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Abstract. We study Compositional Models based on Dirichlet Regression where, given a (vector)
covariate x, one considers the response variable y = (y1, . . . ,yD) to be a positive vector with
a conditional Dirichlet distribution, y|x ∼ D(α1(x) . . .αD(x)). We introduce a new method for
estimating the parameters of the Dirichlet Covariate Model when α j(x) is a linear model on x,
and also propose a Bayesian model selection approach. We present some numerical results which
suggest that our proposals are more stable and robust than traditional approaches.
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INTRODUCTION

Compositional data consist of vectors whose components are the proportions of some
whole. The peculiarity of these models is that the sum of the sample vector adds to 1.
Hence, the corresponding sample space is the simplex, that is quite different from the
real Euclidean space associated with unconstrained data. Therefore, attempts to apply
statistical methods for unconstrained data often lead to inappropriate inference. Some
statistical models for compositional data have been developed since the 70s, particularly
for regression analysis. Aitchison [1, 2] exploited the logistic normal distribution prop-
erties and developed a complete theory of compositional data analysis, based on some
classes of logistic transformations from the real space to the simplex.

Here we focus on a less exploited approach, the Dirichlet Covariate Model, suggested
by Campbel and Mosimann [7]. In this model, one considers y = (y1, . . . ,yD) to be a
1×D positive vector having Dirichlet distribution D(α1, . . . ,αD). A Dirichlet regression
model is readily obtained by allowing its parameters to change with covariates. For
a given covariate row vector x = (x1, . . . ,xC), each parameter α j may be written as a
positive-valued vector function α j(x), j = 1 . . .D and, therefore, the response variable is
assumed to follow a conditional Dirichlet distribution, y|x∼D(α1(x) . . .αD(x)).

We focus on the case where each α j(x) is a linear function of x. This formulation is
intuitive and resembles, in some aspects, standard linear models interpretation. However,
the constraint α j(x) > 0 may impose some difficulties for estimation and inference
methods. We propose a new method for parameter estimation, which outperforms the
current approach [9], and propose a model selection approach based on the Full Bayesian
Significance Test [12, 13].
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DIRICHLET REGRESSION

Let S D denote the (D−1)−dimensional simplex:

S D = {z = (z1,z2 . . .zD) : z > 0,∑
D
j=1 z j = 1}.

The vectors 0 and 1 always have the appropriate dimension required by the context.
Let X = (x1•;x2•; . . . ;xn•), Y = (y1•;y2•; . . . ;yn•) be a sample of observations where
yi• ∈S D and xi• ∈ RC, i = 1,2, . . . ,n. The goal is to build a regression predictor for yi•
as a function of xi•.

We assume that yi• follows a Dirichlet distribution with parameter α(xi•), where
α(xi•) = (α1(xi•), . . . ,αD(xi•)), and each α j(xi•) is a linear combination of xi•:

α j(xi•) = xi,1β1, j + xi,2β2, j + ...+ xi,CβC, j = xi•β• j.

The parameters to be estimated are β = (βk, j,k = 1 . . .C, j = 1 . . .D), subject to the
constraint α(xi•) > 0. As usual, model selection can be done by testing βk, j = 0 for
some pairs (k, j) ∈ {1 . . .C}×{1 . . .D}.

Parameter Estimation
Assuming that y1• . . . ,yn• are c.i.i.d. given β , the likelihood function is:

L(β |X ,Y ) = ∏
n
i=1

Γ(Ai(xi•))∏
D
j=1

yα j(xi•)−1
i j

Γ(α j(xi•))

 ,

where Ai(xi•) = ∑
D
j=1α j(xi•).

In order to make fair comparisons with frequentist mehods, we use in this article the
uniform (improper) prior for β , and the last expression is also the posterior distribution.
In a more general setting, a Bayesian user may choose to use a more adequate (proper)
prior.

The gradients of log-likelihood are easily computed, and used for maximum likeli-
hood estimation:

∂ logL
∂βk, j

= ∑
n
i=1

[
(ψ(Ai(xi•))−ψ(α j(xi•))+ logyi, j) xi,k

]
where ψ denotes the digamma function, ψ(u) = ∂ logΓ

∂u (u).
Numerical methods are required for computing the Maximum Likelihood Estimates

(MLE). Fitting a Dirichlet Distributions with constant parameters is straightforward, and
numerical packages are available [5, 4]. The difficulty arises when we attempt to extend
the estimation to Dirichlet Regression. Starting values and regularization policies must
be carefully chosen for the optimization algorithm to converge.

Hijazi and Jernigan [9] proposed the following method for choosing starting values
for the optimization step:

1. Draw r samples with replacement each of size m (m < n) from X and Y .
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2. For each sample, fit a Dirichlet model with constant parameters, and compute the
mean of the corresponding covariates. This will result in matrices A r×D, W r×C
where A represents the ML estimates for the r samples and row wi represents the
means of covariates in sample i.

