the sensitivity of the
sensor and the turning radius of the robot, for the sake of clarity and conciseness of exposition.

Lynn Andrea Stein Challenging the Computational Metaphor

13

As described, this example is not very complicated. Significantly, the simplest behavior
satisfying the specification is quite straightforward. The purpose of this example is not
to illustrate the complexities of reactive robotics; rather, it is to show that computations
of this sort—interactive, embedded, ongoing—can be largely straightforward and
accessible to the beginning student. At the same time, this example highlights the ways
in which the questions of this new paradigm differ from the traditional questions of
result-oriented step-sequencing programming.

6.2 Beyond Robots: Interactive Programming in the Curriculum
The robotic example described here serves as a great motivator for introductory
students. Robots are hands-on. They make much of their internal state manifest,
misbehaving in ways that are often readily apparent. They encourage experimentation
and observation. And interesting issues arise with much less complexity than in an
operating system, the one example of a concurrent system found in the traditional
undergraduate curriculum.

Of course, the idea of interactive systems in the introductory classroom does not
depend on robots. In (Stein 1999), I describe a new curriculum for the introductory
programming course, i.e., for students with no prior programming experience. This
course differs from the traditional one both in the questions that are asked and in the
territory that is covered as a consequence. Every program that students encounter in
this class is inherently concurrent and embedded in a context. Functionality to be
implemented is always specified in terms of interactions and ongoing behavior.

In this single semester course, students progress from simple expressions and
statements to client/server chat programs and networked video games. Although this
sounds like extremely advanced material, these topics proceed naturally and
straightforwardly from the interactive computational metaphor. Because the
programmer’s questions concern the relationships between components, topics like
push vs. pull, event-driven vs. message passing, and local vs. networked
communication are integral aspects of this course. The curriculum exploits this shift in
the fundamental story of programming to restructure what is basic and what is
advanced curricular material. In other words, this course does not go deeper into the
curriculum than a traditional introductory course; rather, it stands the traditional
curriculum on its end.

The introductory course is where we make our metaphors explicit, where we lay out
what computation is all about. By recasting the course in terms of a new metaphor for
computation, I was able to teach beginning students about ideas traditionally considered
too complex and inaccessible for that level. This changes every subsequent course,
without actually changing the course sequence. Everything that we teach our students
takes on new meaning. For example, this approach makes it easier to contextualize
traditionally hard-to-fit-in topics such as user interfaces. If computation is about what to
do next, what role could a user possibly play? But if computation is about designing the
coordinated activity of a community, a user is simply another member of the community

Lynn Andrea Stein Challenging the Computational Metaphor

14

within which the software system is embedded. Rethinking the computational metaphor
turns the discipline on its side, giving us new ways to understand a wide range of
phenomena.

6.3 Shifting the Vocabulary
In the simple robotic example at the beginning of this section, the behaviors of the
system as a whole and of its constituent entities were described in terms of ongoing
contracts or promises. The individual routines executed by each entity are trivial: “If the
sensor reports an object, inform the opposite motor-monitor”, for example. It is not any
one entity that performs the navigation of this robot; rather it is an emergent property of
the coupled interactions among the constituent entities—the members of the
community—as well as the interactions between this computational community and the
surrounding world in which it is embedded.

The kinds of questions to which this example lends itself typify the issues of modern
software design. How reliable does communication between the entities need to be?
(In this case, not every signal need reach the motor-monitor; lossy communication is
generally adequate.) Whose responsibility is transmission of the signal: push or pull?
(In this example, I have allocated that task to the sensor-monitor, a signal “push”.)
What kinds of latencies can be tolerated? (This depends on the mechanical properties
of the robot within its environment.) Under what circumstances can this robot
reasonably be expected to perform correctly?

These questions are difficult to ask within the traditional paradigm. Recasting the
problem as the coordination of a community of interacting entities brings them to the
fore. The traditional metaphor dictates questions of asymptotic complexity.
Computation-as-interaction asks about throughput and latency. Tradition dictates
procedural abstraction. Interaction calls for component architectures. Tradition
suggests pre- and post-conditions. Interaction demands protocol design and analyses
in terms of system dynamics.

The need for new kinds of architectural tools becomes readily apparent. Some recent
attempts to address this need, and to provide new languages for describing the
coupling of interactive systems, include catalogue-based approaches such as (Gamma
et al. 1995)’s design patterns or (Shaw and Garlan 1996)’s software architectures;
metalinguistic strategies such as (Dellarocas 1996) work on coordination protocols or
(Kiczales et al. 1997)’s Aspect-Oriented Programming; new formalisms such as (Lynch
et al. 1996)’s IO Automata; and component architectures such as CORBA or COM.
Each of these pieces of work is difficult to motivate from within the result-oriented
sequential approach to programming; the inspirations for each come from the desire to
integrate interaction among distributed concurrent service-providing systems.
Interaction-based computation demands that computer science invent new ways to
think.

