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Abstract

In many assessment problems—aptitude testing, hiring decisions, appraisals of the
risk of recidivism, evaluation of the credibility of testimonial sources, and so on—the
fair treatment of different groups of individuals is an important goal. But individuals
can be legitimately grouped in many different ways. Using a framework and fairness
constraints explored in research on algorithmic fairness, I show that eliminating certain
forms of bias across groups for one way of classifying individuals can make it impossible
to eliminate such bias across groups for another way of dividing people up. And this point
generalizes if we require merely that assessments be approximately bias-free. Moreover,
even if the fairness constraints are satisfied for some given partitions of the population, the
constraints can fail for the coarsest common refinement, that is, the partition generated
by taking intersections of the elements of these coarser partitions. This shows that these
prominent fairness constraints admit the possibility of forms of intersectional bias.
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1 Introduction

Individual identity is multifaceted. Hannah, for instance, is a woman, an American, from New
York City (specifically the Upper West Side), but a resident of the South, a person who spent
several formative years in England, a Cambridge graduate, a philosophy DPhil, an academic,
from an upper middle class background, an advocate of risk literacy, a runner, a violist,
Jewish, a flexitarian, heterosexual, an effective altruism enthusiast, a mother, a sister, a wife,
and a fan of Andrei Tarkovsky and Townes van Zandt. Any one of these properties applies
to a large number of other people, defining a subgroup of a general population of individuals.
For a given individual, different social contexts may make membership in different groups
more or less salient. The relative importance attached to membership in such groups is also
a matter of individual discretion, at least to some degree. But one and the same individual
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can be a member of all of these groups without contradiction. Since similar remarks apply
to any individual, there are many legitimate ways to group individuals in a population, from
marital status or nationality to religion or taste in music.

Fair treatment of different groups is an objective common to many domains of assessment
including aptitude testing in psychometrics (Borsboom et al., 2008), hiring decisions in the
labor market (Fang and Moro, 2011), risk assessment in the criminal justice system (Kleinberg
et al., 2017; Pleiss et al., 2017), and evaluation of the credibility of testimonial sources in
epistemology (Stewart and Nielsen, 2020).1 Consider the case of risk assessment. Using
the same actuarial techniques that are used to calculate insurance premiums, statistical
software is employed in the U.S. criminal justice system to assess an individual’s risk of
re-offending. Given the type of crime committed, age, sex, employment status at the time
of arrest, criminal history, etc., an individual is assigned (what can be thought of as) a
probability of recidivism. Such scores are used in sentencing and parole decisions among
other things. A 2016 ProPublica analysis of the risk scores of the COMPAS statistical tool
for Broward County, Florida found a form of bias in the data on the tool’s predictions
(Angwin et al., 2016b). The rate of false positives—the percentage of non-recidivists given a
high risk score—was roughly twice as great among black defendants as among white. And the
rate of false negatives—the percentage of recidivists being given a low risk—among whites
was roughly twice as great as among blacks.2 The bias is that these types of errors were
asymmetrically distributed across black and white sub-populations, affecting the lives of
black and white people in very different ways.

Research on algorithmic fairness studies the prospects of unbiased assessment. Bias in
error rates is one form of bias, but not the only form and often considered not the most
important form. Can bias in error rates and other important forms of bias be simultaneously
eliminated? One lesson that emerges from some of these studies is that eliminating one form
of bias can mean that it is impossible to eliminate another. Sometimes, then, we face a
conflict between eliminating different forms of bias. Here, I argue that, not only do we face a
conflict in eliminating different forms of bias, we also face a conflict in eliminating one form
of bias across different groupings. Eliminating a certain form of bias across groups for one
way of categorizing people in a population can mean that it is impossible to eliminate that
form of bias across groups for another way of classifying them. This conflict is significant to
the extent that multiple classifications are relevant. And they often are: consider the various
classes mentioned in standard non-discrimination clauses, for example.3 Moreover, even if
our assessments are unbiased for certain ways of classifying people—say for both a race clas-
sification that includes black and white categories and a gender classification that includes
categories for women and men—bias can persist for the coarsest common refinement of these
classifications—in this case, the single classification that includes the groups of black women,
black men, white women, and white men. In other words, forms of intersectional bias are

1A number of different formal frameworks have been brought to bear on issues of group discrimination and
disparate treatment. For a recent study of connections between some of these frameworks, see (Patty and
Penn, MS).

2Here, rearrests must be used as a proxy for recidivism.
3Facebook’s non-discrimination policy for advertisement: “Ads must not discriminate or encourage dis-

crimination against people based on personal attributes such as race, ethnicity, color, national origin, religion,
age, sex, sexual orientation, gender identity, family status, disability, medical or genetic condition” (Facebook,
2022).
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possible for the prominent fairness constraints in the fair algorithms literature. Given the
conceptions of fairness encoded in these constraints, and confronted with the sorts of limi-
tations in achieving fairness across various classifications discussed below, we must reconcile
ourselves with lingering bias against some groups.

