
Cybernetics And Human Knowing. Vol. 15, no. 2, pp. 49-68

Decoupling, Sparsity, Randomization, and
Objective Bayesian Inference

Julio Michael Stern 1

Decoupling is a general principle that allows us to separate simple components in a complex system.
In statistics, decoupling is often expressed as independence, no association, or zero covariance
relations. These relations are sharp statistical hypotheses, that can be tested using the FBST - Full
Bayesian Significance Test. Decoupling relations can also be introduced by some techniques of
Design of Statistical Experiments, DSEs, like randomization. This article discusses the concepts of
decoupling, randomization and sparsely connected statistical models in the epistemological
framework of cognitive constructivism. 
Key words: Bayesian networks, Cognitive constructivism, Covariance structure, Decoupling,
Randomization, Sparse factorization.

The light dove, that at her free flight cleaves the air,
therefore feeling its resistance, could perhaps imagine

that she would succeed even better in the empty space.
Immanuel Kant (1724-1804),

in Critique of Pure Reason (1787, B-8).

Step by step the ladder is ascended.
George Herbert (1593 - 1633),

in Jacula Prudentium (1651)

1 Introduction

Heinz von Foerster characterizes “known” objects as eigen-solutions for an
autopoietic system, that is, as discrete (sharp), separable (decoupled), stable and
composable states of the interaction of the system with its environment. Previous
articles have presented the Full Bayesian Significance Test (FBST) as a mathematical
formalism specifically designed to access the support for sharp statistical hypotheses,
and have shown that these hypotheses correspond, from a constructivist perspective, to
systemic eigen-solutions in the practice of science, see Stern (2007a). In this article,
the role and importance of one of these four essential properties indicated by von
Foerster, namely, separation or decoupling, is studied. 

Decoupling is the general principle that allows us to understand the world step by
step, “looking” at it a piece at a time, localizing single features, isolating basic
components or identifying simple objects, out of the immense complexity of the
whole universe. In statistical models, decoupling is often introduced by means of no
association assumptions, such as independence, zero covariance, etc. In this context,
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decoupling relations are sharp statistical hypotheses that can be tested, see for
example Stern and Zacks (2002). Decoupling relations in statistical models can also
be introduced a priori by means of special Design of Statistical Experiments (DSEs)
techniques, the best known of which being randomization. 

In Stern (2007b, p. 80) the general meaning of the term objective (how, less, more)
is defined as the “degree of conformance of an object to the essential properties of an
eigen-solution.” One of the common uses of the word objective, as opposed to
subjective, stresses the decoupling or separation of a given systemic eigen-solution,
such as an object of a scientific program, from the peculiarities of a second system,
such as a specific human observer. It is this restricted meaning, focusing on the
decoupling property of systemic eigen-solutions, that justifies the use of the term
objective in this article’s title. 

The decoupling principle, and one of its most celebrated examples in physics, the
vibrating chord, are presented in section 2. In the vibrating chord model, a basic linear
algebra operation, the eigen-value factorization, is the key to obtain the decoupling
operator. In addition, the importance of eigen-solutions and decoupling operations are
discussed from a constructivist epistemological perspective. Herein, we shall focus on
decoupling operators related to an other basic linear algebra operation, namely, the
Cholesky factorization. In section 3 we show how Cholesky factorization can be used
to decouple covariance structure models. In section 4, Simpson’s paradox and some
strategies for DSEs, such as control and randomization, are discussed. These strategies
can be used to induce independence relations, that are expressed into the sparsity
structure of the model, which can, in turn, be used for efficient decoupling. In section
5, the role of C.S. Peirce in the introduction of control and randomization in DSEs is
reviewed from an historical perspective. This revision will help us set the stage for the
discussion, in section 6, of a controversial issue: randomization in Bayesian Statistics.
In section 7 some epistemological consequences of randomization, are discussed and
the underlying themata of constructivism and objective knowledge are revisited. 

The Cholesky factorization operator is presented in section 3, in conjunction with
the computational concepts of sparse and structured matrices. Covariance structure
and Bayesian networks are some of the most basic and widely used statistical models.
Therefore, understanding their decoupling properties is important, not only from a
computational point of view, but also from the theoretical and epistemological
perspective. Furthermore, one could argue that the usefulness of these statistical
models are due exactly to their decoupling properties. Final remarks are presented in
section 8. 

2 The Decoupling Principle

Understanding the entire universe, with all its intricate constituents, relations and
interconnections, can be a daunting task, as stated by Schlick:

The most important (of these) difficulties arises from the recognition of the unending linkage of all
natural processes one with another. Its effect is that, on an exact view, every occurrence in the world
is dependent on every other; the fall of a leaf is ultimately influenced by the motions of the stars, and
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it would be a task utterly beyond fulfillment to assign its ‘cause’ with absolute completeness to any
given process that we suppose determined down to the last detail. For this purpose we should have to
adduce nothing less than all of the circumstances of the universe that have so far occurred. 