Lynn Andrea Stein Challenging the Computational Metaphor

15

7 Implication: Epistemology of Software Engineering
The previous section explored the ways in which the paradigm shift from computation-
as-calculation to computation-as-interaction changes the material presented in an
introductory course and the tools and languages that we use to describe it. This section
will look at how this shift plays out in terms of our relationships with and expectations of
computation per se.

7.1 Thinking Concurrently
One of the most profound implications of this metaphoric shift is to bring all of the finely
honed intuition that we have developed in the course of everyday life to bear on
computational problems. Every three-year-old knows that you need to distract your
parent before sneaking a cookie. Schoolchildren organize their fellows to carry out
group activities all of the time.

And yet in the traditional view of computation, we go to great lengths to hide the fact
that there might be more than one thing happening at a time. Programmers are not to
know that their processor is issuing multiple instructions simultaneously; rather, whole
pipelines are stalled or unrolled if necessary. Software engineers should not even have
to think about the idea that multiple processors might be at work within a single so-
called computer. And access to storage on remote machines carefully masquerades as
local memory in many systems, often to the program developer’s detriment (Waldo et al.
1994). Of course, this picture is an exaggeration, but like every straw man its kernel is
true.

A robot is not this kind of beast. The left hand cannot wait for the right to conclude its
computation; like a group of schoolchildren or a massive corporation, coordinated
activity is its only viable option. In order to successfully program a robot, one must learn
to think in terms of coordination frameworks, protocols, interfaces. This is the stuff of
software engineering. Indeed, a brief experience programming a robot is a software
lifecycle in an afternoon.

One of the most interesting things about physical robots is that the world provides a
sufficiently dynamic environment as to make precise behavior almost non-repeatable.
Lighting conditions change; initial positions vary; wheel slippage is unpredictable.
These things change as the robot is executing. A robot does not wait for the world to
complete its computation before acting; instead, the robot operates concurrently and
interactively with the world in which it is embedded. As a result, running a real robot in
the unconstrained real world invariably provides new challenges and new test
conditions in a way almost entirely lacking in current computer science classrooms.

7.2 Interacting with Computation
Consider, for example, what happens if the robot of the previous section approaches a
corner. Now both sensors fire. Each sensor-monitoring entity signals a reverse to the
opposite motor monitor. Each motor-monitoring entity, being warned, stops moving.

Lynn Andrea Stein Challenging the Computational Metaphor

16

The robot stops. Each sensor continues to fire. Each sensor monitor continues to issue
a warning. Each driver continues to do nothing. And so on, forever.

This interaction may have been unanticipated by students, but it was not unanticipated
by the instructor. In fact, my laboratory assignments are designed to create just such
circumstances. Before my students go to the laboratory, they are required to design
their programs and predict the behavior that will result. In laboratory, they build their
code and run experiments. In testing their programs, students are expected to report on
their observations, including the ways in which these observations did not match their
predictions. Then, after the laboratory portion is complete, students write about how
they could change the observed behavior of their programs. I do not expect them to
resolve every issue; I do, however, expect them to develop intuitions for anticipating
behavior and a range of options for addressing them.

This process mimics the real-world experience of the software lifecycle. As we all know,
the vast majority of software development takes place after the initial program is
officially complete. Just because it passes the test regimen you design doesn't mean it
won't need significant modification based on later testing or the shifting of requirements.
Students of the observational/experimental approach learn to anticipate the aspects of
their program that cause particular behavior and to work with existing programs to
modify them. This is software engineering as we have been trying to teach it for the last
several decades; it is a classroom technique that steps outside the run-once format so
common in introductory programming laboratories today.

7.3 Validating New Ways of Thinking
This example highlights the importance of experimentation as an engineering technique.
This is common technique in scientific laboratories and is crucially important in building
programmer intuition. It is often an essential tool for testing the kinds of interactive,
concurrent, service-based computations that typify this style of software system. A
further benefit is that it reaches out to those whose natural epistemological styles may
not accord well with the purely hierarchical, functional, black-box-based approaches
common in the traditional paradigm.

When we interact with our code, we are performing exactly the sort of experimental
tinkering that Turkle and Papert (1990) report as a style disenfranchised by traditional
approaches to computer programming. This style of experimentation is not a part of the
traditional means-end goal-oriented problem-solving representative of the sequential
metaphor. Nonetheless, this experimental style is precisely what is needed to
understand programs that are communities of interacting entities. It necessitates a new
generation of software engineering and design tools, such as (Carrierro and Gelernter
1990)’s concurrent workspace visualization tools for Linda; (Brooks et al. 1994)’s
software oscilloscopes for visualization of discrete software signals; or (Kölling 1998)’s
Blue, which allows students to interact with individual objects prior to embedding them
in larger systems.

