
Hierarchical Forecasting with Polynomial Nets

M.S. Lauretto, F. Nakano, C.A.B. Pereira, and J.M. Stern

Abstract. This article presents a two level hierarchical forecasting model developed
in a consulting project for a Brazilian magazine publishing company. The first level
uses a VARMA model and considers econometric variables. The second level takes
into account qualitative aspects of each publication issue, and is based on polyno-
mial networks generated by Genetic Programming (GP).

Keywords: Genetic programming, Functional trees, Forecasting, Logistics, Meta-
control, Polynomial networks.

1 Introduction

This article describes the authors’ consulting project for a leading Brazilian maga-
zine publishing company, nicknamed ABC, and its associated distributor company,
nicknamed DE. One of the major logistic challenges of this business is the classic
newsstand, newsvendor or newsboy problem, asking for optimal inventory levels.
The standard operations research models for this problem assume fixed prices and
random demand, see Hadley and Whitin (1963) and Denardo (1982). The inventory
levels are then optimized in order to minimize the costs of being either over or under
stocked.

The cost of overstock is captured by a well known Brazilian proverb stating that
“a day-old newspaper is only good for wrapping fish”. Unfortunately, old magazines
do not even have that use. In most cases, only the cover page of unsold magazines are
stripped and sent back some way along the distribution channel for control purposes,
while the rest is recycled at the nearest paper factory. The immediate cost of under
stock is lost sales. The long term costs of under stock include customer frustration,
possibly leading to permanent fidelity or loyalty transfer to another magazine, low
visibility, loss of mind and market share, etc.

M.S. Lauretto, F. Nakano, C.A.B. Pereira, and J.M. Stern
University of São Paulo, Brazil
e-mail: {lauretto,nakano}@ime.usp.br

K. Nakamatsu et al. (Eds.): New Advan. in Intel. Decision Techno., SCI 199, pp. 305–315.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

306 M.S. Lauretto et al.

The distributor company, DE, deals with this problem at several hierarchical lev-
els through the distribution channels, stocking and possibly restocking one or more
times from large and small regional depots to individual newsstands. In this article
the word newsstand is used as a generic name, encompassing point of sales ranging
from street kiosks to supermarket or bookstore shelves.

The first step of the newsstand problem is to decide the print (or press) runs, that
is, to determine the number of copies printed at each batch. Usually a magazine
issue stays at the newsstand from one week to one month, and there is no time to
reprint an issue.

Most magazines are printed in sections, typically of 16 pages, which are assem-
bled within a cover and bounded. Sections containing articles and advertisement
planned and written far ahead can be printed in advance, while the cover and other
sections, containing articles referring to current events, are printed in a tight sched-
ule. This process allows for substantial savings in the production costs, resulting in
a complex operation that requires careful planning.

The optimization aspects of the problem are going to be reported elsewhere;
at this article we focus on demand forecasting. The demand is generated by sub-
scribers, newsstands and a small reserve for the back issue service. The number of
subscribers is relatively stable over time, posing little challenge for accurate fore-
casting. In contrast, the newsstands demand is very sensitive to current events, spe-
cific aspects of individual issues, and current marketing efforts.

The forecasting tool developed at this consulting project uses a two level hier-
archical approach. The first level uses a VARMA (vector auto-regressive moving
average) model, see Brockwell and Davis (1991). The VARMA model is based on
econometric variables like subscription and newsstand price, minimum, average or
typical wage or income of the target populations, seasonal effects, number of days
in the newsstand, delay between the release date of an issue and typical payday(s),
etc. This first level gives good predictions for average sales, but can be improved to
more accurately predict local fluctuations.

The second level of the hierarchical model is based on polynomial networks, an
instance of general functional networks briefly described in section 2. This level
takes into consideration the qualitative aspects specific to individual issues like the
(quality of the) cover story, cover celebrity, cover photo, editorial content, point of
sale advertising, national/regional marketing, promotional gifts, etc.

2 Functional Trees

This section presents an overview of some theoretical aspects of GP used in the
synthesis of functional trees, including a few topics related to the authors’ current
research.