Now fortunately this boundlessness is at once considerably restricted by experience, which teaches
us that the reciprocal interdependence of all events in nature is subject to certain easy formulable
conditions. (Schlick, 1979, vol.1, p. 292)

Lorenzo Sadun has written an exceptionally clear book on linear algebra,
emphasizing the idea of decoupling, that is, the strategy of breaking down
complicated multivariate systems into simple modes, by a suitable change of
coordinates, see also Rijsbergen (2004). Sadun states the goal of his book as follows: 

In this book we cover a variety of linear evolution equations, beginning with the simplest equations
in one variable, moving to coupled equations in several variables, and culminating in problems such
as wave propagation that involve an infinite number of degrees of freedom. Along the way we
develop techniques, such as Fourier analysis, that allow us to decouple the equations into a set of
scalar equations that we already know how to solve. 

The general strategy is always the same. When faced with coupled equations involving variables
x1,...,xn, we define new variables y1,...,yn. These variables can always be chosen so that the evolution
of y1 depends only on y1 (and not on y2,...,yn), the evolution of y2 depends only on y2, and so on. To
find x1(t),...,xn(t) in terms of the initial conditions x1(0),...,xn(0), we convert x(0) to y(0), then solve
for y(t), then convert to x(t). (Sadun, 2001, p. 1)

As an example of paramount theoretical and historical importance in Physics, we
consider the discrete chord. The chord is kept at tension h, with n particles of mass m
at equally spaced positions js, j=1...n. The extremes of the chord, at positions 0 and
(n+1)s, are kept fixed, and x=[x1,x2,...,xn]' denote the particles’ vertical displacements,
see French (1974, ch. 5, Coupled oscillators and normal modes, pp. 119-160), Marion
(1999, ch. 9) and Franklin (1968, ch. 7), Figure 1 shows the discrete chord for n=2.
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Figure 1: Eigen-Solutions of Continuous and Discrete Chords.

The second order differential equation of classical mechanics, below, provides a
linear approximation for the discrete chord system’s dynamics: 

As it is, the discrete chord differential equation is difficult to solve, since the n
coordinates of vector x are coupled by matrix K. In the following paragraphs we show
how to decouple this differential equation. 

Suppose that an orthogonal matrix Q is known to diagonalize matrix K, that is,

Q-1=Q', and Q'KQ=D=diag(d), d=[d1,d2,...,dn]'. After pre-multiplying the above
differential equation by Q', we obtain the matrix equation 

Q'(Qÿ) + Q'K(Qy) = I ÿ +Dy = 0 
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which is equivalent to the n decoupled scalar equations for harmonic oscillators,
ÿk+dkyk=0, in the new “normal” coordinates, y=Q'x. The solution of each harmonic
oscillator, as a function of time, t, has the form yk(t) = sin(ak+ wkt), with phase 0  ak

 2  and angular frequency . 
The columns of matrix Q, the decoupling operator, are the eigenvectors of matrix

K, which are, as one can easily check, multiples of the un-normalized vectors zk. Their

corresponding eigenvalues, , for j,k=1...n, are given by 

The decoupled modes of oscillation, for n=2, are depicted in Figure 1. They are
called normal modes in physics, standing modes in engineering, and eigen-solutions
in mathematics. The discrete chord with n particles will have n normal modes, and the
limit case, n is called the continuous chord. The normal modes of the continuous
chord are given by trigonometric functions, the first few of which are depicted in
Figure 1. They are also called standing waves or eigen-functions of the chord, and
constitute the basis of Fourier analysis. 

In either the discrete or the continuous chord, we can excite, that is give energy or
put in motion, one of the normal modes, without affecting any other normal mode.
This is the physical meaning of decoupling, that is, to have separate eigen-solutions.
Since the differential equation describing the system is linear, distinct normal modes
can also be superposed. This is called the superposition principle, which renders the
compositionality rule for the eigen-solutions of the chord. 

In the original coordinate system, x, coupling made it hard to follow the system’s
evolution. In the normal coordinate system, y, based on the system’s eigen-solutions,
decoupling and superposition made it easier to understand the system behavior. But
are these eigen-solutions just a formal basis for an alternative coordinate system, or do
they represent “real objects” within the system under study? 

Obviously, this is not a mathematical or physical question, but rather an
epistemological one. From a constructivist perspective, we can consider these eigen-
solutions “objectively known” entities in the system. Nevertheless, the meaning of the
term objective in a constructivist epistemology is distinct from its meaning in a
dogmatic realist epistemology, as explained in Stern (2006b, 2007a, 2007b). 

From a constructivist perspective, systemic eigen-solutions can be identified and
named by an observer. Indeed, the eigen-solutions of the vibrating chord have been
identified and named thousands of years before mankind knew anything about
differential equations. The eigen-values of the chord are known in music as the
fundamental tone and its higher harmonics, and constitute the basis for all known
musical systems (see Benade, 1992). 
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The linear model for the vibrating chord is a paradigmatic example of the fact
that, despite the simplicity to understand and manipulate, linear models often give
excellent approximations for complex systems. Also, since linear operators are
represented by matrices in standard matrix algebra, the importance of certain matrix
operations in the decoupling of such models should not be surprising at all. In the
vibrating chord model, the eigen-value factorization, K=QDQ', was the key to obtain
the decoupling operator, Q. The eigen-value factorization plays the same role in many
important statistical procedures, such as spectral analysis of time series, wavelet
signal analysis, and kernel methods. 