2 Identity and Population Partitions

In any assessment problem, there is a particular population of individuals that is relevant. For
instance, in parole decisions in Broward County in 2015, there are the people coming before
the parole boards in the county that year. In SAT testing in the U.S. for the last decade,
there is the population of people who took the exam in that time frame. In Faceboook’s
assessment of the trustworthiness of its users in an effort to combat “fake news,” there is the
set consisting of nearly 2.5 billion active monthly users (Dwoskin, 2018). The first element
of our model, then, is a finite population of individuals, N = {1, 2, . . . , n}.4

Any population can be divided into groups according to various individual properties
or identities. For the question of fair treatment in assessment, certain groups are more
customary to consider than others. Often, history and social context make salient particular
categories. In the ProPublica story mentioned above, the focus is on the disparate treatment
of different races. In particular, black and white defendants were treated differently. My
interest here is in the possibility of fair treatment across various partitions of a population.
A partition of a (finite) set N is a collection π = {G1, . . . , Gm} of non-empty subsets of N
such that the elements of π are mutually disjoint and collectively exhaustive.5 In other words,
each individual in N belongs to exactly one group Gk. Whether the black and white racial
categories partition a population is a contingent matter that depends on the composition of
the population. If the population contains Latino and Asian people, the groups of black and
white people might fail to exhaust the population. Similar points apply to a gender partition
{M,F} consisting of males and females, or a sexuality partition {G,S} consisting of groups
of homosexual and heterosexual individuals, and so on.6

Why should we be concerned about the multiple group memberships of any given indi-
vidual and the multiple possible ways a population can be partitioned? In his book Identity
and Violence, Sen argues that there is moral urgency to considering the various aspects of
individual identity. Reckoning with “the power of competing identities,” says Sen, “leads
to other ways of classifying people, which can restrain the exploitation of a specifically ag-
gressive use of one particular categorization” (Sen, 2007, p. 4). Sen has in mind the way
in which considering one’s humanitarian or religious affiliations might weaken the pull of a

4Often, it is useful to represent an individual as a vector of features including age, sex, employment status,
etc. For simplicity, my representation of individuals abstracts from the list of features.

5That is, Gj ∩Gk = ∅ if j 6= k and
⋃m

k=1Gk = N . I will sometimes refer to elements of a partition as cells
of the partition.

6That identities introduce certain partitions of N is to some extent a simplifying assumption. We could
consider a collection of groups that aren’t mutually exclusive, for example. But the assumption should not be
worrisome for a couple of reasons. First, the partition assumption is not so conceptually restrictive. We can
always carve out additional cells to secure mutual exclusiveness. So the observations discussed below would
still be of significant interest even if the partition assumption were necessary for all of them. Second, for many
of the observations made below, the partition assumption is not necessary. For instance, we could easily state
a version of Observation 1 for all groups of N , not necessarily ones forming partitions.
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violent nationalistic or racist movement, for example. Throughout the book, Sen criticizes
the idea that there is a uniquely appropriate or privileged partition.

The insistence, if only implicitly, on a choiceless singularity of human identity
not only diminishes us all, it also makes the world much more flammable. The
alternative to the divisiveness of one preeminent categorization is not any unreal
claim that we are all much the same. That we are not. Rather, the main hope
of harmony in our troubled world lies in the plurality of our identities, which cut
across each other and work against sharp divisions around one single hardened
line of vehement division that allegedly cannot be resisted. (Sen, 2007, p. 16)

My concern is a bit different from Sen’s, but there is a relevant lesson in the passage quoted
just above. To wit, a single, fixed partition is overly constraining, and may frustrate our
goals and lead to sub-optimal outcomes. The goal in assessment that is our focus is the
fair treatment of different groups. But since there are various legitimate ways to partition a
population into groups, restricting our attention to a single partition potentially commits us
to ignoring important forms of group bias.7

Consider once again the bias found against black people in the COMPAS data. In that
same Broward County data set, there is a similar amount of bias in error rates against women
compared to men, as a companion piece in ProPublica makes clear (Angwin et al., 2016a).
Bias against either group is ethically relevant. Satisfying certain central fairness constraints
(described in the following section) for a race partition does not imply that those constraints
are satisfied for a gender partition. Still other partitions could be pertinent. The relevant
social identities cannot be decided a priori, without appeal to contingent social context and
values. Sen points out that even intuitively unimportant aspects of personal identity can
become important. Consider, for example, those who wear a size 8 shoe, or those born
between nine and ten in the morning, local time. If size 8 shoes were to become extremely
difficult to find—think “high noon” of Soviet civilization or broken supply chains due to
a novel coronavirus pandemic—then being someone who wears that shoe size may become
an important part of one’s identity and grounds for solidarity with those similarly unshod.
Likewise, if an authoritarian ruler were to elect to severely curtail the freedoms of people
born between nine and ten in the morning due to some supernatural belief or other, then
the hour of one’s birth and the persecution it entails for some is, again, likely to become an
important aspect of one’s identity and grounds for solidarity (Sen, 2007, pp. 26-27). In either
case, new forms of bias become pressing considerations. The priority of particular partitions
in eliminating bias might reasonably depend not just on past history of discrimination, but
also on current deprivation. What groups suffer discrimination and deprivation is a matter to
which we may frequently need to reattend. They may well depend in part on the particular
assessment problem confronting us, or on the particular population, as I explain at the end
of Section 4. In general, and more to the point for this essay, there can be bias against many
different groups.

7As I was informed after drafting this paper, this point has recently been acknowledged in the machine
learning literature: “There are exponentially many ways of carving up a population into subgroups, and we
cannot necessarily identify a small number of these a priori as the only ones we need to be concerned about”
(Kearns et al., 2018, p. 2565). Also see Hébert-Johnson et al. (2018).
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3 Fair Assessment

In order to foreground the issue of different population partitions, let’s assume that there is
just a single property y of interest (this is a standard assumption in the literature anyhow).
Individuals in N either have property y or lack it. We can represent this with a random
variable Y : N → {0, 1} that assigns 1 to individual i if i has the property, and assigns 0
to i if i lacks it. In the case of risk assessment, Y (i) = 1 would indicate that individual
i is a recidivist. In credibility assessment, Y (i) = 1 might represent that i is credible or
is above some credibility threshold. Call a function h : N → [0, 1] an assessor. In risk
assessment, we can think of h as assigning each individual a probability of re-offending. In
credibility assessment, h(i) could be interpreted as the probability that i is credible (or above
the credibility threshold). But h need not be thought of as assigning probabilities. We could
just as well introduce basic risk, aptitude, credibility, etc. scores. For concreteness, I will
interpret h(i) as the assessor’s probability that i has property y.

