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Spontaneous energy fluctuations in human hippocampal EEG show prominent amplitude and temporal
variability. Here we show hippocampal energy fluctuations often exhibit long-range temporal correlations with
power-law scaling. In most cases this scaling behavior persisted on time scales in excess of 10 minutes, the
maximum duration we could detect with our recording durations. During these epochs we find that the energy
fluctuations exhibit long-range correlations over a broad frequency range (0.5–100 Hz) with greater persistence
of the correlations in the lower frequency bands (0.5–30 Hz) than the higher (30 –100 Hz). The correlation in
hippocampal energy fluctuations is characterized by a bias for energy fluctuations to be followed by similar
magnitude fluctuations over all energy scales, i.e. large fluctuations begets large fluctuations and small begets
small. © 2005 Wiley Periodicals, Inc. Complexity 10: 35– 44, 2005
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INTRODUCTION

T he origin and functional correlates of hippocampal
EEG oscillations remain active areas of research [1– 4].
Hippocampal EEG activity, as measured by depth elec-

trode recordings, is generated by local populations of syn-
chronously firing neurons and when examined over suffi-

ciently long time scales (approximately minutes) exhibits a
wide range of amplitude and temporal variation that have
received little attention [5]. Unfortunately, most quantita-
tive methods for studying the temporal dynamics of the
EEG, such as spectral analysis and nonlinear dynamics [6, 7]
require signal stationarity. Although the energy of human
hippocampal EEG may remain nearly constant for minutes
at a time, the mean energy and variance can also fluctuates
widely [8], limiting the usefulness of standard spectral and
nonlinear dynamics methods for investigating correlations
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over long time scales. For this reason, complete character-
ization of the long-range temporal correlations (LRTC) in
EEG fluctuations, and in turn the collective neuronal oscil-
lations responsible for the EEG, have received little atten-
tion.

In recent years, new methods have been developed that
make the problem of analyzing LRTC in nonstationary data
tractable. Detrended fluctuation analysis (DFA) is one such
method [9 –11]. It provides a systematic method for the
analysis and characterization of LRTC embedded in nonsta-
tionary time series. Detrending the signal on multiple time
scales to eliminate spurious detection of temporal correla-
tions that arise as an artifact of signal nonstationarity allows
the determination of intrinsic scaling exponents that char-
acterize temporal correlations in mono-fractal signals [12].
Recently, DFA has been used to demonstrate the presence
of LRTC with power-law scaling in human EEG recorded
from the scalp [13, 14].

In this article we analyze a transform of the EEG, which
we refer to as the signal energy. This transform is not simply
an amplitude measure as it is rarely attains zero values. We
use DFA to analyze these energy fluctuations in long con-
tinuous EEG time series obtained from intracranial hip-
pocampal depth electrodes placed in five patients with uni-
lateral mesial (amygdalohippocampal) temporal lobe
epilepsy undergoing pre-surgical evaluation.

MATERIALS AND METHODS

EEG Recording
Intracranial EEG was obtained from chronically im-
planted depth electrodes in the long axis of the hip-
pocampus of both temporal lobes in five adult epileptic
patients being evaluated for epilepsy surgery. The data
were recorded using a referential montage and then
band-pass analog filtered between 0.1 and 100 Hz and
digitized at 200 Hz.

Five randomly selected 20-minute EEG segments were
selected for each patient in each of three states: awake,
asleep, and preseizure awake, yielding a total of fifteen
20-minute segments of intracranial EEG for each of the
five patients. Seizure onset lead and time were deter-
mined by visual inspection by an epileptologist (G.A.W. or
B.L.). A second lead was identified, herein referred to as
the remote lead, which was in the contralateral hip-
pocampus and electrographically removed from the sei-
zure onset zone.

Determination of Behavioral State
Continuous video of the patient’s entire monitoring stay
were viewed to determine the patient’s behavioral state
(sleep/wake) and identify clinical seizures. Behavior clearly
recognized as wake or sleep were recorded, and then the

intracranial EEG was quantitatively analyzed to achieve
finer resolution of sleep-wake cycles into slow-wave sleep,
wakefulness, and indeterminate periods.

Wavelet Filtering
The data were analyzed in four forms: unfiltered (other than
by the analog filter), low-frequency (0.5–30 Hz), high-fre-
quency (30 –100 Hz), and the standard clinical EEG bands, !