3. Fit by least squares D models of the form Ai, j = α j(wi) = ∑
C
k=1β jkwik.

4. Use the fitted coefficients βk, j as starting values.

The main issue of Hijazi’s method is that it does not guarantee the starting values βk, j
to yield positive values for α j(xi). Taking this issue in account, our implementation for
this method repeats the steps 1-4 until a feasible initial guess is obtained, limited to 30
uncussessfull iterations.

We propose a regularization approach anchored by the constant (without covariates)
Dirichlet model. If the initial model does not include the constant (intercept) terms,
we extend the initial model to include them as artificial variables. Finally, we solve a
sequence of optimization problems that drive the artificial variables back to zero. The
algebraic formulation of this procedure is as follows.

1. Add a constant column 1 as the first column of X , in case such an “intercept”
column is not already present in the original model.

2. Define a boolean matrix M indicating the non-zero parameters of the original
model, namely:

Mk, j =
{

1 if βk, j is a model parameter;
0 if βk, j = 0.

3. Fit a Dirichlet model for Y with constant parameters (via MLE).
Notice that this corresponds to the solution of a basic model where the M0 is

M0
k, j =

{
1 if k = 1
0 if k 6= 1

Moreover, this solution is a feasible point for the (possible extended) model includ-
ing the intercept.

4. Build the supermodel joining all variables present either in the anchor or in the
original model, namely:

M∗k, j = max(M0
k, j,Mk, j),k = 1 . . .C, j = 1 . . .D.

5. Solve the sequence of optimization problems

max
β

g(β |X ,Y ) =−K ∗bβ
2 + logL(β |X ,Y ).

The boolean vector b indicates which of the β1, j are “artificial” variables (1) and
which were present in the original model (0):

b j =
{

1 if M j,1 = 0;
0 otherwise.

A sequence of increasing scalars, Kt , steadily increases the importance of the
penalty term in the objective function. Each solution in the sequence is used as
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the starting point for the next optimization problem. The increasing penalty term
drives the artificial variables to zero, converging to the optimal solution (best fit) of
the original model.

Taking a gradually increasing sequence of the penalty constants, Kt , constitutes what,
in the optimization literature, is called a regularization policy [10]. Its use facilitates the
convergence of the process to the desired optimum solution. Numerical experiments
demonstrate that the proposed procedure is more stable and faster than Hijazi’s ap-
proach. A case study is presented in the Results Section.

Prediction Using Dirichlet Regression

Having obtained the estimate β̂ , the expected composition proportions in y given the
vector x of covariates values is the mean of the distribution D(α̂(x)):

ŷ =
(

α̂1(x)
Â(x)

,
α̂2(x)
Â(x)

. . .
α̂D(x)
Â(x)

)
, where Â(x) = ∑

D
j=1α̂ j(x).

FULL BAYESIAN SIGNIFICANCE TEST (FBST)

The Full Bayesian Significance Test (FBST) is presented in [12, 13] as a coherent
Bayesian significance test. FBST is suitable for cases where the parameter space, Θ, is a
subset of Rn, and the hypothesis is defined as a restricted subset defined by vector valued
inequality and equality constraints: H : θ ∈ΘH , where ΘH = {θ ∈Θ |g(θ)≤ 0∧h(θ) =
0}. For simplicity, we often use H for ΘH . We are interested in precise hypotheses,
with dim(H) < dim(Θ) . In this work, fx(θ) denotes the posterior probability density
function.

The computation of the evidence measure used on the FBST is performed in two
steps:

• The optimization step consists of finding the maximum (supremum) of the posterior
under the null hypothesis, θ ∗ = argsupH fx(θ), f ∗ = fx(θ ∗).

• The integration step consists of integrating the posterior density over the Tangential
Set, T , where the posterior is higher than anywhere in the hypothesis, i.e.,

T = {θ ∈Θ : fx(θ) > f ∗} , Ev(H) = Pr(θ ∈ T |x) =
∫

T
fx(θ)dθ

Ev(H) is the evidence against H, and Ev(H) = 1−Ev(H) is the evidence supporting
(or in favor of) H. A more detailed FBST review may be found in [13].

In this work, θ corresponds to the model coefficients, i.e, θ = (βk, j, j = 1 . . .D,k =
1 . . .C). For FBST implementation, we assume an improper uniform prior on RD×C,
and therefore fx(β ) ∝ L(β |X ,Y ). For numerical integration, we adopt a Metropolis-
Hastings algorithm with a multivariate normal proposal distribution [11, 15]. We use an
initially diagonal kernel estimated at the maximum likelihood point, β̂ . The kernel is
then periodically updated using standard adaptive methods [16]Ap.G.
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RESULTS AND FINAL COMMENTS

This section presents some numerical experiments motivated by the benchmark applica-
tion Arctic lake sediments, presented by Coakley and Rust [8] and adapted by Aitchison
[2]. It consists of compositional data of sand, silt and clay for 39 sediment samples at
different water depths. The immediate questions are [2]:

1. Is sediment composition dependent on water depth?
2. If so, how can we quantify this dependence?

Hence, the dataset comprises a response matrix Y of order 39×3 (constituents propor-
tions in each sample), while the covariate matrix starts as a matrix X of order 39×1 (the
sample depth).