In order to talk about population proportions or frequencies, let’s introduce a uniform
probability distribution P on N . The quantity P (Y = 1) = µ, for example, is the proportion
of people in N that have property y, the prevalence of y in the population.8 Call µ the base
rate for y in N . Given a partition π = {G1, . . . , Gm} of N , let Pk = P (·|Gk) be the uniform
probability distribution on Gk for k = 1, . . . ,m. The quantity P1(Y = 1) = µ1, for example,
is the base rate for y in group 1; P2(h = 0.5) is the proportion of people to which h assigns
0.5 in G2, and so on.

The interesting issue concerns what properties h should have in order to qualify as fair or
unbiased. The “dominant fairness criterion” in the literature on risk assessment is calibration
(Corbett-Davies et al., 2017, p. 799). An assessor is calibrated if Pk(Y = 1|h = p) = p for all
p ∈ [0, 1] and k = 1, 2, . . . ,m such that Pk(h = p) > 0. This property is familiar from work
on the foundations of probability. According to proponents of calibration, good forecasts
should track observed frequencies (van Fraassen, 1983; Shimony, 1988). Consider weather
forecasting. Suppose that each day, a forecaster announces a probability of rain for that
day. The forecaster is calibrated if it rains on 10% of the days she announces that it will
rain with probability 0.1, and it rains on 85% of the days she predicts rain with probability
0.85, etc. Similarly, a risk assessor is calibrated if, among those it assigns a 0.1 probability
of re-offending, 10% re-offend, and, among those it assigns a 0.85 probability of re-offending,
85% re-offend, etc.

Why does it make sense to think of calibration as a fairness constraint? One reason
is that it guards against a form of bias in confidence. If it rains on 100% of the days a
forecaster predicted rain with probability 0.8, then the forecaster is underconfident in rain
on those days. Likewise, a forecaster would be overconfident if it rains on only 50% of the
days rain was predicted with probability 0.8. It can be helpful to visualize these concepts
with a calibration curve like in Figure 1.9 Here, 30% of the events the forecaster assigned
probability 0 occurred, while only 55% of the events assigned probability 1 occurred. The
forecaster’s assessments were underconfident in the first case, and overconfident in the latter.
Instead of weather forecasting, consider the problem of risk assessment again. If only 50%
of black people assigned a score of 0.8 go on to re-offend, then the assessor is overconfident

8Here, Y = 1 is shorthand for the event {i ∈ N : Y (i) = 1}.
9Figure 1 is loosely based on a calibration curve for actual forecasts from Tetlock’s work on expert political

judgment (Tetlock, 2005, p. 55).
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Figure 1: Calibration Curve
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that blacks assigned that score will be recidivists. If 100% of white people assigned a score
of 0.8 go on to re-offend, then the assessor is underconfident that whites assigned that score
will be recidivists. If the assessor were calibrated, not only would it not be overconfident in
one group and underconfident in another, it would not be over- or underconfident in any of
its assessments. Another way calibration is sometimes motivated is by pointing out that it
implies that scores “mean” the same for individuals in different groups. About calibrated
assessors Kleinberg et al., for example, write, “we are justified in treating people with the
same score comparably with respect to the outcome, rather than treating people with the
same score differently based on the group they belong to” (Kleinberg et al., 2017, pp. 4-5).
If 50% of black people assigned a score of 0.8 go on to re-offend while 100% of white people
assigned a score of 0.8 go on to re-offend, there is a sense in which the assessment score of
0.8 means something different for individuals in the two groups.

I think there are some reasonable concerns one might have about construing calibration as
a fairness property. It seems to me that this latter line of motivation in terms of meaning—
and to some extent even the previous one in terms of under- and overconfidence—fails to
fully motivate calibration as a fairness constraint. Scores for individuals in different groups
can mean the same without the assessor satisfying the full calibration constraint. Calibration
implies that Pk(Y = 1|h = p) = Pj(Y = 1|h = p) for all Gk, Gj ∈ π when those conditional
probabilities are defined. Clearly, if Pk(Y = 1|h = p) and Pj(Y = 1|h = p) are both equal
to p (calibration), then those terms are equal to each other, but they could both be equal
to some other value. Say that an assessor h satisfies predictive equity for a partition π if
Pk(Y = 1|h = p) = Pj(Y = 1|h = p) for all Gk, Gj ∈ π and all p for which the conditional
probabilities are defined.10 Put another way, among people assigned the same assessment

10Thanks to Shanna Slank for suggesting that Michael Nielsen and I investigate essentially this property.
Predictive equity appears to have first been called sufficiency in the literature on algorithmic fairness (e.g.,
Mitchell et al., 2018; Barocas et al., 2019). Michael and I were unaware of this when we wrote (Stewart and
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score, the proportion of people who have property y is the same across all groups in the
partition. Predictive equity simply retains the explicit equal treatment aspect of calibration.