Related operations of linear algebra, like Singular Value Decomposition, SVD,
and Nonnegative Matrix Factorizations, NNMF, are important in principal
components analysis and latent structure models (see e.g., Bertsekas & Tsitsiklis,
1989; Censor & S. A. Zenios, 1998; Cichocki et al., 2006; Dhillon & Sra, 2005; and
Hoyer, 2004). Distinct decoupling operators have distinct characteristics, relying upon
stronger or weaker structural properties of the model, requiring more or less
computational work, and having different capabilities for handling sparse data. 

In this article, we will be mainly interested in the decoupling of statistical models.
More precisely, we shall focus on decoupling methods related to an important basic
linear algebra operation, namely, the Cholesky factorization. In the next section we
show how Cholesky factorization can be used to decouple covariance structure
statistical models. 

The decoupling principle emerges, sometimes with different denominations, in
virtually every area of the hard sciences. In systems theory and mathematical
programming, for example, it arises under the name of Decomposition Methods. In
the optimization of large systems, for example, there are two basic approaches to
decomposition:

• High level methods focus on the underlying structure of the optimization 
problems. High level decomposition strategies replace the original large or 
complex problem by several hierarchically interconnected small or simple 
optimization problems, see for example Geoffrion (1972), Lasdon (1970) and 
Wismer (1971). 

• Low level methods look at the matrix representation of the optimization 
problems. Low level decomposition strategies benefit from tailor made 
computational linear algebra subroutines to take advantage of the underlying 
sparse matrix structure. Some of these techniques are discussed in the next 
section.

3 Covariance Structure Models

Covariance structure, multivariate regression, Kalman filter and several other
related linear statistical models are widely used in the practice of science. They
provide a powerful analytical tool in which the association, coupling or dependence
between multiple variables is represented by covariance matrices, as briefly noted in
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the next paragraphs. These models are simple to manipulate and interpret, and can be
implemented using efficient computational algorithms capable of handling millions of
(sparsely coupled) variables. In this and the next sections, it is shown how such
desirable characteristics of covariance models ultimately rely upon some basic
properties of its decoupling operators. 

Given a (vector) random variable, x, its covariance matrix, V, is defined as the
expected square distance to its expected (mean) value, m, that is, 

m=E(x), V= Cov(x)=E((x-m)*(x-m)').

The diagonal elements, or variances, Var(xi)=Vi,i, give the most usual scalar
measure of error, dispersion or uncertainty used in statistics, while the off diagonal
elements, Cov(xi,xj)=Vi,j give a measure of association between two scalar random
variables, xi and xj, see Hocking (1985) for a general reference. 

Also recall that since the expectation operator, E, is linear, that is,
E(Ax+b)=AE(x)+b for any random vector x, matrix A and vector b, we have 

Cov(Ax+b)=A Cov(x)A'.

The standard deviation, , is a dispersion measure given in the same unit

as x, and the correlation, , is a measure of association normalized in the
[-1,1] interval. 

As it is usual in the covariance structure literature, we can write a covariance

matrix as , in which the matrices Gt constitute a basis for the space of
symmetric matrices of dimension n x n, see Lauretto et al. (2002). For example, for
dimension n=4,

Using the above notation, we can easily express hypotheses concerning structural
properties, including sparsity patterns, in the standard form of vector functional
equations, h( , )=0. Details on how to use the FBST to test such general hypotheses in
some particular settings can be found in Lauretto et al. (2002). 

Once we have established the structural properties of the model, we can estimate
the parameters  and  accordingly. Following the general line of investigation
adopted herein, a question that arises naturally is: How can we decouple the estimated
model?
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One possible answer to this question can be given in terms of the Cholesky
factorization, LL'=V where L is lower triangular. Such a factorization is available for
any full rank symmetric matrix V, as shown in Golub and van Loan (1989). Let V=LL'
be the Cholesky factorization of the covariance matrix, V, and let us consider the

transformation of variables y=L-1x, or x=Ly. The covariance matrix of the new

variables can be computed as Cov(y)=L-1VL-t=L-1LL'L-t=I. Hence, the transformed
model has been decoupled, that is, has uncorrelated random components. 

Let us consider a simple numerical example of Cholesky factorization: 

This example of Cholesky factorization has some peculiarities: The matrix V is
sparse, that is, it has several zero elements. In contrast, a matrix with few or no zero
elements is said to be dense. Matrix V in the example is also structured, that is, the
zeros are arranged in a nice pattern, in this example, a 2 by 2 off diagonal block. In
this example, the Cholesky factor, L | LL'=V, preserves the sparsity and structure of V,
that is, no position with a zero in V is filled with a non-zero in L. A factorization (or
elimination) resulting in no fill in is called perfect. Perfect eliminations are not always
possible, however, there are several techniques that can be used to obtain sparse (and
structured) Cholesky factorizations in which the fill in is minimized, that is, the
sparsity of the Cholesky factor is maximized. Pertinent references on sparse
factorizations include Blair and B. Peyton (1993), Bunch and D. J. Rose (1976)
George et al. (1978, 1981, 1989, 1993), Golumbic (1980), Pissanetzky (1984), Rose
(1972), Rose and Willoughby (1972), Stern (1992, 1994), Stern and Vavasis (1993,
1994) and van der Vorst and van Dooren (1990). 