The models of interest in our study are submodels of the complete second-order
polynomial model on x,

α j(x) = β1, j +β2, j ∗ x+β3, j ∗ x2, j = 1 . . .3.

Figure 1 shows the Arctic Lake dataset with the corresponding complete first and second
order models (continuous and dashed curves, respectively).

Parameter Estimation Procedures
In order to evaluate our proposed method for estimating polynomial coefficients, we
draw a collection of q = 1,2, . . . subsamples of the Arctic Lake dataset. We used sub-
samples with 50%(n = 20) and 70%(n = 27) of the points in the original dataset.

We try to fit each subsample with an incomplete polynomial model described by a
random structural matrix M(q). The elements of each structural matrix, M(q)

k, j , are set by

a Bernoulli process where Pr(M(q)
k, j = 1) = p. The fill-in probability, p, of setting to 1 an

element of M(q) was set to p = 0.33, p = 0.5 or p = 0.66. Moreover, in order to avoid
inconsistent models, a structural matrix is rejected if it does not satisfy the feasibility
constraints ∑

C
k=1Mk, j(q) ≥ 1, j = 1 . . .D. These constraints make sure that there is at

least one non-zero polinomial coefficient for each parameter function, α j(x).
For each pair (n, p) ∈ {20,27}×{0.33,0.5,0.66}, we draw m = 1000 subsamples.
Two performance measures were considered: (1) The failure rate in the numerical

optimization process used to fit the model; (2) The computational processing time of
each method. Figure 2 presents the failure rate (left) and the processing time in Log2
scale (right), according to the model fill-in probability. It is clear that both the failure rate
and the processing time of Hijazi’s method are much higher than ours. It is also clear
that the performance of Hijazi’s method deteriorates as the fill-in probability (structural
density) increases, whereas our method does not seem to be affected. The subsample
size (n = 20 or n = 27) does not seem to affect the performance. Hence, the experiments
were pooled together.

Hypothesis Tests
In this section, we compare the performance of the FBST, as presented in Section 3, and
the Likelihood Ratio (LR) test, a standard and easily computed classical approach. Per-
formance comparison is based on the analysis of Type I and Type II errors (respectively,
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FIGURE 1. Arctic Lake dataset and corresponding fitted models: first order (continuous curves) and
second order (dashed curves) polynomials

FIGURE 2. Failure rates (left) and log-processing times (right), by model fill-in probability.

the rejection rate of a true hypothesis and the acceptance rate of a false hypothesis). As
it is standard in the literature, the basic idea is to compare the performance of Type II
errors after setting acceptance/rejection thresholds τFBST and τLR, corresponding to an
expected Type I error of α = 5%, that is, a (1−α) = 95% confidence level. In this work,
we consider two approaches for establishing τFBST :

(1) Asymptotic approximation: an asymptotic approximation to the threshold τFBST
can be easily computed, as explained in [6, 13].

(2) Empirical power analysis: an empirical approximation to the thresholds τFBST and
τLR can be obtained by computational simulation, as explained in [3].
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FIGURE 3. (a) Type I error, (b) Type II error and (c) average errors with asymptotic thresholds τFBST
and τLR; (d) Type II errors with empirical thresholds τFBST and τLR.

As in the last section, we start with the complete second-order polynomial model and
use, as a benchmark hypothesis for the numerical experiments, H : β3, j = 0, j = 1,2,3,
that is, the assumption that α j(x) may be suitable modelled as a first-order polynomial.
Let θ ∗ and θ̂ represent the constrained (first order polinomial) and unconstrained (sec-
ond order polinomial) maximum likelihood parameters optimized to the Arctic Lake
dataset.

For each sample size n ∈ {30,40,50,60}, we generate two collections of m = 500
independent samples of size n. The first collection, C1, consists of samples drawn with
parameter θ ∗. The second collection, C2, consists of samples drawn with parameter θ̂ .
Type I errors of FBST and LR are estimated as the proportion of samples in C1 wich
evidence in favour of H is less than τFBST and τLR, respectively. Type II errors of FBST
and LR are estimated as the proportion of samples in C2 wich evidence in favour of H
is greater than τFBST and τLR, respectively.

Figure 3(a,b) presents the Type I and Type II errors for the FBST and the LR,
estimated with the asymptotic thresholds τFBST and τLR. Figure 3(c) presents the average
errors, i.e., (Type I error + Type II error)/2. Although FBST has a slightly higher Type I
error than LR, it achieves lower Type II and average errors than LR test.
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Figure 3(d) presents the estimated Type II error, based on the empirical thresholds
τFBST and τLR. FBST empirical Type II error is lower than LR test, suggesting a better
discriminant power for FBST.

Future works shall compare the FBST performance with other model selection ap-
proaches not mentioned in this study, like AIC, BIC, etc. The routines used in this paper
were developed on R and are available upon request. In the future, we hope to make
these routines available as CRAN R packages [14].
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