Functional tree methods are used for finding the specification of a complex func-
tion. This complex function must be composed recursively from a finite set of prim-
itive functions or operators, OP = {op1,op2, . . .opp}, and from a set of atoms,
A = {a1,a2, . . .}. The k-th operator, opk, takes a specific number, r(k), of arguments,

Hierarchical Forecasting with Polynomial Nets 307

also known as the arity of opk. We use three representations for (the value returned
by) the operator opk computed on the arguments x1,x2, . . .xr(k) :

opk(x1, . . .xr(k)) ,
opk

/ \
x1 . . . xr(k)

,
(
opk x1 . . . xr(k)

)
.

The first is the usual form of representing a function in mathematics; the second is
the tree representation which displays the operator with branches to its arguments;
and the third is the prefix, preorder or LISP style representation, which is a compact
form of the tree representation.

As a didactical example, let us consider the Boolean network specification prob-
lem, that is, the specification of a Boolean function of q variables, f (x1, . . .xq), to
match a target table, g(x1, . . .xq), see Angeline (1996) and Banzhaf el al. (1998).
The primitive set of operators and atoms for this problem are the standard ones used
in classical logic:

OP = {∼,∧,∨,→,�,⊗} and A =
{

x1, . . .xq,0,1
}

.

Notice that while the first operator, not, is unary, the last five, and, or, imply, nand,
xor, are binary. Also, this set of Boolean operators is clearly redundant. Notice, for
example, that all other operators can be synthesized using only the nand operator.
This redundancy may, nevertheless, facilitate the search for the best configuration
in the problem’s functional space.

Figure 1 shows a target table, g(a,b,c). As it is usual when the target function is
an experimentally observed variable, the target function is not completely specified.
Unspecified values in the target table are indicated by the don’t-care symbol, ∗. The
two solutions, f1 and f2, match the table in all specified cases. Solution f1, however,
is simpler and for that may be preferred (by some parsimony principle).

Starting from a given random tree, one can start a stochastic search in the prob-
lem’s (topological) space. In Genetic Programming (GP) terminology, the indi-
vidual’s functional specification is called its genotype. the individual’s expressed
behavior, or computed solutions, is called its phenotype. Changing a genotype to a
neighboring one is called a mutation. The quality of a phenotype, its performance,
merit or adaptation, is measured by a fitness function. GP does not look at the evo-
lution of a single individual, but rather at the evolution of a population. A time
parameter, t, indexes the successive generations of the evolving population. In GP,
individuals typically have short lives, surviving only a few generations before dying.
Meanwhile, populations may evolve for a very long time.

In GP an individual may, during its ephemeral life, share information, that is,
swap copies of its (partial) genome, with other individuals. This genomic sharing
process is called sex. In GP an individual, called a parent, may also participate in
the creation of a new individual, called its child, in a process called reproduction. In
the reproduction process, an individual gives (partial) copies of its genotype to its
offspring. Reproduction involving only one parent is called asexual, otherwise it is
called sexual.

308 M.S. Lauretto et al.

Sexual reproduction can be performed by crossover, with parents giving (partial)
copies of their genome to their children. Figure 1b shows two parents and a child
generated by a single crossover, for the Boolean problem considered in the last
example. The tree representation indicates the crossover points by broken edges (=).
Notice that in this example the child corresponds to a solution presented earlier. For
further details see Stern (2008) and also Banzahf et al. (1998) and Goldberg (1989).

A B C G F1 F2
0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 ∗ 1 0
0 1 1 ∗ 1 0
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 1 1 1 1

F1
|
∨

/ \
∼ |
| |
A C

F2
|
∨

/ \
∧ ∧

/ \ / \
∼ ∼ | |
| | | |
A B A C

f1 = (∼ a)∨ c , f2 = (∼ a ∧ ∼ b)∨ (a∧ c) .

f1 = (∨ (∼ a) c) , f2 = (∨ (∧ (∼ a) (∼ b)) (a∧ c)) .