Large models may have millions of sparsely coupled variables. A sparse and
structured factorization of such a model gives a ‘simple’ decoupling operator, L. This
is a matter of vital importance when designing efficient computational procedures. In
practice, large models can only be computed with the help of these techniques. An
other important class of statistical models, Bayesian Networks, relies on sparse
factorization techniques that, from an abstract graph theoretical perspective, are
almost identical to sparse Cholesky factorization, see for example Lauritzen (2006)
and Stern (2006a, sec. 9-11). 

In the next section we continue to examine the role of covariance, or more general
forms of association, in statistical modeling. On particular, we examine some
situations leading to spurious associations, destroying a model’s presumed sparsity
and structure. In the following sections we review, from an historical and
epistemological perspective, some techniques of design of statistical experiments
(DSE), used to induce (no) association relations in statistical models. These relations
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translate into sparsity and structural patterns that, in turn, can be used by efficient
factorization algorithms. 

4 Simpson’s Paradox and the Control of Confounding Variables

Lindley (1991, pp. 47-48) illustrates Simpson’s paradox with a medical trial
example. From 80 patients in the study, 40 received treatment, T, and 40 received a
placebo with no effect, NT. Some patients recovered from their illness, R, and some
did not, NR. The recovery rates, R%, are given in Table 1, where the experimental data
is shown, both in aggregate form for All patients, and separated or disaggregated
according to Sex. Looking at the table one concludes that the treatment is bad for
either male or female patients, but good for all of them together! This is the Simpson’s
Paradox: The association between two variables, T and R in Lindley’s example, is
reversed if the data is aggregated / disaggregated over a confounding variable, Sex in
Lindley’s example. 

Table 1:  Simpson’s Paradox. 

Lindley provides the following scenario for the situation illustrated by this
example: The physician responsible for the experiment did not trust the treatment and
also was aware that the illness under study affects females most severely. Hence, he
decided to try it mainly on males, who would probably recover anyway. This
illustrates the general Simpson’s paradox situation, generated by the association of the
confounding variable with both the explained and one (or more) of the explaining
variables. Additional references on several aspects related to the Simpson paradox
include Blyth (1972), Cobb (1998), Good and Mittal (1987), Gotzsche (2002),
Greenland et al. (1999, 2001), Heydtmann (2002), Hinkelmann (1984), Pearl (2004)
and Reintjes et al. (2000). 

The obvious question then is: How can we design a statistical experiment in order
to avoid spurious associations? 

Two strategies are self-evident: 

• Control possible confounding variables in order to impose some form of 

Sex T R NR Tot R%

All T 20 20 40 50%

All NT 16 24 40 40%

Male T 18 12 30 60%

Male NT 7 3 10 70%

Fem T 2 8 10 20%

Fem NT 9 21 30 30%
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invariance (constancy, equality) in the experiment, or 
• Measure possible confounding variables so that the relevant ones can be 

included in the statistical model. 
The simplest form of the first strategy would be to test the treatment in a set of

clones, individuals that are, using the words of Fisher (1966, sec. 9, Randomization;
the Physical Basis of Validity of the Test, pp. 17-19), “exactly alike, in every respect
except that to be tested.” 

This strategy, however, is too strict. Even if feasible, the conclusions of the study
would only apply to the clone population, not to individuals from a population with
natural variability. 

A more general form of the first strategy in known as blocking, defined in Box et
al. as: 

The device of pairing observations is a special case of ‘blocking’ that has important applications in
many kinds of experiments. A block is a portion of the experimental material (the two shoes of one
boy in this example) that is expected to be more homogeneous than the aggregate (all shoes of all the
boys). By confining treatment comparisons within such blocks, greater precision can often be
obtained. (Box, 1978, pp. 102-103, Sec. 4. 3, Blocking and Randomization)

Blocking is a very important strategy in the design of statistical experiments
(DSEs), used to increase, whenever possible, the precision of the study’s conclusions. 

As for the second strategy, it looks a sure thing! No statistician would ever refuse
more information, in a larger and richer data bank. 

Nevertheless, we have to ask whether we want to control and/or measure SOME
of the possibly confounding variables, that is those perceived as the most important or
even those we are aware of, or ALL of them? 

Keeping everything under control in a statistical experiment (or in life in general)
constitutes, in the words of Fisher, “a totally impossible requirement in our example,
and equally in all other forms of experimentation” (Fisher, 1966, p. 18).