Lynn Andrea Stein Challenging the Computational Metaphor

17

It is no coincidence that this metaphor of computation—which brings computation into
line with our real-world experiences, which treats computational entities as artifacts to
be interacted with—adapts the scientist's laboratory style and gives voice to Turkle's
silenced tinkerers. Nonetheless, observational techniques commonly play a far smaller
role in computational training or even computational practice than the underlying
metaphor dictates. As the nature of computation changes, we need to find—or
rediscover—different styles of thinking.

8 Implication: Cognitive Science and the Mechanisms of Thinking
In this final exploratory section, I look at the implications of the shift from calculation to
interaction on a field traditionally indebted to the computational metaphor: cognitive
science. Cognitive science attempts to explain how thinking might actually work.
Historically, it has done so by relying heavily on the computational metaphor (especially
as articulated by Marr (1982)). Cognitive problems are described as abstract result-
oriented functions; cognitive circuitry is simply a particular implementation of these
calculational processes.

Earlier, I described how artificial intelligence (a constituent field of the cognitive
sciences) began with a focus on puzzle-mode problem solving. Cognitive psychologists
(e.g. (Fodor 1983), (Pylyshyn 1984)) and linguists (especially Chomsky and his
followers) made heavy use of a similar information-processing metaphor. Even in the
construction of robots—physically interactive, albeit computationally based,
systems—the calculation model prevailed (Fikes and Nilsson 1971).

More recently, some cognitive scientists have expressed frustration with the
computational metaphor. Some have rebelled against the idea that the brain is like a
computer. One form of this argument resorts to artificial neural networks as an alternate
implementation (Rumelhart and McClelland 1986).9 Others have turned to the
embedded (“connected to the world”) and embodied (“physically realized”) nature of
natural cognition as an alternative basis for understanding and replicating mental
phenomena. In so doing, these cognitive scientists have also rediscovered the work of
the cyberneticists. (See, for example, (Varela and Borgine 1992), (Port and van Gelder
1995), (Steels and Brooks 1995).)

This argument has been most extreme—and the transition away from the traditional
computational metaphor most clear cut—in the field of robotics. As articulated by
Brooks (1986), the idea is that physical control of a robot is best achieved through a
"horizontal" decomposition in which each entity (or behavior) bridges from sensors to
actuators. The resulting communities of interacting entities have produced significant
advances in the state of the art in robotics and led to radically new ways in which robots
solve a range of physical problems.

9 This is both ironic and apt. Artificial neural networks are almost invariably implemented on traditional
digital computers, forcing them into the sequential calculation model. Nonetheless, they are as plausibly
implemented on analog and massively parallel architectures, making them community- rather than
calculation-based.

Lynn Andrea Stein Challenging the Computational Metaphor

18

8.1 Navigation as a Community
The robot described in the preceding sections is very much concerned with physical
tasks. In this section, I will describe a similar robot and its extension into a more
cognitive domain. In the process, I hope to illustrate how the traditional computational
metaphor fails here as well. While the robot I describe begins to give us some insight
into how cognitive functionality might be bootstrapped off of physically interactive
behavior, the means by which this is accomplished is difficult to describe in traditional
modular-functional terms.

Mataric (1992) describes a variation on the robot that we have seen before. Like our
classroom robot, Mataric’s Toto uses a community-based approach to wander, avoiding
obstacles. Additional community members add biases towards wall-following and a
primitive sort of experiential memory. For example, as Toto’s sensor- and motor-
monitoring entities keep it wandering down the hall, a corridor-classificatory entity is
activated (by the sustained perception of left- and right-side obstacles, or walls) and a
memory entity records certain salient aspects of this experience.10 By means of a crude
button-based interface, a person can direct Toto to return to a previously experienced
landmark. The various entities that constitute the robot then uses a spreading activation
algorithm to return to the appropriately salient place.

This robot, by itself, is one that is difficult to describe in von Neumann terms. Its
cognitive architecture is a community of interacting communities. There are no central
portions of code where the behavior all comes together. Instead, every decision is
made locally on the basis of particular patterns of input: the robot moves away from a
wall that may be too close, a landmark-detector creates itself when consistent sensory
readings exceed a threshold, and random wandering is biased in the direction of a goal
location when that goal location pulls more strongly than the competition. Each
constituent is an ongoing interactive entity that continually senses and acts. The
collective behavior of the community is goal-directed navigation, although no particular
entity performs this task. Toto has no single, central “self.” This interactive, community-
based approach is typical of the new cognitive science.