Fig. 1a Two Boolean functional trees for the target g(a,b,c)

F1
|
∨

/ \
∧ =

/ \ |
∼ ∼ A
| |
A B

F2
|
∨

/ =
| ∧
B / \

| |
| |
A C

⇒

F3
|
∨

/ \
∧ ∧

/ \ / \
∼ ∼ | |
| | | |
A B A C

Fig. 1b Crossover between Boolean functional trees

Let us now consider the polynomial network specification problem in the consult-
ing case at hand. These functional trees use as primitive operators linear, quadratic
or cubic polynomials in one, two or three variables. Two auxiliary operators are
defined as follows: A normalizer converts its input into an ouput of mean 0 and
variance 1, and a denormalizer performs the inverse transformation.

Figure 2 displays a typical network for sales forecast used in the consulting
project described in sections 1 and 3. Variable x5 is the magazine’s sales forecast ob-
tained by a VARMA time series model. Variables x1 to x4 are qualitative variables,
in a scale corresponding to approximate decile ranks of Bad (0-1), Weak (1-3), Av-
erage (3-7), Good (7-9) and Excellent (9-10). This scale is used by experts to assess
the appeal or attractiveness of each individual issue of the magazine, according to:

Hierarchical Forecasting with Polynomial Nets 309

(1) cover impact; (2) editorial content; (3) promotional items; and (4) point of sale
marketing. Normalizers at the input edges and a denormalizer at the output edge of
the polynomial network are not shown in the figure.

Of course, the optimization of a polynomial network is far more complex than
the optimization of a Boolean network: Even having specified the network topology
(identification problem), also the parameters w0,w1, . . . of the polynomial function
have to be optimized (estimation problem). Parameter optimization can be based on
recursive sub-tree regression; gradient, Partan or conjugate-gradient learning rules,
etc. Topology optimization is based on GP algorithms.

Some aspects of GP relevant to the forecasting problem at hand and related to the
authors’ current research are briefly discussed in the following subsections.

�

�

�

�

�

�

�

	

�

�
3

�

�
1

�

�
2

X1 X2 X3 X5 X3 X4

Fig. 2 Polynomial network. Rings on a node: 1- Linear; 2- (incomplete) Quadratic; 3- (in-
complete) Cubic

2.1 Meta-control, Building Blocks and Modularity

P. Angeline (1996) noted that GP generated networks typically contain large seg-
ments of extraneous code, that is, code segments that, if removed, do not (signifi-
cantly) alter the solution computed by the network. Trivial examples of extraneous
code segments are (+ s 0) and (∗ s 1), where s is a sub-expression. By their very def-
inition, extraneous code segments cannot (significantly) contribute to an individual’s
fitness, and hence to its survival or mating probabilities. However, Angeline noticed
that the presence of extraneous code could significantly contribute to the expected
fitness of the individual’s descendents! Apparently, the role of these (sometimes
very large) patches of inert code is to isolate important blocks of working code,
and to protect these modules or building blocks from being broken at recombination
(destructive crossover).

In biological organisms, the genetic code of eukaryotes exhibits similar regions
of code (DNA) that are or are not expressed in protein synthesis; these regions are
called exons and introns, respectively. Introns do not directly code amino-acid se-
quences in proteins; nevertheless, they seem to have an important role in the meta-
control of the genetic material expression and reproduction.

310 M.S. Lauretto et al.

Iba and Sato (1992, p.548), in a pioneering work, proposed a meta-level strategy
for GP based on a self-referential representation, where

“[a] self-referential representation maintains a meta-description, or meta-prescription,
for crossover. This meta-genetic descriptions are allowed to co-evolve with the gene
pool. Hence, genetic and meta-genetic code variations are jointly selected. How well
the genetic code is adapted to the environment is translated by the merit or objective
function which, in turn, is used for the immediate, short-term or individual selection
process. How well the genetic and meta-genetic code are adapted to each other im-
pacts on the system’s evolvability, a characteristic of paramount importance in long-
run survival of the species.”

Subsequent work of several authors (including these) tried to incorporate meta-
control parameters to GP. Functional trees may, for example, incorporate edge an-
notations, interpreted as probability weights, linkage compatibility or affinity, etc.
Such annotations are meta-parameters used to control the recombination of the sub-
tree directly bellow a given edge. For example, weights may be used to specify the
probability that recombination takes place at that edge, while linkage compatibility
or affinity annotations may be used to identify homologous or compatible genes,
specifying the possibility or probability of swapping two sub-trees. Other annota-
tions, like context labels, semantic tags, variable type, etc., may provide additional
information about the possibility or probability of recombination or crossover, the
need of type-cast operations, etc.