Not only the cost and complexity of trying to do so for a very large set of variables
would be prohibitive in any practical circumstance, but also 

it would be impossible to present an exhaustive list of such possible differences (variables)
appropriate for any one kind of experiment, because the uncontrolled causes which may influence
the result are always strictly innumerable. (Fisher, 1966, p. 55)

Modern theory of DSEs offers a way out of this conundrum that, in its most
concise form, see Box et al. (1978, pp. 102-103), can be stated as: Control what you
can, and randomize what you can not. Randomization, as defined by Hacking, is 

 “(the) notion of random assignment of treatment to a subset of the plots or persons, leaving the rest
as controls. ... I shall speak of an experiment using randomization in this way as involving a
randomized design. ... 
 ... There is a related but distinguishable idea of (random) representative sampling.” (Hacking, 1988,
p. 428)
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As it is usual in the statistical literature, Hacking distinguishes between two
intended uses of randomization, namely random design and random sampling.
Random design aims to eliminate bias coming from systematic design problems,
including several forms of uncontrolled influence, either conscious or unconscious,
received from and exerted by agents participating in the experiment. Random
sampling, on the other hand, is intended to justify, somehow, assumptions concerning
the functional form of a distribution in the statistical model of the experiment. The
distinction between random design and random sampling will be kept here, even
though, as briefly mentioned in section 6, a deeper probabilistic analysis of
randomization shows that, from a theoretical point of view, the two concepts can
greatly overlap. 

Our immediate interest in randomization (and control) is on whether it can assist
the design of experiments by inducing independence relations. This strategy is
pinpointed in the following quote from Pearl’s epilogue: “The Art and Science of
Cause and Effect”:

Fisher’s ‘randomized experiment’... consists of two parts, ‘randomization’ and intervention.’ (Pearl,
2000, p. 340)

Intervention means that we change the natural behavior of the individual: we separate subjects into
two groups, called treatment and control, and we convince the subjects to obey the experimental
policy. We assign treatment to some patients who, under normal circumstances, will not seek
treatment, and give placebo to patients who otherwise would receive treatment. That, in our new
vocabulary, means ‘surgery’ -- we are severing one functional link and replacing it with another.
Fisher’s great insight was that connecting the new link to a random coin flip ‘guarantees’ that the
link we wish to break is actually broken. The reason is that a random coin is assumed to be
unaffected by anything we can measure on macroscopic level... (Pearl, 2000, p. 348)

5  C. S. Peirce and Randomization
We believe that many fine points about the role of randomization in the DSEs can

be better understood by following its development from an historical perspective. This
is the topic of this section. 

In the period of 1850 to 1880 the quantitative analysis of human sensation in
response to physical (tactile, acoustic or visual) stimuli, was the main goal of
psychophysics. A typical hypothesis in this research program was Fechner’s law, see
Hernstein and Boring (1966, p. 72), which stated that, 

The magnitude of sensation ( ) is not proportional to the absolute value of the stimulus ( ), but
rather to the logarithm of the magnitude of the stimulus when this is expresses in terms of its
threshold value (b), i.e. that magnitude considered as unit at which the sensation begins and
disappears.” 

In modern mathematical notation, .
In his psychophysical experiments Fechner tested his own ability to distinguish

the strongest in a pair of stimuli. For example, he would prepare two objects of masses
 and + , and later on he would lift them, and “answer” which one appeared to him

to be the heaviest. A quantitative analysis would latter relate the proportion of right
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and wrong answers with the values of  and , see Stigler (1986, ch. 7, Psychophysics
as a Counterpoint, pp. 239-261). Fechner was well aware of the potential difficulties
resulting from the fact that the experiments where not performed blindly, that is, since
he prepared the experiment himself, he could know in advance the right answer.
Nevertheless, he claimed to be able to control himself, be objective, and overcome this
difficulty. 

According to Dehue (1997), in the decade of 1870, G. E. Müller and several
researchers at Tübingen and Göttingen Universities, began to improve the design of
psychophysical experiments. The first major improvement was blinding: the stimuli
were prepared or administered by an “Experimenter” or “Operator” and applied to a
distinct person, the “Observer”, “Patient” or “Subject”, who was kept unaware of the
actual intensity of the stimuli. 

The second major improvement was the precaution of presenting the stimuli in
irregular order (buntem Wechsel). This irregularity was introduced to prevent the
patient from becoming habituated to patterns in the sequence of stimuli presented to
him or, in other words, to keep him to form building expectations and guessing the
right answers. Nevertheless, there was, at that time, neither a general theory defining
irregularity, nor a systematic method for providing an irregular order. 

In 1885, Charles Sanders Peirce and his student Joseph Jastrow presented
randomization as a practical solution, in this context, to the question of irregularity,
that is, systematic randomization should prevent any effective guessing by the patient,
see Hacking (1988, pp. 431-434). Peirce was in fact insisting on exchangeability, a
key notion in the analysis of randomization in modern statistics and, most specially, in
Bayesian statistics, that will be discussed in the next section. 

Peirce also struggled with the dilemma of allowing or not, in the course of the
experiment, sequences that do not appear to be random. His conclusions, see Peirce
and Jastrow (1884, p. 122), are, once more, precursors to De Finetti's concept of
exchangeability: 

The pack (of playing-cards) was well shuffled, and, the operator and subject having taken their
places, the operator was governed by the color of the successive cards ... 