There are at least two cautions about relaxing calibration to predictive equity worth con-
sidering. The first is that fairness is not the only goal in assessment. We also care about
the property being assessed after all. We care about maintaining public safety, admitting
a talented class of freshmen, trusting credible testimonial sources, making prudent loan de-
cisions, etc. That is, there is typically a purpose for which an assessment is conducted,
with fairness acting as a sort of constraint. So, it may be reasonable to retain the form
of accuracy that calibration adds to predictive equity. Not only should it be the case that
Pj(Y = 1|h = p) = Pk(Y = 1|h = p), but it should also be the case that those terms track the
actual frequencies in the population. According to this way of understanding the property,
calibration captures both a fairness concern and an epistemic concern about accuracy (Stew-
art and Nielsen, 2020). The second concern about relaxing calibration to predictive equity is
that accuracy may represent a type of fair treatment itself. While predictive equity does not
permit being simultaneously overconfident in individuals in one group at a given assessment
score and underconfident in individuals in another group at that same assessment score, it
does permit being uniformly under- or overconfident in individuals of a given assessment
score. If only 50% of people assigned a risk score of 0.8 are recidivist in each race group,
then those individuals might still be considered the victims of unfair assessment. Even if
those in one group haven’t been treated more harshly relative to those given the same risk
score in the other group, they have been treated too harshly in the sense that the assessor is
overconfident that they will reoffend. Calibration prevents this.

Rather than considering ways to relax calibration, we might consider alternative fairness
constraints, ones that might potentially supplement calibration. Even if calibration is nec-
essary for unbiased assessment, it may not be sufficient. An assessor that simply predicts
the group base rate for everyone in the group will be calibrated. Yet, an innocent person
in a group with a high recidivism base rate, for example, might have grounds for complaint
when he receives a higher risk score than his counterpart in a group with a lower base rate.
Similarly, it is consistent with calibration for a recidivist in a low base rate group to receive a
lower risk score than a non-recidivist in a high-base-rate group. One reading of these points
is that there are other forms of bias to consider besides the one calibration attempts to elimi-
nate. This reading seems supported by ProPublica’s analysis of the COMPAS data. The sort
of bias that they charge the statistical tool with is not a failure of calibration, but a disparity
in error rates across groups. I turn now to a constraint meant to eliminate for exactly this
type of bias.

To introduce the constraint, we need a few auxiliary definitions. The false positive rate

Nielsen, 2020). Sometimes the property is also called calibration and formulated as follows: for all Gk ∈ π,
P (Y = 1|h = p) = Pk(Y = 1|h = p). But, as Mitchell et al. point out, this is unfortunate terminology since
this property is distinct from the property we call—and indeed is standardly called—calibration (Mitchell
et al., 2018, p. 5). To see that it is the same as predictive equity, assume that Pk(Y = 1|h = p) = Pj(Y =
1|h = p) = r for all Gk, Gj ∈ π and some r ∈ [0, 1] as predictive equity demands, and use the law of total
probability to compute

P (Y = 1|h = p) =

m∑
k=1

P (Y = 1|h = p,Gk)P (Gk|h = p) =
m∑

k=1

rP (Gk|h = p) = r.
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of an assessor h for group Gk is given by f+k (h) = Ek(h|Y = 0).11 In words, the false positive
rate for group Gk is the average assessment score of individuals lacking property y in group
Gk. The false negative rate is f−k (h) = Ek(1−h|Y = 1). In words, the false negative rate for
group Gk is equal to 1 minus the average assessment score of individuals possessing property
y in group Gk. An assessor satisfies equalized odds if f+j (h) = f+k (h) and f−j (h) = f−k (h)
for all Gj , Gk ∈ π. Equalized odds guarantees that errors are not asymmetrically distributed
across groups of the partition.12 In general, calibration does not imply equalized odds nor
does equalized odds imply calibration. For example, a calibrated assessor can assign much
greater average risk scores to non-recidivists in one group than to non-recidivists in another
(and higher even than the average risk scores assigned to recidivists in the other group).
Moreover, the COMPAS data gives us at least prima facie reasons to be concerned about the
form of bias motivating the introduction of equalized odds.

In this essay, I will grant that calibration and equalized odds are prima facie compelling
fairness constraints, though I consider it legitimate to subject them to further scrutiny in
general and plan do to so in future work. On the one hand, the reader might agree that the
properties are important formalizations of unbiased assessment. Many have found them to
have considerable intuitive plausibility. So, the consequences of the properties would seem
ethically important for such readers. On the other hand, because of the prominence of these
sorts of statistical properties in theories of algorithmic fairness, it is crucial to scrutinize them,
to explore their consequences and their limitations. So, even if the reader is unconvinced of
the normative status of the properties, the consequences of these properties are relevant to a
sober evaluation of them.13

4 Some Limitations

Unfortunately, there are limits to the extent assessments can be unbiased. Let’s look at
one central limitative result. An assessor is perfect if h(i) = Y (i) for all i ∈ N . In practice,
perfect assessment is rarely achievable in interesting or non-trivial cases. So, if some standard
of fairness is achievable only by perfect assessment, it is reasonable to think the standard is
too high for interesting assessment problems of practical concern. If we think of the assessor
as a probability judgment that some individual has property y, then perfection requires only
assigning probabilities 0 and 1 and not making any mistakes. But much of the power and
applicability of probability theory comes with non-extreme judgments. The same is true of
assessments. We can now state one of the central limitative results for fair assessment.

Theorem 1. (Kleinberg et al., 2017) Let h be an assessor for N . The following are equivalent:

1. h is calibrated and satisfies equalized odds for a partition π.

11Recall that the conditional expectation Ek(h|Y = 0) is the expected value of h as computed with respect
to the conditional probability Pk(·|Y = 0). What I am calling the false positive and false negative rates, Pleiss
et al. call the generalized false positive and generalized false negative rates (2017).

12In no population are both the false positive and false negative rates defined for all cells of all partitions
(consider singleton cells). We will say that h satisfies equalized odds for a partition if, whatever false positive
rates are defined are equal, and whatever false negative rates are defined are equal.