8.2 Cognition and Non-Modular-Functionalism
Much of my own research work has been in the domain of cognitive robotics (e.g.,
Yanco and Stein 1992; Brooks and Stein 1994; Stein 1994 1997). Cognitive robotics is
an attempt to scale these community-based approaches so popular in robotics into the
traditional domains of artificial intelligence: reasoning and problem-solving.11 The new
computational metaphor—in which behavior emerges from interactions, rather than a
composition of independent constituents—has a crucial role to play here.

10 The robot distinguishes single-wall, corridor, and other environmental categories; it also uses a
compass to determine when it has made significant rotations, so that (for example), navigating a corner
may produce two consecutive but distinct left-wall landmarks.
11 This is in contrast to the traditional artificial intelligence (GOFAI) approaches, which maintain a
distinction between physical processes and purely symbolic cognitive ones.

Lynn Andrea Stein Challenging the Computational Metaphor

19

In the early 1990s, I extended Mataric's work to include a "module" that allowed her
robot to read maps. Mataric's robot could previously only go to places of which it had
previously accumulated experience. It had no way of understanding the notion of a
place it had not visited. (Stein 1994) describes an extended system that allows the
robot to build the same kind of representation of unvisited space that it has of visited
space. The robot is given a floor plan and explores that plan, creating an experiential
memory that subsequently allows it to navigate as though it had explored the physical
environment.

One might imagine that this new system is built out of two distinct components
sequenced in an entirely conventional way. First, the floor plan processing module
would study the map and create a representation. Subsequently, Mataric's robot would
use that representation to navigate to the desired location. This would certainly be the
traditional—GOFAI—approach. The cognitive robotics story is not that simple.

Instead, I exploited the robot’s existing interactive properties. Rather than using an
independent “map-processing” component, the robot interacts with the map as a virtual
sensory environment, "imagining" that it is inside that environment. There is no
separate map-to-internal-representation functional module. Instead, Mataric’s existing
robot-cum-community is coupled to (i.e., embedded in a virtual environment consisting
of) a very simple piece of code that keeps track of x, y, and heading coordinates within
the floor plan. This interactive map-entity processes "move" requests (generated by
Mataric’s original code) by updating its internal coordinates and returning simulated
sensory readings as though the robot were actually standing at the corresponding point
in physical space12. This13 is the entire extent of the code that I added to Mataric's.

8.3 Approaches to Cognitive Architectures
This cognitive system—the ability to read maps and act based on information
therein—is an emergent property of the interactions between a very simple spatial
calculation on the floor plan and a very complex system for choosing actions including
archiving and acting upon remembered experience. In reporting these results in the
technical literature, I found that the traditional computational metaphor did not provide
an adequate vocabulary in terms of which to explain this robot. This system is not
fundamentally constituted out of steps to achieve a goal; instead, it is a concurrent
collection of interacting behavior-modules.

By replacing the sequentialist model with a community of interacting entities, I was
suddenly and strikingly empowered to give an adequate reconstitution of this system.
Mataric's robot achieves its behavior by means of continual interaction with an
environment. My system achieves an alternate behavior by temporarily replacing the

12 These sensory readings consisted of ray projections from the robot's position, giving extremely rough
approximations to the robot's actual sonar. The robot itself was approximated as a point. The sonar,
which are in reality highly non-linear, were approximated as linear and non-disbursive.
13 Plus a simple mode-switch to allow the robot to move between "imagine" mode and physical, real-world
interactions.

Lynn Andrea Stein Challenging the Computational Metaphor

20

physical environment with the virtual one represented by the floor plan. The community
that constitutes Mataric's robot's internal controllers interacts with the simulated world of
the floor plan in a way that is equivalent to the interactions that would occur in the real,
physical world. This equivalence is partial; the simulation is incredibly simplistic and
unrealistic. Nonetheless, with respect to the interactional invariances observed by
Mataric's system, the two environments are equivalent.

This story describes one particular example of a cognitive behavior that was achieved
by bootstrapping directly from a more physical interaction. There is significant evidence
for this idea of building more cognitive constituents by reusing systems of visceral
interaction. For example, Kosslyn (1980 1994) has long argued that mental imagery
tasks critically engage human visual cortex. Damasio (1994) contends that rational
decision making is crucially dependent on the limbic emotional system. And Clark
(1997) reviews the inseparability of body-based manipulations and cognitive strategies
employed by artificial and natural organisms. In each of these cases, the cognitive and
the physical are not sub-functions—sequential or otherwise—in a result-oriented
computation. Instead, it is the interactions themselves constitute the more cognitive
aspects of computation.