A slight disadvantage in this mode of proceeding arises from the long runs of one particular kind of
change, which would occasionally be produced by chance and would tend to confuse the mind of the
subject. But it seems clear that this disadvantage was less than that which would have been
occasioned by his knowing that there would be no such long runs if any means had been taken to
prevent them. (Peirce & Jastrow, 1884, p. 122)

Regardless of its importance, Peirce’s solution of randomization was not accepted
by his contemporaries, fell into oblivion, and was almost forgotten, until it reappeared
much later in the work of R. A. Fisher. We believe that there are several entangled
reasons to explain such a twisted historical process. The psychophysics community
raised objections against some of the hypotheses, and also against some
methodological aspects presented in Peirce’s paper. Besides, there is also a
confounding factor generated by a second role played by randomization in Peirce’s
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paper, namely, randomization to measure faint effects. We shall briefly discuss these
aspects in the next paragraphs. 

Fechner assumed the existence of a threshold (Schwelle), b, below which small
differences could no longer be discerned. Peirce wanted to refute the existence of this
threshold assuming, instead, a continuously decreasing sensitivity to smaller and
smaller differences. We should remark that for Peirce this should not have been a
fortuitous hypothesis, since it can be related to his general philosophical ideas, most
specially with the concept of synechism, see Hartshorne et al. (1992), Eisele (1976),
and Stern (2007b). 

Peirce postulated that the patients’ sensitivity could be adequately measured by
the probability of correct answers, even when the difference was too faint to be
consciously discerned by the same patients. Hence, in experiments similar to
Fechner’s, Peirce asked the patient always to guess the correct answer. Peirce also
asked the patient to give the answer a confidence score from 0 to 3. Peirce analyzed
his experimental data and derived empirical formulae relating the (rounded)
“subjective” confidence scores, m, and the “objective” probability of correct
answers, p:

The average marks seem to conform to the formula m=clog(p/(1-p)), where m denotes the degree of
confidence on the scale, p denotes the probability of the answer being right, and c is a constant
which may be called the index of confidence. (Peirce & Jastrow, 1884, p. 122)

At the time of Peirce’s experiments, the psychophysical community gave great
importance to the analysis of the patient’s subjective ‘introspections’. According to
this view, Peirce’s experiments were criticized by asking the patient to guess the
correct answer even when he expressed low confidence. Of course, if one understands
Peirce’s research program, it is clear that that the experimental design he used is
perfectly coherent. Unfortunately, this was not the judgment of his contemporaries. 

The same techniques and experimental designs used by Peirce were subsequently
used by several researchers in attempts to measure faint effects, including effects
produced by ‘below the consciousness threshold’, sub-conscious, or sub-liminal
stimuli. Some of these studies were really misconceived, and that may have been yet
another contributing factor for the reactions against the use of randomization.
Whatever the explanation might be, Peirce’s paper fell into oblivion, and the progress
of DSEs was delayed by half a century. 

6 Bayesian Analysis of Randomization

The work of Ronald Aylmer Fisher can undoubtedly be held responsible for
disseminating the modern approach to DSEs, including randomization, to almost any
area of empirical research, see for example Fisher (1926, 1966). The idea of
randomization, however, was later contested by some members of the Bayesian
school. Commenting on the use of randomization after Fisher, Hacking states: 

Undoubtedly Fisher won the day, at least for the following generation, but then a new, although not
completely unrelated, challenge to randomized design arose. This came from the revival of the
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‘Bayesian’ school, typically associated with L. J. Savage’s theory of what he called personal
probability. Here the object is to form an initial assessment of one’s personal beliefs about a subject
and to modify them in the light of experience and a theoretical analysis formally modeled by the
calculus of probability and a theory of personal utility. It is widely held to be an almost immediate
consequence of this approach that randomization is of no value at all (except perhaps to eliminate
some kind of fraud. (Hacking, 1988, pp. 429-430)

This erroneous notion of incompatibility between the use of randomization and
Bayesian statistics in now completely outdated. One of the most prestigious textbooks
in contemporary Bayesian statistics states: 

A naive student of Bayesian inference might claim that because all inference is conditional on the
observed data, it makes no difference how those data were collected. This misplaced appeal to the
likelihood principle would assert that given (1) a fixed model (including the prior distribution) for
the underlying data and (2) fixed observed values of the data, Bayesian inference is determined
regardless of the design for the collection of the data. Under this view there would be no formal role
for randomization in either sample surveys or experiments. The essential flaw in the argument is that
a complete definition of ‘the observed data’ should include information on how the observed values
arose, and in many situations such information has a direct bearing on how these values should be
interpreted. Formally then, the data analyst needs to incorporate the information describing the data
collection process in the probability model used for analysis. (Gelman et al., 2003, ch.7, p. 198)

Indeed, the classical argument using the likelihood principle against
randomization in the DSEs, assumes a fixed, given statistical model and, as concisely
stated by Kempthorne:

The assertion that one does not need randomization in the context of the assumed (linear) model
(above) is an empty one because an intrinsic role of randomization is to ‘insure’ against model
inadequacies. (Kempthorne, 1977, p. 16)

Gelman et al. (2003) proceeds offering a much deeper analysis of the role of
randomization from a Bayesian perspective, see also Rubin (1978). The key concept
of “ignorable design” specifies decoupling conditions between the sampling (or
censoring) process, described by an indicator variable, I, and the distribution of the
observed variables, yobs. If the experiment has an ignorable design, we can build a
statistical model that explicitly considers yobs alone. Finally, it is ironic that perhaps
one of the best arguments for incorporating randomization in Bayesian experimental
design is a consequence of the de Finetti theorem for exchangeability. As mentioned in
section 4, this argument also blurs the distinction between the concepts of randomized
design and randomized sampling. We quote, once again, from Gelman et al.: 

How does randomization fit into this picture? First, consider the situation with no fully observed
covariates x, in which case the ‘only’ way to have an invariant to permutation design -- is to
randomize.