(0.5– 4 Hz), " (4 – 8 Hz), # (8 –12 Hz), $ (12–30), and % (30 –70
Hz). The offline filtering was performed with a wavelet
filtering scheme. Wavelet filtering was selected because of
its robust detection of temporally limited frequencies com-
mon in EEG tracings.

To facilitate arbitrary frequency band selection, the con-
tinuous wavelet transform (CWT) was used despite its sig-
nificant computational burden relative to the discrete trans-
form (DWT). The CWT computes the wavelet transform at
all possible scales, determined by the data set’s resolution,
within a selected scaling range [15]. The DWT computes the
transforms at dyadically selected scales (powers of 2) only.
The wavelet transform, W, of a one-dimensional signal, f(x),
is defined as

W!a, b" &
1
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f!x"'!# x ( b
a $dx,

where a represents the wavelet scale, b the wavelet center
offset, and '*(x) the complex conjugate of the wavelet func-
tion. The “gaus4” wavelet, the normalized 4th derivative of
a Gaussian, was used because of its compatibility with the
CWT, the absence of an imaginary component for compu-
tational efficiency, and its relative simplicity.

The scales of a CWT are inversely proportional to the
frequencies they best represent. For this reason the number
and distribution of scales representing a particular fre-
quency band varies with the band of interest. Fewer scales
are devoted to higher frequencies and vice versa. Our filter-
ing function dealt with this by weighting each scale in the
CWT by the proportion of the frequency band it repre-
sented. The filtered data was generated by applying this
weighted average to the CWT coefficients at each time
point. The final one-dimensional time series is normalized
in magnitude by scaling it by the first-order coefficient
generated by a linear regression fit between it and the
unfiltered data.

Energy Calculation
The filtered and unfiltered tracings were transformed to
instantaneous energy. The following method was used: First
the series of local minima were collected into one time
series, and the local maxima into another. From these the
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voltages were integrated between successive maxima and
separately between successive minima. The integral values
were normalized by their segment lengths. The normal-
ized integrated values were interleaved at their respective
waveform midpoints and a cubic spline was used to in-
terpolate between the points (Figure 1). Simply determin-

ing the energy from the square of the voltage averaged
over a fixed window also produces a self-similar energy
time series [5], but these series contains frequent near-
zero values corresponding to the zero-crossings in the
original data, a characteristic we sought to avoid with this
method.

FIGURE 1

Plot of the absolute value of the EEG voltage (gray) and the energy function (black). The energy function was generated by integrating the data between
successive peaks and separately between successive troughs. The integral values were normalized by the length of their respective waveforms and aligned
to the original time sequence at the waveform midpoints form a series of anchors. Values between the successive anchor points were generated by cubic
spline interpolation.

FIGURE 2

Most of our data were fit with two lines similar to the plot on the left. The lines were chosen by fitting an estimate of the derivative of the DFA function
by three line segments: two with zero slope, connected by one of arbitrary slope. The combination of lines that minimized the total deviation was used to
select the boundaries for fitting the two lines in the original data. A weighted least squares was used for the final fits. The weighting function was the square
root of the number of data windows used to generate each point. Twenty-one of our 450 DFAs were clearly not well represented by a two line fit. These
were censored from further analysis. One of these plots, with putative fitting lines is displayed in the right of the figure.
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Long-range Temporal Correlations and Detrended
Fluctuation Analysis
For a discrete equidistant voltage time series {Vk} the auto-
correlation function is

C!s" & &VkVk%s' &
1

!N ( s" %
k(1

N#s

VkVk%s,

where s is the time difference between two voltage measure-
ments and &…' denotes the ensemble average. For station-
ary time series spectral analysis, i.e., direct determination of
the spectral power density, is often adequate for investigat-
ing the autocorrelation function. Long-range temporal cor-
relations characterized by a power-law, C(s) ) s#$, have
received considerable attention and recently have been in-
vestigated in human EEG recordings [14, 16]. Noisy biolog-
ical data containing nonstationarities, such as trends, over
timescales that are not known a priori make the detection of
long duration temporal correlations problematic, and the
direct calculation of C(s) or the spectral density is not ap-
propriate. DFA provides an indirect method for character-
izing the LRTC in the autocorrelation function and has been
found to be a robust estimator of LRTC for noisy biological
data containing nonstationary trends [10, 17, 18].