13A worry about the general approach undertaken here and in computer science and machine learning is
that it runs the risk of conflating “statistical parities with more complex concepts” (Mitchell et al., 2018, p.
13). While I will put this issue aside in this paper, I will just note that one might interpret the observations
made below as support for explications of fairness that are not purely statistical.
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2. Either i) the base rates in all groups are exactly the same or ii) h is perfect.

Theorem 1 is widely regarded as an impossibility or triviality result for fair assessment.
Corbett-Davies et al. report that Kleinberg et al. “prove that except in degenerate cases, no
algorithm can simultaneously satisfy” calibration and equalized odds (Corbett-Davies et al.,
2017, p. 799); on the basis of this result, journalists at ProPublica published a followup
article entitled “Bias in Criminal Risk Scores Is Mathematically Inevitable, Researchers Say”
(Angwin and Larson, 2016). The idea is that perfection, as discussed, is very rarely achievable
in real-life, interesting assessment problems. Similarly, that the base rates for the relevant
groups are exactly the same is only very rarely the case. As a result, outside of very rare
circumstances, it is impossible to achieve both fairness properties. Results like Theorem 1
give us reason to explore ways to relax or modify the fairness constraints.

Each of calibration and equalized odds is meant to eliminate a certain form of bias. What
Theorem 1 establishes is that, for a fixed way of carving the population into groups, elimi-
nating one form of bias makes it impossible to eliminate another. Next, I consider requiring
the individual fairness constraints on assessment hold for all partitions of the population.
Clearly, we cannot expect these constraints to be jointly satisfied in assessment for multiple
partitions since, by Theorem 1, they cannot be simultaneously satisfied for a single parti-
tion. Instead, I consider each property on its own. Under the assumption that each fairness
constraint eliminates a form of bias that is desirable to eliminate, I study the possibility of
eliminating one form of bias across multiple ways of dividing the population into groups.

Let’s consider each constraint in turn, starting with calibration. An alternative way to
strengthen calibration for a single partition is to require it for multiple partitions rather than
imposing a different sort of fairness constraint like equalized odds on the same partition.
Again, Theorem 1 gives us reason to seek such alternatives. When confronted with the lim-
itation expressed in Theorem 1, a number of people have suggested to me in person that
calibration is clearly the more compelling condition. Perhaps bias of types that calibration
fails to exclude—for example, some version of bias in error rates—could be reduced by re-
quiring calibration for multiple partitions. The best case would be for calibration to hold
for all partitions, since that would exclude bias in confidence against any group and maybe
other forms of bias to boot. Observation 1 states a limitation on this strategy.

Observation 1. Let h be an assessor for N . The following are equivalent:

1. h is calibrated for all binary partitions.14

2. h is calibrated for all partitions.

3. h is perfect.

Calibration for all partitions, then, is only achievable in the typically unrealistic case of
perfect assessment (cf. Hébert-Johnson et al., 2018, p. 1940).15 In other words, outside of
the unrealistic case of perfect assessment, there will be bias in confidence against some group.

14The first clause of Observation 1—just like the first clauses of Observations 2 and 3—could be replaced
with the proposition that h is calibrated for all partitions of any cardinality m with 2 ≤ m ≤ n.

15Throughout the paper, proofs are confined to the Appendix. Proofs for Observations 1, 2, and 3, however,
are omitted since they are fairly straightforward and these observations are generalized below by Observations
1′, 2′, and 3′, respectively.
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Observation 1 complicates any automatic inference from failure of calibration for some group
to intentional bias on behalf of the assessor (for further discussion of this point, see Stewart
and Nielsen, 2020, Sec. 5).

Next, let’s consider the weaker predictive equity property. Say that an assessor h makes
perfect distinctions if, for all i, j ∈ N , Y (i) 6= Y (j) implies that h(i) 6= h(j). For any score p, if
h(i) = p and Y (i) = 1, then for no individual j such that Y (j) = 0 is it the case that h(j) = p.
Compare calibration for a fixed partition. Calibration allows for individuals that differ with
respect to property y to receive the same score p so long as the proportion of individuals who
possess the property among those who receive the score p is p. In fact, calibration for a fixed
partition generally requires individuals who differ with respect to property y to receive the
same assessment; otherwise, for values in (0, 1), the assessor would be under- or overconfident
in the group.

Observation 2. Let h be an assessor for N . The following are equivalent:

1. h satisfies predictive equity for all binary partitions.

2. h satisfies predictive equity for all partitions.

3. h makes perfect distinctions.

Aside from assessors that make perfect distinctions, scores will not “mean” the same thing for
all groups; there will be bias against some group. In large populations, perfect distinctions
is very difficult to achieve—not as difficult as perfect assessment, but difficult nonetheless.
Observations 4 and 5 below relate perfect distinctions to perfection.

Say that h satisfies perfect non-discrimination when, for all i, j ∈ N , Y (i) = Y (j) implies
that h(i) = h(j). Notice that a degenerate case of perfect non-discrimination is a constant
assessor: for some p ∈ [0, 1], h(i) = p for all i ∈ N . Perfect non-discrimination—the converse
of perfect distinction—captures the ideal that likes are treated alike, whereas perfect distinc-
tion captures the ideal that unalike individuals are not treated alike. We can now make the
following observation regarding equalized odds.

Observation 3. Let h be an assessor for N . The following are equivalent:

1. h satisfies equalized odds for all binary partitions.

2. h satisfies equalized odds for all partitions.

3. h is perfectly non-discriminatory.