Banzahf (1998, p.164), gives a simple example of functional tree annotation:

“Recently, we introduced the explicitly defined introns (EDI) into GP. An integer value
is stored between every two nodes in the GP individual. This integer value is referred
as the EDI value (EDIV). The crossover operator is changed so that the probability
that crossover occurs between any two nodes in the GP program is proportional to the
integer value between the nodes. That is, the EDIV integer value strongly influences
the crossover sites chosen by the modified GP algorithm, Nordin et al. (1996).

The idea behind EDIVs was to allow the EDIV vector to evolve during the GP run
to identify the building blocks in the individual as an emergent phenomenon. Nature
may have managed to identify genes and to protect them against crossover in a similar
manner. Perhaps if we gave the GP algorithm the tools to do the same thing, GP, too,
would learn how to identify and protect the building blocks. If so, we would predict
that the EDIV values within a good building block should become low and, outside the
good block, high.”

Let us finish this section presenting two interpretations for the role of modular-
ity in genetic evolutionary processes. This interpretations are common in biology,
computer science and engineering, an indication that they provide powerful insights.
These two metaphors are commonly referred to as:

- New technology dissemination or component design substitution, and
- Damage control or repair mechanism.
The first interpretation is perhaps the more evident. In a modular system, a new

design for an old component can be easily incorporated and, if successful, be rapidly
disseminated. A classical example is the replacement of mechanical carburetors by

Hierarchical Forecasting with Polynomial Nets 311

electronic injection as the standard technology for this component of gasoline au-
tomotive engines. The large assortment of upgrade kits available in any automotive
or computer store gives a strong evidence of how much these industries rely on
modular design.

The second interpretation explains the possibility for the “continued evolution
of germlines otherwise destined to extinction”, see Michod and Levin (1988). A
classic illustration related to the damage control and repair mechanisms offered by
modular organization is given by the Hora and Tempus parable of Simon (1996),
see also Growney (1998). The lessons learned from this parable may be captured by
the following dicta of Herbert Simon:

“The time required for the evolution of a complex form from simple elements depends
critically on the number and distribution of potential intermediate stable subassem-
blies.” Simon (1996, p.190).
“Hierarchy, I shall argue, is one of the central structural schemes that the architect of
complexity uses.” Simon (1996, p.184).

2.2 Schemata and Parallelism

The intrinsic parallelism argument, first presented in Holland (1975), provides al-
ternative insights into the concepts of building blocks and modularity. For a math-
ematical analysis of this argument, see Reeves (1993, Ch.4) or Stern (2008, H.2).
According to Reeves,

“The underlying concept Holland used to develop a theoretical analysis of his GA
[GP] was that of schema. The word comes from the past tense of the Greek verb εχω ,
echo, to have, whence it came to mean shape or form; its plural is schemata.” (p.154)

Schemata are partially specified patterns in a program, like partially specified
segments of prefix expressions, or partial code for functional sub-trees. The length
and order of a schema are the distance between the first and last defined position on
the schema, and the number of defined positions, respectively. The intrinsic paral-
lelism theorem states that the number of schemata (of order l and length 2l, in binary
coded programs, in individuals of size n) present in a population of size m, is pro-
portional to m3. The crossover operator enriches the neighborhood of an individual
with the schemata present in other individuals of the population. If, as suggested by
the implicit parallelism theorem, the number of such schemata is large, GP is likely
to be an effective strategy. Schaffer (1987, p.89), celebrates this theorem stating that:

“this [intrinsic parallelism] constitutes the only known example of combinatorial ex-
plosion working to advantage instead of disadvantage.”