The recent emphasis on social cognition only adds fuel to this fire. If thinking in a single
brain is communally interactive, how much more so the distributed “intelligence” of a
community! Hutchins (1996) goes so far as to suggest that cognition—in his case of a
naval navigation team guiding a warship—is necessarily distributed not just within a
single brain but across a community of people, instruments, and culture. Computation
as traditionally construed—the calculational metaphor—provides little leverage for these
new theories of thinking. Shifting the computational metaphor opens up the possibility
of reuniting computation with cognition. Like the electronic computer, a human brain is
a community of interacting entities. This represents a fundamental change in our
understanding of how we think.

9 Summary
We live in a time of transition. Computer science is undergoing a Kuhnian revolution.
The traditional foundations of our field are shifting, making way for an alternate
conceptualization that better explains the phenomena we see. The previous
metaphor—computation as calculation, sequencing steps to produce a result—was
crucially empowering in computation’s early history. Today, that metaphor creates more
puzzles than it solves. We cannot even explain our field’s best-known artifact—the
world-wide web—in traditional terms.

This paper is about changing the ways in which computer scientists think about
computation. Many subdisciplines of computer science have their own language for
describing computation-as-interaction. In artificial intelligence, the recent attention to
embodiment, to agents, to behaviors, is indicative of this shift. The computer systems
community uses terms like server, transaction, thread. Other research communities
that rely on similar notions—by still other names—are those that study networking,

Lynn Andrea Stein Challenging the Computational Metaphor

21

distributed systems, information management, human-computer interaction and
computer-supported collaboration, web computing, and embedded systems. Each of
these research communities has its own terminology for describing the interactive
community metaphor, impeding the opportunities for cross-field discourse and
collaborative problem solving.

Recasting all of computational science in terms of the interactive community shifts the
center of the field. Efforts to make multiple CPUs look like a single processor—as in
automatic program parallelization—now seem peripheral. Research on user interfaces,
or on component architectures such as CORBA or COM, take on new centrality given
their focus on coupling subsystems together. The heart of current computational
thinking is in agents, servers, distributed systems, and protocols.

This way of approaching computation also has profound implications for the kinds of
thinking we do. For our students, it means that we harness their native intuition about
how to survive in an inherently concurrent and asynchronous world. We never put on
the blinders of calculational sequentialism. Students and professionals alike are
encouraged to interact with computational artifacts, to experiment, to tinker. And we no
longer silence those students whose problem-solving skills derive from experiential
rather than mathematical and logical approaches.

In other disciplines, we find that the new metaphors we are using are more appropriate
for bi-directional cross-disciplinary communication. Just as computation is a reference
model for understanding cognitive and biological science, so what we learn about the
robustness of biological systems inspires us in the construction of “survivable”
computational systems (e.g., Forrest) or programmable cells (Abelson et al.). Both
natural and artificial computations produce behavior by virtue of the interactions of a
community.

Many disciplines study systems of interaction. We have historically claimed a distinct
role for computation. Now, as computational science itself shifts to embrace interaction,
our field can become reunited with its surrounding disciplines. The cognitive sciences
looks at how natural intelligence works. Organizational science analyzes the ways in
which corporations and other large administrative entities function. Engineering
provides vocabularies and techniques for coordinating complex systems. Each of these
fields has the potential to contribute to, and to benefit from, a computational science of
interaction.

Changing the fundamental metaphor underlying computation shifts the very questions
that we as a discipline ask. It affects the appropriate matter of a first course and of a
research project. It has ramifications for the styles and techniques that we use in our
work. And it bears on our understanding of our own cognitive processes, both those
that affect all people and those that are stylized by our disciplinary culture. The current
computational revolution has profound implications for how we think.

Lynn Andrea Stein Challenging the Computational Metaphor

22

10 Acknowledgements
This paper began as the W. Ross Ashby Plenary Address of the International
Federation for Systems Research at the European Meeting on Cybernetics and
Systems Research in Vienna in April 1998. I am grateful to the IFSR and to Robert
Trappl, as well as to Gerda Helscher, Erich Prem, and Paulo Petta for their gracious
hospitality. In addition, Gerda did yeoman’s work transcribing that first version of the
paper.

The research that turned into this paper has been supported by the National Science
Foundation under Young Investigator Grant IRI-9357761, and by the Office of Naval
Research under the Science Scholars Program at the Mary Ingraham Bunting Institute
of Radcliffe College, where I spent a year on sabbatical leave from MIT.