Here is another way to think about perfect non-discrimination. A higher bar than making
perfect distinctions would be making perfect distinctions while limiting assessments to just
two scores. Then, the binary assessor perfectly sorts the population into two groups: those
having property y are assigned one score p, while all of those lacking the property are assigned
another score p′ 6= p. A very low bar, on the other hand, would be a constant assessor,
that is, an assessor that assigns the same score to every individual in the population. Such
assessments may fail to carry any information at all. If h is perfectly non-discriminatory, then
h is either constant and uninformative or, if non-constant, binary, sorting the population into
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two groups perfectly (more on this implication after Observation 5 below). So unless h takes
one of these rather restrictive forms, it will violate equalized odds for some way of partitioning
the population. Since equalized odds rules out bias in error rates, we know that such bias in
error rates is unavoidable outside of the two restrictive cases just mentioned.

4.1 Connections

Certain mathematical relationships between the limitations in Observations 1, 2, and 3 are
easy to state. For instance, a simple numerical transformation can convert an assessor that
makes perfect distinctions into a perfect assessor.

Observation 4. Let h be an assessor for N .

1. h makes perfect distinctions if and only if there exists a function g : [0, 1]→ {0, 1} such
that g ◦ h is perfect.

2. h is non-constant and satisfies perfect non-discrimination if and only if the popu-
lation is not homogeneous with respect to y and there exists an injective function
g : [0, 1]→ {0, 1} such that g ◦ h is perfect.

Barocas et al. point out that, for any assessor that satisfies predictive equity, there is a
transformation of it that is calibrated (Barocas et al., 2019, Proposition 1, p. 52). On the
basis of this observation, they conclude that predictive equity and calibration are “essentially
equivalent notions” (Barocas et al., 2019, p. 52). In my view, such an interpretation is un-
warranted,16 but these sorts of transformations at least succinctly state a type of connection
between concepts. The existence of a transformation to a perfect assessor characterizes those
assessors that make perfect distinctions and so characterizes assessors that satisfy predictive
equity for all partitions. For non-homogeneous populations, the existence of an injective
transformation to a perfect assessor characterizes those assessors whose scores sort the pop-
ulation into a y group and its complement, thereby characterizing the class of non-constant
assessors that satisfy equalized odds for all partitions.

Using the limitations, we can also easily mark some logical relationships between the
fairness constraints when they hold for all partitions for non-constant assessors.

Observation 5. Let h be a non-constant assessor for N .

1. If h is calibrated for all partitions, then h satisfies equalized odds for all partitions.

2. If h satisfies equalized odds for all partitions, then h satisfies predictive equity for all
partitions.

Since the observation is a fairly immediate consequence of preceding ones, I will just sketch
a quick supporting argument here. If h is calibrated for all partitions, then, by Observation
1, h is perfect. Perfect assessors clearly give the same score to i and j when Y (i) = Y (j),
namely, 1 or 0 depending on whether Y (i) is 1 or 0. So clause 1 follows from Observations 3.
For clause 2, suppose that h satisfies equalized odds for all partitions. By Observation 3, h is
perfectly non-discriminatory. Since Y is a binary random variable, with the assumption that

16Consider, for example, that, unlike the case with calibration, predictive equity and equalized odds are
jointly satisfiable outside of the cases of equal base rates and perfect prediction (Stewart and Nielsen, 2020).

11



Figure 2: Relations among Fairness Ideals for Non-Constant Assessors

Perfection
∀i ∈ N : Y (i) = h(i)

Perfect Non-Discrimination
∀i, j ∈ N : Y (i) = Y (j)⇒ h(i) = h(j)

Perfect Distinction
∀i, j ∈ N : Y (i) 6= Y (j)⇒ h(i) 6= h(j)

h is non-constant, it follows that h is binary, assigning each individual one of just two scores.
Suppose that, for some i, j ∈ N , Y (i) 6= Y (j). For reductio, suppose that h(i) = h(j). Since
h is non-constant, there is some k ∈ N such that h(k) 6= h(i) = h(j). Since Y is binary,
either Y (k) = Y (i) or Y (k) = Y (j). In either case, perfect non-discrimination implies that
h(k) = h(i) = h(j), which is a contradiction. Hence, h(i) 6= h(j). It follows that h makes
perfect distinctions. By Observation 2, it follows that h satisfies predictive equity for all
partitions.

We could think of what happens when a constraint is satisfied for all partitions as revealing
what ideal of fairness the constraint is committed to. As satisfying one of the constraints
is supposed to represent a form of fair assessment for the groups in a partition, satisfying a
constraint for all partitions represents fair assessment for all groups. This is, plausibly, the
ideal case. For the three criteria under consideration here, the ideals are very simple and so
are the relationships between them (Figure 2).

4.2 Objections

I want to consider two objections to the significance of the foregoing limitative results. Both
concern the potentially overly exacting nature of what is being asked for in avoiding bias
completely against all groups. First, we might consider satisfying certain fairness constraints
approximately rather than exactly. That is, we could confine the amount of bias to which
any group is subject to a certain margin of tolerance. Second, we might consider avoiding
bias for a certain collection of partitions, even if that collection is not the set of all partitions.
I discuss these objections in turn.

One potential source of stringency that could be driving the limitative results is the
requirement that a constraint has to be satisfied exactly. Instead, we could consider requiring
that an assessor satisfies a fairness constraint approximately. Kleinberg et al. consider such
a possibility for satisfying multiple fairness criteria approximately in light of Theorem 1.
On this approach, an assessor is approximately fair for some margin of tolerance if, for
each group, the assessments are within that margin. The guiding idea is that the fairness
standards are relaxed to requiring only that assessors are unbiased “enough” for each group.
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Only sufficiently small amounts of bias, in other words, are tolerated. Let’s look at each
constraint in turn.