In DFA the original time series, {Vk}N, of length N is
divided into Nl ( N/l nonoverlapping windows (segments)

of length l. The correlation structure is studied using the
integrated displacement of the original time series Yk (

¥i(1
k (Vi # &V '), where the mean voltage &V ' ( 1/N¥i(1

N Vi has
been subtracted. Next the detrended integrated time series
for each window (or segment) is calculated from Yk

l ( Yk #

yk
Trend, where yk

Trend is the local trend in the particular win-
dow of calculation (windows of size l). The variance of the
detrended integrated time series in a window v at a partic-
ular scale l is
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The root-mean-square (RMS) fluctuation of the entire de-
trended time series at the scale l is then obtained by sum-
ming over all the individual windows,
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Long-range temporal correlations (LRTC) are considered
present when the autocorrelation function exhibits a
power-law decay, C(s) ) s#$, with the exponent character-

FIGURE 3

Results of a Monte Carlo simulation using our DFA algorithm. Each point
is the mean of the scaling constants derived from 104 randomly gener-
ated stationary data sets with predesignated scaling constants, each set
containing 106 points. The scaling constant was derived from the power
spectrum (PSD) and DFA for each set. The error bars represent two
standard deviations of the DFA scaling constants at each point. One
standard deviation was approximately 0.02 at all the points.

FIGURE 4

The sets of points selected to for the fits demonstrated in Figure 2
were chosen according to a scheme depicted above. The three line
segments, constrained to be zero slope for the first and third, con-
nected by the second, which best fit the derivative of the of the DFA
values were calculated. The points encompassed by the first and third
segments were fit in the DFA. The intervening points, corresponding
to the second line segment were excluded from the fitting subsets.
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izing the decay bounded by the relation 0 * $ * 1 [19, 20].
For the range 0 * $ * 1 the autocorrelation function decays
sufficiently slowly such that ¥s(1

N C(s) ) s1#$ does not con-
verge for long time scales (N3$). When the autocorrelation
function is characterized by power-law behavior C(s) ) s#$,
the RMS fluctuation function F(l) can similarly be shown to
exhibit scaling behavior with a related scaling exponent,
F(l) ) l1#$/2 [10, 18, 21].

The scaling exponent characterizing the behavior of the
detrended RMS fluctuation function F(l) can be obtained
from a log-log plot, i.e., log (F(l)) + H log(l), where the
scaling exponent H ( 1 # $/2 is obtained from the slope of
the log-log plot by linear regression analysis (Figure 2). The
exponent H is often called the Hurst exponent after the
famous hydrologist who first identified LRTC in the Nile
river levels [10, 12, 22]. The scaling exponent provides a
quantitative measure of the intensity of the temporal corre-
lations in the time series [10, 17, 20]. When the voltage

fluctuations are asymptotically uncorrelated the asymptotic
scaling exponent yields $ ( 1, or equivalently (H ( 1/2) . In
this case the correlation function, C(s) ) s#1, decay suffi-
ciently rapidly that for long time scales the voltage fluctua-
tions become uncorrelated [12]. However, for 0 * $ * 1, or
equivalently (1 , H , 1/2), the decay is sufficiently slow that
the correlations persist over long time scales. When $ ( 0,
or (H ( 1), the autocorrelation function is independent of
time, or infinite range, without any decay in the autocorre-
lation function. Thus, as the scaling exponent H increases
from H ( 1/231 ($( 130), the intensity of the correlations
increase, and the correlations become more persistent (the
autocorrelation function decays less rapidly).