In this sense, there is a benefit to using different patterns of treatment assignment for different
experiments; if nothing else about the experiments is specified, they are exchangeable, and the
global treatment assignment is necessarily randomized over the set of experiments. (2003, pp. 223-
225)
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7 Randomization, Epistemic Considerations

Several researchers currently concerned with epistemological questions in Bayesian
statistics are engaged in a reductionist program dedicated to translate every statistical
test or inference problem into a decision theoretic procedure. One of the main
proponents and early contributors to this program, but one who also had a much
broader perspective, clearly articulating his epistemological insights and motivations,
was Bruno de Finetti. 

In statistical models our knowledge of the world is encoded in probability
distributions. Hence, it is vital to clarify the epistemological or ontological status of
probability. Let us examine de Finetti’s position, based on his own words: 

Any assertion concerning probabilities of events is merely the expression of somebody’s opinion
and not itself an event. There is no meaning, therefore, in asking whether such an assertion is true or
false, or more or less probable.” (de Finetti, 1972, p. 189)

Each individual making a ‘coherent’ evaluation of probability (in the sense I shall define later) and
desiring it to be ‘objectively exact’, does not hurt anyone: everyone will agree that this is his
subjective evaluation and his ‘objectivist’ statement will be a harmless boast in the eyes of the
subjectivist, while it will be judged as true or false by the objectivist who agree with it or who, on the
other hand, had a different one. This is a general fact, which is obvious but insignificant: ‘Each in his
own way.’ (de Finetti, 1980, p. 212)

Solipsism, from the Latin solus (alone) + ipse (self), can be defined as the
epistemological thesis that the individual’s subjective states of mind are the only
proper or possible basis of knowledge. Metaphysical solipsism goes even further,
stating that nothing really ‘exists’ outside of one’s own mind. From the two above
quotations, it is clear that de Finetti stands, if not from a metaphysical, at least from a
epistemological perspective, as a true solipsist. This goes farther than many theorists
of the Bayesian subjectivist school would venture, but de Finetti charges ahead, with a
program that is not only anti-realist, but also anti-idealist. De Finetti launches a full-
fledged attack against the vain and futile desire for any objective knowledge: 

 Much more serious is the reluctance to abandon the inveterate tendency of the savages to objectivize
and mythologize everything (1); a tendency that, unfortunately, has been, and is, favored by many
more philosophers than have struggled to free us from it (2).
(1) The main responsibility for the objectivizationistic fetters inflicted on thought by everyday
language rests with the verb ‘to be’ or ‘to exist’, and this is why we drew attention to it in the
exemplifying sentences. From it derives the swarm of pseudoproblems from ‘to be or not to be’, to
‘cogito ergo sum’, from the existence of ‘cosmic ether’ to that of ‘philosophical dogmas’.
(2) This is what distinguishes acute minds, who enlivened thought and stimulated its progress, from
narrow-minded spirits who mortified and tried to mummify it ... ‘great thinkers’ (like Socrates and
Hume) and ‘school philosophers’ (like Plato and Kant). (Finetti, 1974, vol. 1, Sec. 1.11, pp. 21-22)

De Finetti was also aware of the dangers of objective contamination, that is, any
“objective” (probabilistic) statement can potentially “infect” and spread its objectivity
to other statements: 
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There is no way, however, in which the individual can avoid the burden of his own evaluations. The
key can not be found that will unlock the enchanted garden wherein, among the fairy-rings and the
shrubs of magic wands, beneath the trees laden with monads and noumena, blossom forth the
flowers of ‘Probabilitas realis’. With the fabulous blooms safely in our button-holes we would be
spared the necessity of forming opinions, and the heavy loads we bear upon our necks would be
rendered superfluous once and for all. (Finetti, 1974, vol. 2, Sec. 7.5.7, pp. 41-42)

As we have seen in the last sections, a randomization device is built so to provide
legitimate ‘objective’ probabilistic statements about some events, and randomization
procedures in DSEs are conceived exactly in order to spread this objectivity around. 