Say that h is ε-approximately calibrated for some partition π if, for some ε ≥ 0, all Gk ∈ π,
and all p such that the conditional probability Pk(Y = 1|h = p) is defined, |Pk(Y = 1|h =
p) − p| ≤ ε. Rather than requiring that Pk(Y = 1|h = p) = p exactly, in other words,
approximate calibration requires only that, for each group Gk ∈ π, Pk(Y = 1|h = p) is
within ε of p. Say that h is δ-approximately perfect if, for all i ∈ N , |Y (i) − h(i)| ≤ δ. The
next observation establishes that approximate calibration for all partitions is equivalent to
approximate perfection with δ = ε.

Observation 1′. Let h be an assessor for N . The following are equivalent:

1. h is ε-approximately calibrated for all binary partitions.

2. h is ε-approximately calibrated for all partitions.

3. h is ε-approximately perfect.

Put another way, relaxing calibration in a continuous fashion is equivalent to relaxing per-
fection in a continuous way. Small deviations from calibration allow only (equally) small
deviations from perfect assessment. Observation 1′ expresses the same qualitative limitation
as Observatoin 1 for avoiding bias across all partitions.

Say that h satisfies ε-approximate predictive equity for a partition π if, for all Gj , Gk ∈ π,
|Pj(Y = 1|h = p) − Pk(Y = 1|h = p)| ≤ ε for all p for which the conditional probabilities
are defined. Again, the idea is that we might require the relevant conditional probabilities
to be “close enough” rather than exactly equal. (Notice that, when ε = 1, ε-approximate
predictive equity is completely vacuous, placing no constraints on the respective probabilities.
Observation 2′ excludes this case, assuming 0 ≤ ε < 1 in generalizing Observation 2.) We
might consider saying that assessor h makes δ-approximately perfect distinctions if there is
some δ > 0 such that, for all i, j ∈ N , Y (i) 6= Y (j) implies that |h(i) − h(j)| > δ. But
this strengthens the property of making perfect distinctions. Since Y is binary, alternative
formulations of approximate versions of making perfect distinctions are limited. The following
observation, however, establishes a connection between h’s satisfying approximate predictive
equity for any ε ∈ [0, 1) and making perfect distinctions.

Observation 2′. Let h be an assessor for N . The following are equivalent:

1. h satisfies ε-approximate predictive equity for all binary partitions with 0 ≤ ε < 1.

2. h satisfies ε-approximate predictive equity for all partitions with 0 ≤ ε < 1.

3. h makes perfect distinctions.

Observations 2 and 2′ imply that (non-vacuous) approximate predictive equity for all parti-
tions is, somewhat surprisingly, equivalent to predictive equity for all partitions. Moving to
the approximate version of the constraint creates no new possibilities.

Finally, say that an assessor satisfies ε-approximately equalized odds for a partition π if
there exists some ε ≥ 0 such that, for all Gj , Gk ∈ π, |f+j (h)−f+k (h)| ≤ ε and |f−j (h)−f−k (h)|
≤ ε. In words, the false positive rates for any two cells of the partition are within ε of each
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Figure 3: Relations among Approximate Fairness Ideals for Non-Constant Assessors

Approximate Perfection
∀i ∈ N : |Y (i)− h(i)| ≤ ε

Approximate Perfect Non-Discrimination
∀i, j ∈ N : Y (i) = Y (j)⇒ |h(i)− h(j)| ≤ ε

Perfect Distinction
∀i, j ∈ N : Y (i) 6= Y (j)⇒ h(i) 6= h(j)

other, as are the false negative rates. Say that an assessor h satisfies δ-approximately perfect
non-discrimination when likes are treated approximately the same: for some δ ≥ 0 and for
all i, j ∈ N , Y (i) = Y (j) implies that |h(i)−h(j)| ≤ δ. The next observation establishes that
when h satisfies approximately equalized odds with respect to ε for all partitions, h satisfies
approximately perfect non-discrimination with respect to δ = ε. However, the equivalence
between satisfying a constraint for all partitions and satisfying it for all binary partitions
breaks down here. Now, we have that if h satisfies approximately equalized odds with respect
to ε for all binary partitions, h satisfies approximately perfect non-discrimination with respect
to δ = 2ε.

Observation 3′. Let h be an assessor for N . Then:

1. h satisfies ε-approximately equalized odds for all partitions if and only if h is ε-
approximately perfectly non-discriminatory.

2. If h satisfies ε-approximately equalized odds for all binary partitions, then h is 2ε-
approximately perfectly non-discriminatory.

On the basis of Observations 1′, 2′, and 3′ it seems fair to say that, for all three fairness
criteria, the spirit of the limitations indicated by Observations 1, 2, and 3 survives the
transition to the approximate versions of those criteria. Tolerating a small amount of bias
relaxes the restrictiveness with which fairness can be achieved only by a correspondingly
small amount—or, in the case of predictive equity, not at all.

When we require, not that the criteria hold exactly for all partitions, but only that
they hold approximately for all partitions, the logical connections between the characterizing
conditions are a bit different. These connections are represented in Figure 3. We can take
any δ ≥ ε in the statement of approximate perfect non-discrimination for the implication in
the figure to go through. Excluding the trivial case of ε = 1, however, perfect distinctions—
which is not stated in an approximate form for reasons previously given—is independent of
approximate perfection and approximate perfect non-discrimination.