Here the performance of the DFA algorithm was con-
firmed with simulated time series with specific LRTC char-
acteristics, i.e., particular values of H are easily generated
[12, 20] and can serve as a test of the analysis method and
help to elucidate the manifestations of different scaling

FIGURE 5

The long-range temporal correlations from each patient in each state were less persistent in the high-frequency range (30–100 Hz) than the low range
(0.5–30 Hz). Long-range temporal correlations are present in all conditions. The above data are generated from the seizure onset electrode but are not
qualitatively or statistically different in the remote lead. The bottom right graph is generated by normalizing each low-frequency scaling constant by its
high-frequency counterpart and averaging across patients to demonstrate the relative average difference in magnitude of the scaling constants across all
the patients. Note that error bars are left off this figure as the t-tests employed were paired for patient and state. The overall results are statistically
significant and the P values are presented in Results.
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behavior (Figure 3). The DFA method was checked with
simulated data with imposed scaling constants. The artifi-
cial data were stationary allowing spectral methods to be
used as a reference. Ten thousand novel data sets of 106

points each were generated for each scaling constant. The
DFA was calculated for each set and the standard deviation
of the scaling constants from the collection of the 104 sets.
The spectral scaling constant was also derived for each set
as the negative slope of the fit a log frequency versus log
power plot.

In contrast to the simulated data with a single scaling
constant, most of the human EEG DFA curves had two
distinct regions: a linear region at short time scales that was
steeper with an exponent outside the range characteristic of
LRTC scaling and a second linear region at longer time
scales. We developed a systematic method to fit the two
regions. The derivative of the DFA curve was computed, and
three lines were fit to the derivative with two of zero-slope
at either ends of the DFA curve, connected by a segment of
arbitrary slope (Figure 4). The set of three lines which best
fit the data determined the cut points for fitting the two
lines to the original DFA points. Thus the exact temporal
limits of the fits are determined algorithmically for each
DFA tracing and are not identical between tracings. In gen-
eral the time range for fitting the second scaling region
corresponded to the period of the dominant frequency (e.g.,
1 second for delta band oscillations) at the low end to then
end of our ability to detect scaling (-10 minutes in these
20-minute EEG segments). The reasoning belying fitting the
short time scale regions of the DFA curves is twofold: to

point out the existence of this region and to determine the
range of points to be fit in the longer range scaling regions.

Statistics
Five 20-minute segments of EEG were analyzed for each
condition (Figure 5). The variables were patient, behavioral
state, and frequency band, and recording lead. A significant
patient effect was demonstrated (Figure 6). The magnitude
of the patient effect was great enough to obscure from
statistical significance many of the effects investigated in
this study. To work around this, in some further analyses
each scaling constant was normalized by subtracting the
patient mean obtained from all states, bands, and leads and
adding the grand mean obtained from all states, bands,
leads, and patients. These normalized scaling constants
were then subjected to two-tailed t-tests in various pairings
as described in Results.

RESULTS
The energy transforms of the intracranial EEG displayed
power law scaling by DFA analysis in 429 of the 450 data sets
analyzed. Twenty-one data sets were excluded from statis-
tical analysis for DFA plots that appeared to contain more
than two linear regions such as seen in Figure 2. Every DFA
plot contained at least two linear regions, the first and
steepest region being a consequence of the dominant fre-
quency in the tracing, which in the case of the lowest
frequencies can be an artifact introduced by filtering. The
scaling constants in this region were uniformly greater than
one, beyond the range defined for LRTCs. The scaling con-
stants analyzed in this article were those derived from the

FIGURE 6

Data generated from the unnormalized Hurst exponents. Included all
states (wake, sleep, and preseizure) and leads (onset and remote).
Means and errors based on unfiltered energy time series scaling
constants.

FIGURE 7

Data generated from the patient-normalized Hurst exponents. Means
and errors based on unfiltered energy time series scaling constants.
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second linear region of the plots, of the included 429 anal-
yses the scaling constants all fell between 0.5 and 1.0, the
range defining long-range scaling behavior.

Averages of the scaling constants under each behavioral
state, lead, and frequency band were computed so that
paired t-tests could be performed. Under this method of
analysis few of our comparisons met statistic significance,

likely due to undersampling. However, when the scaling
constant means paired for patient and behavioral state were
compared between coarsely divided low- and high-fre-
quency bands, defined as 0.5–30 Hz, and 30 –100 Hz, respec-
tively, the low-frequency filtered data showed significantly
larger scaling constants than the higher frequency bands in
both the seizure onset and remote leads (p ( 1.3 . 10#9

onset, p ( 3.6 . 10#5 remote). The results for the seizure
onset lead are depicted in Figure 5, separated by patient to
demonstrate the consistency of the finding; a normalized
plot demonstrates the relatively equivalent magnitudes of
the scaling differences across states.