Indeed, Schaffer has ample reasons to praise Holland’s result. Nevertheless, we
must analyze this important theorem carefully, in order to understand its conse-
quences correctly. In particular, we should pay close attention to the unit, u, used to
measure the population size, m. It so happens that this unit, u = 2l , is itself expo-
nential in the schemata order. Therefore, the combinatorial explosion works to our

312 M.S. Lauretto et al.

advantage as long as we use short schemata, relative to the log-size of the popula-
tion. This situation is described by Reeves as:

“Thus the ideal situation for a GA [GP] are those where short, low-order schemata
combine with each other to form better and better solutions. The assumption that this
will work is called by Goldberg (1989) the building-block hypothesis. Empirical evi-
dence is strong that this is a reasonable assumption in many problems.” (p.158)

One key question we must face in order to design a successful GP application is,
therefore: How then can we organize our working space so that our programming
effort can rely on short schemata?

The solution to this question is well known to computer scientists and software
engineers: Organize the programs hierarchically (recursively) as self-contained (en-
capsulated) building-blocks (modules, functions, objects, sub-routines). As shown
in the previous subsection, meta-contol is a key mechanism for modular organiza-
tion in GP, promoting the spontaneous emergence of complex hierarchical systems.

For further details about the implementation of these concepts in the optimization
of polynomial networks, see Nikolaev and Iba (2001, 2003, 2006). For further im-
plications of these ideas in artificial intelligence and statistical modeling, see Stern
(2008, ch.5) and the authors’ forthcoming articles.

3 Example of Forecasting

In this section we return to our consulting project, and present a case study based on
time series for a magazine published by ABC. Due to confidentiality and disclosure
agreements, the time series given in this example has been de-trend and is presented
in a relative percentage scale. Forecasts are always made three month ahead with
the current past data. From the total of 39 months comprising the time series, the
first 27 were used as training data, and the remaining 12 months as test data.

The first level of the hierarchical model consists of a VARMA model, imple-
mented in order to capture trends, seasonal effects and market elasticities, built us-
ing automated variable selection procedures, see Brockwell and Davis (1991). The
available explanatory variables include the dates of distribution and recall of each
issue, its price for subscription and at the newsstand, minimum, average or typical
wage or income of the target populations, typical payday schedules, etc.

Figure 3 presents the actual sales time series and the sales forecasts provided by
the VARMA econometric model (top), as well as the models improved by qualita-
tive data, using linear regression (center) and the polynomial network in Figure 2
(bottom). Table 1 shows the average error rates for VARMA, linear regression and
polynomial network models. Notice that error rates provided by polynomial net-
works are smaller than in VARMA and linear regression models. The optimal poly-
nomial network selection is guided by a regularization parameter, ρ , controlling the
network complexity vs. training error. Its default value is ρ = 1.0. As expected, if ρ
is too large, the network becomes too simple, resulting in an under-fitted model. On
the other hand, if ρ is too small, the network becomes too complex, resulting in an

Hierarchical Forecasting with Polynomial Nets 313

● ●

Months

S
al

es

140

160

180

200

220

240

140

160

180

200

220

240

140

160

180

200

220

240

3 6 9 12 15 18 21 24 27 30 33 36 39

Training data Test data

●

●
●

● ●

●

●
●

●
● ●

● ●
●

● ●
●

● ●
● ●

● ●
● ●

●
●

●
●

●

●

●

● ● ●
●

● ●
●

●Real VARMA Linear Polynomial

Fig. 3 Monthly sales and corresponding forecasts with VARMA models (top), linear regres-
sion (center) and polynomial network (bottom)

Table 1 Error averages using VARMA, Linear reg. and Polynomial networks

Model Training dataset Test dataset
VARMA alone 6.3% 8.6%
+ Linear regression 4.1% 7.4%
+ Polynomial network, ρ = 0.5 1.1% 5.1%
+ Polynomial network, ρ = 1.0 2.5% 4.2%
+ Polynomial network, ρ = 2.0 3.4% 4.6%

over-fitted model (over adjusted to the peculiarities of the training data). In either
case, the network has low predictive (generalization) power.

4 Enterprise Integration

As in so many Operations Research projects, solving the mathematical and algo-
rithmic aspects of the optimization and statistical models, and its computational
implementation in a user friendly decision support tool, is just part of the entire
consulting project. Training the corporate decision makers to use the tools and care-
fully explaining the concepts involved is also an essential part of the project. All
those are prerequisites to the vital goal of integrating the new OR tools into the
everyday life of the enterprise. Otherwise, the full benefits of the project are never
achieved or, even worst, the new fancy tools are soon condemned to oblivion.