In a paper of this scope, there are far too many people to be thanked than could fit into
the confines of a journal article. Those who are not mentioned by name will have to
take on faith the depths of my appreciation. The various members of the AP lab at MIT,
the 1998 Bunting Fellows and staff, the participants in WUSTL’s IFOC Symposium, and
many colleagues at MIT and elsewhere have shaped this paper in innumerable ways.
Special thanks go to Hal Abelson, John Chapin, Philip Resnik, and H. David Stein, who
read and commented on earlier drafts.

11 References
Abelson, Hal, Tom Knight, and Gerry Sussman. 1995. Amorphous Computing. White

paper.

Agha, Gul. 1986. Actors: A Model of Concurrent Computation in Distributed Systems.
Cambridge, Massachusetts: The MIT Press.

Agha, Gul. 1990. Concurrent Object-Oriented Programming. Communications of the
ACM 33 (9):125-141.

Agha, Gul, and Carl Hewitt. 1988. Actors: A Conceptual Foundation for Concurrent
Object-Oriented Programming. In Bruce Shriver and Peter Wegner, editors.
Research Directions in Object-Oriented Programming. Cambridge,
Massachusetts: The MIT Press, pp. 49—74.

Agre, Philip E. 1988. The Dynamic Structure of Everyday Life. Ph.D. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology.

Agre, Philip E. and Stanley J. Rosenschein, editors. 1996. Computational Theories of
Interaction and Agency. Cambridge, Massachusetts: The MIT Press.

Ashby, W. Ross. 1954. Design for a Brain. London: Chapman and Hall.

Ashby, W. Ross. 1956. An Introduction to Cybernetics. London: Chapman and Hall.

Lynn Andrea Stein Challenging the Computational Metaphor

23

Beer, R. 1995. A Dynamical Systems Perspective on Agent-Environment Interaction.
Artificial Intelligence 72:173-215.

Braitenberg, Valentino. 1984. Vehicles: Experiments in Synthetic Psychology . The
MIT Press. Cambridge, MA.

Brooks, Rodney A. 1986. A Robust Layered Control System for a Mobile Robot. IEEE
Journal of Robotics and Automation 2 (1):14-23.

Brooks, Rodney A. 1990. The Behavior Language User’s Guide. Memo 1227.
Massachusetts Institute of Technology Artificial Intelligence Laboratory.
Cambridge, Massachusetts.

Brooks, Rodney A. 1991. Intelligence without Reason. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, Sydney, Australia, pp.
569-595.

Brooks, Rodney A., and Lynn Andrea Stein. Building Brains for Bodies, Autonomous
Robotics 1 (1), 7—25 1994.

Carriero, N. and D. Gelernter. 1990. How to Write Parallel Programs: A First Course.
Cambridge, Massachusetts: The MIT Press.

Chomsky, Noam. 1980. Rules and Representation. Columbia University Press: New
York.

Chomsky, Noam. 1993. Language and Thought. Moyer Bell: Wakefield, Rhode
Island.

Clark, Andy. 1997. Being There: Putting Brain, Body, and World Together Again.
Cambridge, Massachusetts: The MIT Press.

Coen, Michael H. 1994. SodaBot: A Software Agent Environment and Construction
System, Sc.M. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology.

Coen, Michael H. 1997. Building Brains for Rooms: Designing Distributed Software
Agents. In Proceedings of Ninth Conference on Innovative Applications of
Artificial Intelligence. Providence, Rhode Island.

Cypher, R., A. Ho,, S. Konstantinidou, and P. Messina. 1993. Architectural
Requirements of Parallel Scientific Applications with Explicit Communication. In
IEEE Proceedings of the 20th International Symposium on Computer
Architecture. San Diego, California, pp.2-13.

Damasio, Antonio R. 1994. Descartes' Error: Emotion, Reason, and the Human Brain.
New York: G.P. Putnam's Sons.

Dellarocas, Chrysanthos N. 1996. A coordination Perspective on Software
Architecture: Towards a Design Handbook for Integrating Software Components.
Ph.D. Thesis, Department of Electrical Engineering and Computer Science,

Lynn Andrea Stein Challenging the Computational Metaphor

24

Massachusetts Institute of Technology. Center for Coordination Science Working
Paper 198.

Dennett, Daniel C. and Marcel Kinsbourne. 1992. Time and the Observer: The Where
and When of Consciousness in the Brain. Brain and Behavioral Sciences 15,
183-247.

Dourish, Paul, and Graham Button. 1996. Technomethodology: Paradoxes and
Possibilities. In Proceedings of the ACM Conference on Human Factors in
Computing Systems CHI'96 (Vancouver, Canada). New York: ACM Press.

Fikes, R. and N. Nilsson. 1971. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence 2 (3-4):189-208.

Fodor, J. A. 1983. The Modularity of Mind. Cambridge, Massachusetts: The MIT
Press.

Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Reading,
Massachusetts: Addison Wesley.

Hendriks-Jansen, Horst. 1996. Catching Ourselves in the Act. Cambridge,
Massachusetts: The MIT Press.

Hillis, W. Daniel. 1989. The Connection Machine. Cambridge, Massachusetts: The
MIT Press.

Hutchins, Edwin. 1996. Cognition in the Wild. Cambridge, Massachusetts: The MIT
Press.

Karger, David., and Lynn Andrea Stein. 1997. Haystack: Per-User Information
Environments. White Paper.

Kay, Alan. 1997. The Computer Revolution Hasn’t Happened Yet. Keynote address at
the ACM SIGPLAN Conference on Object Oriented Programming Systems,
Languages, and Applications.

Keller, Evelyn Fox. 1983. A Feeling for the Organism: The Life and Work of Barbara
McClintock. San Francisco: W. H. Freeman.

Keller, Evelyn Fox. 1995. Refiguring Life. New York: Columbia University Press.

Kölling, Michael I. 1998. The Blue programming environment - Reference manual -
version 1.0. Technical report 98/19. School of Computer Science and Software
Engineering, Monash University, Melbourne.

Kosslyn, Stephen M. 1980. Image and Mind. Cambridge, Massachusetts: Harvard
University Press.

Kosslyn, Stephen M. 1982. Ghosts in the Mind’s Machine. New York: Norton.

Lynn Andrea Stein Challenging the Computational Metaphor

25

Kosslyn, Stephen M. 1994. Image and Brain: The Resolution of the Imagery Debate.
Cambridge, Massachusetts: The MIT Press.

Kuhn, Thomas S. 1962.The Structure of Scientific Revolutions. University of Chicago
Press.

Lawler, Robert W. 1985. Computer Experience and Cognitive Development: A Child’s
Learning in a Computer Culutre. John Wiley and Sons.

Lynch, Nancy, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. 1996. Hybrid
I/O Automata. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems
III: Verification and Control (DIMACS/SYCON Workshop on Verification and
Control of Hybrid Systems, New Brunswick, New Jersey, October 1995), volume
1066 of Lecture Notes in Computer Science, pages 496-510. Springer-Verlag.

Martin, Fred. 1994. Circuits to Control: Learning Engineering by Designing LEGO
Robots. Ph.D. Dissertation. Media Laboratory. Massachusetts Institute of
Technology. Cambridge, Massachusetts.

Marr, David. 1982. Vision. W. H. Freeman: San Francisco, California.

Mataric, Maja. 1992. Integration of Representation Into Goal-Driven Behavior-Based
Robots. IEEE Transactions on Robotics and Automation 8 (3).

Mindell, David A. 1996. Datum for its Own Annhilation: Feedback, Control, and
Computing 1916-1945. Ph.D.Thesis. Program in Science, Technology, and
Society. Massachusetts Institute of Technology. Cambridge, Massachusetts.

Minsky, Marvin. 1987. The Society of Mind. New York: Simon and Schuster.

Newell, A. and H. A. Simon. 1963. GPS: A Program that Simulates Human Thought.
In E. A. Feigenbaum and J. Feldman, editors, Computers and Thought, pp. 279-
293.

Newell, A. and H. A. Simon. 1972. Human Problem Solving, Englewood Cliffs, New
Jersey: Prentice Hall.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic
Books.

Port, Robert F., and Timothy van Gelder. 1995. Mind as Motion: Explorations in the
Dynamics of Cognition. Cambridge, Massachusetts: The MIT Press.

Pylyshyn, Zenon. 1984. Computation and Cognition. Cambridge, Massachusetts: The
MIT Press.

Resnick, Mitchel. 1988. MultiLogo: A Study of Children and Concurrent Programming.
Sc.M. Thesis. Department of Electrical Engineering and Computer Science.
Massachusetts Institute of Technology. Cambridge, Massachusetts.

Lynn Andrea Stein Challenging the Computational Metaphor

26

Resnick, Mitchel. 1994. Turtles, Termintes, and Traffic Jams: Explorations in Massively
Parallel Microworlds. Cambridge, Massachusetts: The MIT Press.

Rumelhart, D. E. and J. L. McClelland, editors. 1986. Parallel Distributed Processing.
Cambridge, Massachusetts: The MIT Press.

Schuman, Erin. 1998. Invited presentation on Learning and Memory. Tenth Annual
Symposium on Frontiers of Science.

Shaw, Mary and David Garlan. 1996. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall.

Smith, Brian Cantwell. 1997. On the Origin of Objects. Cambridge, Massachusetts:
The MIT Press.