I. J. Good was an other leading figure of the early days of the Bayesian revival
movement. Contrary to de Finetti, Good has always been aware of the dangers of an
extreme subjectivist position: 

Some of you might have expected me, as a confirmed Bayesian, to restrict the meaning of the word
‘probability’ to subjective (personal) probability. That I have not done so is because I tend to believe
that physical probability exists and is in any case a useful concept. I think physical probability can
be measured only with the help of subjective probability, whereas de Finetti believes that it can be
‘defined’ in terms of subjective probability. De Finetti showed that if a person has a consistent set of
subjective or logical probabilities, then he will behave ‘as if’ there were physical probabilities,
where the physical probability has an initial subjective probability distribution. It seems to me that,
if we are going to act if the physical probability exists, then we don’t lose anything practical if we
assume it really ‘does’ exist. In fact I am not sure that existence means more than there are no
conceivable circumstances in which the assumption of existence would be misleading. But this is
perhaps too glib a definition. The philosophical impact of de Finetti’s theorem is that it supports the
view that solipsism cannot be logically disproved. Perhaps it is the mathematical theorem with most
potential philosophical impact. (Good, 1983, p. 93)

In our terminology we would have used the expression ‘objective probability’
instead of Good’s expression, ‘physical probability’. In 1962 Good edited a collection
of speculative essays, including some on the foundations of statistics. The following
short essay by Christopher S.O’D. Scott offers an almost direct answer to de Finetti:

Scientific Inference: You are given a large number of identical inscrutable boxes. You are to select
one, the ‘target box’, by any means you wish which does not involve opening any boxes, and you
then have to say something about is in it. You may do this by any means you wish which does not
involve opening the target box. 

This apparent miracle can easily be performed. You only have to select the target box at random, and
then open a random sample of other boxes. The contents of the sample boxes enable you to make an
estimate of the contents of the target box which will be better than a chance guess. To take an
extreme case, if none of the sample boxes contains a rabbit and your sample is large, you can state
with considerable confidence: ‘The target box does not contain a rabbit.’ In saying this, you make no
assumption whatever about the principles which may have been used in filling the boxes. 

This process epitomizes scientific induction at its simplest, which is the basis of all scientific
inference. It depends only on the existence of a method of randomization – that is, on the assumption
that events can be found which are unrelated (or almost) to given events. 
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It is usually thought that scientific inference depends upon nature being orderly. The above shows
that a seemingly weaker condition will suffice: Scientific inference depends upon our knowing ways
in which nature is disorderly. (Good, 1962, sec.114, pp. 364-365)

In the preceding articles we discussed general conditions validating objective
knowledge, from a constructivist epistemological perspective. In this article we
discuss the use of randomization devices, that can generate observable events with
distribution that are independent of the distribution of any event relevant to a given
statistical study. For example, the statistical study could be concerned with the
reaction of human patients affected by a given disease to alternative medical
treatments, whereas a good randomization device could be a generic “coin flipping
machine,” like a regular dice or a mechanical roulette borrowed from a casino. The
randomization device could also be a sophisticated apparatus detecting flips (state
transitions) in some quantum system, with transitions probabilities known with a
relative precision of one over a trillion. 

So far in this article we have seen how well can decoupling strategies used in the
DSEs, including randomization procedures, help us to perform robust statistical
inference and, in doing so, escape, from a pragmatic perspective, the solipsist burdens
of an extreme subjectivist position. The same techniques can induce no association
relations, generating sparse or structured statistical models. No association hypotheses
can then be tested, confirming (or not) such sparse or structured patterns in the
statistical model. 

8 Final Remarks and Further Research

As analyzed in this article, the randomization method, introduced by C. S. Peirce
and J. Jastrow (1884), is the fundamental decoupling technique used in the design of
statistical experiments (DSEs). Nevertheless, only after the work of R. A. Fisher
(1966), were randomized designs used regularly in practice. Today, randomization is
one of the basic backbones of statistical theory and methods. Meanwhile, the
pioneering work of Peirce had been virtually forgotten by the statistics community,
until rediscovered by the historical research of Stigler (1978) and Hacking (1988).
Nevertheless, even today, the work of Peirce is presented as an isolated and ad hoc
contribution. As briefly indicated in section 5, it is plausible that Peirce and Jastrow’s
experimental and methodological work could have had motivations related to more
general ideas of Peircean philosophy. In particular, we believe that the faint effects
psychophysical hypothesis can be liked to the concept of synechism, while the
randomized design solution can be embedded in the epistemological framework of
Peirce’s objective idealism. We believe that these topics deserve the attention of
further research.

In this article we have examined some aspects of DSEs, such as blocking, control
and randomization, from an epistemological perspective. However, in many
applications, most noticeably in medical studies, several other aspects have to be taken
into account, including the well being of the patients taking part in the study. In our
view, such complex situations require a thorough, open and honest discussion of all
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the moral and ethical aspects involved. Typically they also demand sound protocols
and complex statistical models, suited to the fine quantitative analyses needed to
balance multiple objectives and competing goals. For the placebo, nocebo, kluge Hans
[Clever Hans], and similar effects, and the importance of blind and randomized
clinical trials, see Kotz et al. (2005), under the entries Clinical Trials I, by N. E.
Breslow, vol. 2, pp. 981-989, and Clinical Trials II, by R. Simon, vol. 2, pp. 989-998.
For additional references on statistical randomization procedures, see Folks (1984),
Kadane and Seidenfeld (1990), Kaptchuk and Kerr (2004), Karlowski et al. (1975),
Kempthorne (1977, 1980) and Noseworthy et al. (1994). 
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