Normalized scaling constants were generated on the en-
ergy transforms of unfiltered EEG and compared as shown
in Figure 7. A significant difference was noted between the
onset and remote leads during wakefulness, this result rep-
licates the result of a more comprehensive study of this
question published previously [16]. Also noted in this figure
is that the scaling appears to be greater during wakefulness
than sleep in the seizure onset leads.

Using the patient-normalized scaling constants the fre-
quency relationship demonstrated in Figure 8 was found.
The data in this figure were the scaling constants in all
behavioral states. The grid points represent the centers of
the classical clinical EEG bands defined here as ! (0.5– 4 Hz),
" (4 – 8 Hz), # (8 –12 Hz), $ (12–30 Hz), and % (30 –50 Hz). We
further analyzed the remainder of the spectrum as a single
band defined as “high frequency.” (hf: 50 –100 Hz). There is
a clear decline in the magnitude of the scaling of the energy
function as a function of frequency in the clinical EEG

FIGURE 8

Data generated from the patient normalized Hurst exponents. Included
all states (wake, sleep, and preseizure) and leads (onset and remote).

FIGURE 9

Scaling exponents plotted as a function of frequency. Error bars are excluded for clarity but the results of t-tests comparing various frequency bands and
states are shown in Tables 1 and 2.
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bands. This trend is seen in the unnormalized data (Figure
5), but the patient-normalized scaling constants allow for
detection of statistical differences between the more finely
defined EEG bands.

Figure 9 shows the frequency dependence of the patient-
normalized scaling constants divided by behavioral state
and lead. Error bars are left off this plot for clarity but the
results of the two-tailed tests comparing the various vari-
ables are presented in Tables 1 and 2. These tests were
performed on the patient-normalized scaling exponents.
Table 1 shows the P values of comparisons between states
for each frequency band and lead. Table 2 shows the P
values of comparisons between frequency bands for each
state and lead. In summary, we detected significant differ-
ences in scaling between sleep and wakefulness in the 4- to
30-Hz range on both the onset and remote leads. In the
comparison of preseizure (which was defined to arise out of
wakefulness) versus sleep this difference persisted in the
remote leads but was lost in the onset leads. No differences

in scaling were noted between the preseizure and awake
state in any of the bands. Table 2 demonstrates a significant
difference between the low- (4 –30 Hz) and high-frequency
(30 –100 Hz) band scaling constants in the wake state. This
difference is also seen in the preseizure state in the remote
lead, but is lost in the onset lead. The difference is not seen
in sleep, where instead the onset lead there is a clear dif-
ference between delta and all of the higher frequency bands,
but in the remote lead no significant differences exist be-
tween any of the bands.

DISCUSSION
We have demonstrated that for long epochs (minutes) the
energy fluctuations in human hippocampal EEG exhibit
power-law scaling and LRTC. The scaling exponent provides
a quantitative measure of the temporal correlations that
exist in the energy time series. When the signal is com-
pletely uncorrelated (Gaussian or non-Gaussian probability
distributions), the calculation of the scaling exponent yields
H ( 0.5. This is easily demonstrated by randomly shuffling
the energy time series. When applied to EEG signal we
found LRTC and power-law scaling with scaling exponents
0.5 * H * 1. When 0.5 * H * 1, the data are correlated such
that large (small) energy fluctuations are likely to be fol-
lowed by large (small) energy fluctuations, i.e., clustering of
extreme energy fluctuations. When H ( 1 the LRTC become
independent of time with infinite range, and as H increases
from H + 0.5 toward H ( 1, the temporal correlations in the
time series are more persistent (decay more slowly with
time).

The physiologic mechanism(s) responsible for LRTC of
hippocampal energy fluctuations energy fluctuations are
not known, but simulations demonstrate [17] that the in-
troduction of a biased probability distributions can produce
LRTC. Biased probability distributions differ in the fre-
quency of occurrence of their extreme values from the ex-
pected frequencies in random models such as Gaussian or
Poisson distributions. Although LRTC in the temporal dy-
namics do not implicate a unique mechanism, recent stud-
ies show that aggregate time series made up of elements
with heavy-tailed distributions (i.e., biased toward the oc-
currence of extreme values) exhibit similar behavior [23].