314 M.S. Lauretto et al.

ABC is organized in business units according to major target populations, for
example: children, including comic books; male teens; female teens; women, in-
cluding arts, house and garden, gossip, etc.; men, including cars, computers, sports,
swim suite, etc; business and economy; and general news.

ABC’s business units were often evaluated by their total sales, market share, and
other performance indices that do not take into account production and distribution
costs. Meanwhile, DE and the printing plants were often evaluated by their oper-
ating costs, regardless of the global company performance. Needless to say, such
evaluation metrics generated conflict and misunderstanding inside the company.

The primary objective of the statistical and optimization tools developed in this
consulting project was to improve the quantitative fine tuning of the operation, and
the project successfully accomplished this goal. However, the project could also
make significant contributions to a secondary objective, namely, to improve the co-
operation, integration, rational dialogue and mutual understanding concerning the
different roles played by the several agents in such a complex operation. We hope
that, in the future, it will also contribute for the development of more encompas-
sive performance metrics, capable of harmonizing and integrating locally conflicting
goals into global multi-objective functions.

References

Angeline, P.: Two Self-Adaptive Crossover Operators for Genetic Programming. In: Ange-
line, Kinnear (eds.) Advances in Genetic Programming, ch. 5, vol. 2, pp. 89–110. MIT,
Cambridge (1996)

Banzahf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Algorithms (1998)
Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, Heidel-

berg (1991)
Denardo, E.: Dynamic Programming. Prentice-Hall, Englewood Cliffs (1982)
Farlow, S.J.: Self-Organizing Methods in Modeling. Marcel Dekker, New York (1984)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading (1989)
Growney, J.S.: Planning for Interruptions. Mathematics Magazine 55(4), 213–219 (1998)
Hadley, G., Whitin, H.M.: Analysis of Inventory Systems. Prentice-Hall, Englewood Cliffs

(1963)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press

(1975)
Iba, H., Sato, T.: Meta-Level Strategy for Genetic Algorithms Based on Structured Repre-

sentation. In: Proc. of the Second Pacific Rim Int. Conf. on Artificial Intelligence, pp.
548–554 (1992)

Madala, H.R., Ivakhnenko, A.G.: Inductive Learning Algorithms for Complex Systems Mod-
eling. CRC, Boca Raton (1994)

Michod, R.E., Levin, B.R.: The Evolution of Sex. An Examination of Current Ideas. Sinauer
(1988)

Nikolaev, N.Y., Iba, H.: Regularization Approach to Inductive Genetic Programming. IEEE
Transactions on Evolutionary Computation 5(4), 359–375 (2001)

Hierarchical Forecasting with Polynomial Nets 315

Nikolaev, N.Y., Iba, H.: Learning Polynomial Fedforward Neural Networks by Genetic Pro-
gramming and Backpropagation. IEEE Transactions on Neural Networks 14(2), 337–350
(2003)

Nikolaev, N.Y., Iba, H.: Adaptive Learning of Polynomial Networks. In: Genetic and Evolu-
tionary Computation. Springer, Heidelberg (2006)

Reeves, C.R.: Modern Heuristics for Combinatorial Problems. Blackwell Scientific, Malden
(1993)

Schaffer, J.D.: Some Effects of Selection Procedures on Hyperplane Sampling by Genetic
Algorithms. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, Pittman,
pp. 89–103 (1987)

Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)
Stern, J.M.: Cognitive Constructivism and the Epistemic Significance of Sharp Statistical

Hypotheses. In: MaxEnt 2008, The 28th International Workshop on Bayesian Inference
and Maximum Entropy Methods in Science and Engineering, Boracéia, São Paulo, Brazil,
July 6-11 (2008)

	Hierarchical Forecasting with Polynomial Nets
	Introduction
	Functional Trees
	{\it Meta-control, Building Blocks and Modularity}
	{\it Schemata and Parallelism}

	Example of Forecasting
	Enterprise Integration
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