Smithers, Tim. 1995. What the Dynamics of Adaptive Behavior and Cognition Might
Look Like in Agent-Environment Interaction Systems. In Practice and Future of
Autonomous Agents. Monte Verita, Ticino, Switzerland, pp. 1-27.

Steels, Luc and Rodney Brooks, editors. 1995. The Artificial Life Route to Artificial
Intelligence: Building Embodied, Situated Agents. Hillsdale, New Jersey:
Lawrence Erlbaum Associates, Inc.

Stein, Lynn Andrea. 1987. Delegation Is Inheritance. In Proceedings of the ACM
SIGPLAN Conference on Object Oriented Programming Systems, Languages,
and Applications, Orlando, Florida, pp. 138-146.

Stein, Lynn Andrea. 1994. Imagination and Situated Cognition. Journal of
Experimental and Theoretical Artificial Intelligence 6:393-407.

Stein, Lynn Andrea. 1996. Interactive Programming: Revolutionizing Introductory
Computer Science. Computing Surveys 28A (4).

Stein, Lynn Andrea. 1997. PostModular Systems: Architectural Principles for
Cognitive Robotics. Cybernetics and Systems 28 (6):471-487.

Stein, Lynn Andrea. 1999. What We’ve Swept Under the Rug: Radically Rethinking
CS1. Computer Science Education 9.

Stein, Lynn Andrea. Forthcoming. Introduction to Interactive Programming. . San
Francisco, California: Morgan Kaufmann Publishers, Inc.

Stein, Lynn Andrea. Rethinking CS101: Or, How Robots Revolutionize Introductory
Computer Programming. Accepted for publication in Computer Science
Education.

Stein, Lynn Andrea and James A. Hendler. Robotics-based Undergraduate Computer
Programming Courses.

Lynn Andrea Stein Challenging the Computational Metaphor

27

Stein, Lynn Andrea, Henry Lieberman, and David Ungar. 1989. A Shared View of
Sharing: The Treaty of Orlando. In Won Kim and Fred Lochovsky, editors, In
Object-Oriented Concepts, Databases, and Applications, ACM Press, pp. 31-48.

Stein, Lynn Andrea and Stanley B. Zdonik. 1998. Clovers: The Dynamic Behavior of
Types and Instances. International Journal of Computer Science and Information
Management 1 (3).

Turing, Alan M. 1936. On Computable Numbers, with an Application to the
Entscheidungsproblem. In Proceedings of the London Mathematical Society 2
(42): 230-267.

Turkle, Sherry. 1984. The Second Self: Computers and the Human Spirit. New York:
Simon and Schuster.

Turkle, Sherry, and Seymour Papert. 1990. Epistemological Pluralism: Styles and
Voices within the Computer Culture. Signs: Journal of Women in Culture and
Society 16(1): 128-157.

Varela, Francisco J. and Paul Borgine, editors. 1992. Toward a Practice of
Autonomous Systems: Proceedings of the First European Conference on
Artificial Life. Cambridge, Massachusetts: The MIT Press.

Von Neumann, J. First draft of a report on the EDVAC. Contract No. W-670-ORD-
4926. Philadelphia, Pennsylvania: Moore School of Electrical Engineering,
University of Pennsylvania, 30 June 1945.

Waingold, Elliot, Michael Taylor, Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim,
Matthew Frank, Peter Finch, Srikrishna Devabhaktuni, Rajeev Barua, Jonathan
Babb, Saman Amarasinghe, and Anant Agarwal. 1997. Baring it all to Software:
The Raw Machine. MIT/LCS Technical Report TR-709.

Waldo, Jim, Geoff Wyant, Ann Wollrath, and Sam Kendall. 1994. A Note on Distributed
Computing. Technical Report SMLI TR-94-29. Sun Microsystems Laboratories,
Inc.

Wegner, Peter. 1997. Why Interaction Is More Powerful Than Algorithms,
Communications of the ACM.

Weiner, Norbert. 1948. Cybernetics. New York: John Wiley & Sons.

Yonezawa, Akinori and Mario Tokoro. 1987. Object-Oriented Concurrent
Programming. Cambridge, Massachusetts: The MIT Press.

Lynn Andrea Stein Challenging the Computational Metaphor

28

Figure 1. Sequential computation: Beginning with some input, execute a
sequence of steps that terminates, producing a result.

Figure 2. Computation as interaction: Many persistent entities communicate and
coordinate over time.

Lynn Andrea Stein Challenging the Computational Metaphor

29

motors

sensors

Figure 3. A simple robot whose task is to navigate without running into
obstacles.

Lynn Andrea Stein Challenging the Computational Metaphor

30

Stop!

Figure 4. The robot’s behavior results from the emergent interactions of a
community.