We further found that there appears to be a patient
dependent effect on the scaling constants of the energy time
series. It is not clear from our data set whether this phe-
nomenon stems from a meaningful difference in the EEG of
different patients or whether it may be an artifact of small
differences in the recording configurations. The latter is
suggested as electronic noise displays scaling behavior in-
dependent of biological signal. As the origin of this patient
difference is unknown at this time we have refrained from
drawing conclusions from the patient-normalized data,
though we believe them to be meaningful, and they in
general corroborate the unnormalized conclusions.

TABLE 1

P Values of Two-Tailed Unpaired t-Tests of the Patient-Normalized
Scaling Exponents of the Energy Time Series

Presz vs. sleep ponset premote

! 4.12E-01 1.95E-01
" 3.65E-01 2.53E-02
# 1.02E-01 1.26E-02
$ 5.42E-02 3.67E-02
% 3.27E-01 6.01E-01
hf 6.35E-01 6.33E-01

Presz vs. wake ponset premote

! 4.80E-01 6.34E-02
" 5.66E-02 9.06E-01
# 5.04E-02 7.92E-01
$ 1.19E-01 6.01E-01
% 3.28E-01 4.80E-01
hf 4.79E-01 2.64E-01

Sleep vs. wake ponset premote

! 8.85E-01 7.98E-01
" 3.97E-03 2.26E-02
# 2.36E-04 3.13E-03
$ 1.21E-03 4.99E-03
% 8.32E-02 1.75E-01
hf 3.14E-01 1.03E-01

Values compare states separated by frequency and lead. Results
significant at the 0.05 level are boldface type.
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TABLE 2

P Values of Two-Tailed Unpaired t-Tests of the Patient-Normalized Scaling Exponents of the Energy Time Series

Presz onset " # $ % hf

! 4.15E-01 2.81E-01 2.25E-01 3.46E-02 3.03E-02
" 7.90E-01 6.88E-01 1.26E-01 9.98E-02
# 8.93E-01 1.70E-01 1.29E-01
$ 1.88E-01 1.40E-01
% 8.30E-01

Presz remote " # $ % hf

! 7.17E-01 2.38E-01 2.85E-01 1.43E-04 1.76E-03
" 4.17E-01 1.85E-01 1.41E-04 1.48E-03
# 4.60E-02 3.20E-05 3.46E-04
$ 9.62E-03 4.89E-02
% 5.70E-01

Sleep onset " # $ % hf

! 1.33E-02 1.20E-03 6.22E-04 8.47E-04 5.90E-03
" 4.07E-01 2.15E-01 1.71E-01 3.21E-01
# 5.95E-01 4.54E-01 6.58E-01
$ 8.06E-01 9.76E-01
% 8.71E-01

Sleep remote " # $ % hf

! 6.21E-01 8.76E-01 2.81E-01 9.79E-02 5.92E-01
" 6.99E-01 5.61E-01 2.16E-01 9.68E-01
# 2.94E-01 7.51E-02 6.45E-01
$ 4.40E-01 5.31E-01
% 9.48E-02

Wake onset " # $ % hf

! 8.82E-01 5.58E-01 2.54E-01 1.56E-02 4.44E-03
" 5.48E-01 1.63E-01 2.40E-03 4.57E-04
# 3.99E-01 7.62E-03 1.62E-03
$ 4.35E-02 1.17E-02
% 6.19E-01

Wake remote " # $ % hf

! 3.66E-02 2.21E-03 1.42E-01 4.34E-01 8.75E-02
" 2.89E-01 2.59E-01 4.55E-04 1.42E-05
# 1.01E-02 9.50E-07 2.07E-08
$ 8.53E-04 2.18E-05
% 1.80E-01

Values compare scaling between frequencies, separated by state and lead. Results significant at the 0.05 level are boldface type.
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CONCLUSION
In this article we show that broad-band (0.5–100 Hz) energy
fluctuations in human hippocampus exhibit LRTC with
power-law scaling. The correlations in energy fluctuations
are more persistent at low frequency (0.5–30 Hz) than at the
higher frequency range. The presence of long-range tempo-
ral correlations in the temporal dynamics of energy fluctu-
ations of human hippocampus does not implicate a unique

mechanism, and recent studies show that self-similar time
series with LRTC can arise from the aggregate time series
made up of elements with heavy tailed distribution [23].
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