The second objection councils restraining our ambitions in a different way. One might be
inclined to think that, while (a particular type of) unbiased assessment for multiple partitions
is often desirable, we have overshot the mark by requiring it for all partitions. Consider
calibration. There are simple examples of populations that allow for a imperfect assessor
that is simultaneously calibrated for, say, two different non-trivial ways of partitioning the
population.
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Example 1. Let N = {1, 2, 3, 4, 5, 6}, and let Y (i) = 1 for i = 1, 5, 6. Having prop-
erty y is represented by an asterisk in Table 1. We consider a race partition {B,W} =
{{1, 2, 4}, {3, 5, 6}} and a sex partition {M,F} = {{1, 2, 3}, {4, 5, 6}}. To see that h is cal-

Table 1: Calibration for Two Binary Partitions

B W

M h(1∗) = 1/2, h(2) = 0 h(3) = 1/2

F h(4) = 1/2 h(5∗) = 1/2, h(6∗) = 1

ibrated for the {M,F} partition, observe that, in both groups, half of those assigned 1/2
have property y. Similarly, none of those assigned 0 have property y and all of those assigned
1 have property y. The same sort of inspection confirms that h is also calibrated for the
{B,W} partition. �

So one idea might be that there is a small set of relevant partitions Π, and we should look for
calibrated assessments only for members of Π. However, there are also simple examples of
populations—involving a different distribution of property y—such that no imperfect assessor
is calibrated for these same two pre-specified categories that partition the population.

Example 2. Let N = {1, 2, 3}, and let Y (i) = 1 for i = 1, 3. Having property y is rep-
resented by an asterisk in Table 2. Supposing that h is imperfect and calibrated for the

Table 2: No Calibration for Two Binary Partitions

B W

M 1∗ 2

F 3∗

{M,F} partition of N implies that individual 1 must receive a score in (0, 1). The only such
assessment consistent with calibration is h(1) = h(2) = 1/2. But then h cannot calibrated
for B since, by calibration for F , h(3) = 1. Similarly, h cannot be calibrated for W since
PW (Y = 1|h = 1/2) 6= 1/2. �

One feature of Example 2 that may incline some to regard it as a corner case is that the
base rate for property y is extreme (in {0, 1}) in the {B,W} partition. But that is only
for simplicity of illustration. The Appendix includes a simple example (Example 4) of a
population partitioned three ways. The base rate of y in each cell is in (0, 1). No imperfect,
calibrated assessor exists. So impossibilities emerge even in the simplest cases.

Still, it makes sense to investigate conditions that are both necessary and sufficient for
the existence of an imperfect but calibrated assessor, for example, for all partitions in a set
Π. (Again, in general, Π may not be the set of all partitions of N or all partitions of N of
a given cardinality.) We could investigate analogous characterizing conditions for predictive
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equity, equalized odds, or other fairness constraints of concern. I will have to leave the task
of discovering conditions that are both intuitive and interesting to future work. However, we
can already mark a few limitations of this approach. First, Observations 1, 2, and 3 still imply
that, for any assessment problem and any non-trivial assessor, bias against some groups will
persist—even if that group is not considered highest priority. Second, by Examples 2 and 4,
unbiased assessment for even two or three given partitions is sometimes impossible outside
of trivial cases. Even if these partitions represent the categories typically considered of most
urgent concern in some context—like race and gender in certain settings, say—fairness as
gauged by the metrics under discussion may be impossible to achieve in a non-trivial way for
these partitions.17 Moreover, even if they are achievable for those partitions of one population
(like for race and gender partitions in Example 1), they might fail to be achievable in another
population for those same categories (like for race and gender partitions in Example 2). For
example, it could be the case that a non-perfect, calibrated risk assessor exists for races and
genders for defendants one year, but not the next. And since we do not typically know the
values of either Y or Pk at the time assessments must be made, we typically do not know
whether non-trivial unbiased assessment is possible for all partitions in the set. Specifying a
set of relevant partitions Π for a given assessment problem, then, confers no guarantee that
a given fairness constraint can be satisfied for all members of Π in a non-trivial fashion.

To summarize, on the one hand, requiring the satisfaction of a fairness constraint for some
single partition is generally unsatisfactory since we may care about the fair treatment of
groups from different partitions. On the other hand, requiring any of the fairness constraints
considered here be satisfied for all partitions of the population or all partitions of some
cardinality places unrealistically high demands on assessment as Observations 1, 2, and 3
establish. Kearns et al. make a similar point: “we cannot insist on any notion of statistical
fairness for every subgroup of the population: for example, any imperfect classifier could be
accused of being unfair to the subgroup of individuals defined ex-post as the set of individuals
it misclassified. This simply corresponds to ‘overfitting’ a fairness constraint” (2018, p. 2565).
The foregoing observations refine this point, providing, for each fairness constraint, an explicit
characterization of when the constraint holds or holds approximately for all partitions. What
about imposing the fairness constraint on only some set of partitions? There are at least
three problems with resisting the limitative nature of Observations 1, 2, or 3 by relaxing the
assumption that the relevant fairness constraint holds for all partitions (or all partitions of a
given cardinality) to the assumption that it holds for just multiple partitions. First, by the
observations above, bias against some group is a foregone conclusion. Which and how many
partitions are ethically relevant is not invariant across assessment problems and cannot be
decided a priori, so the implied bias may be more or less ethically relevant. As Examples 2 and
4 show, for some assessment problems, we can run into impossibilities even for small sets of
partitions. These examples can be adapted to show that this sort of limitation emerges even
for approximate versions of the fairness constraints. Second, for some given set of partitioning

17One might hold that the limitative results discussed above are grounds to seek other formalizations of
unbiased assessments, other fairness constraints. One thing that underwrites such a view, I guess, is optimism
that fair treatment of all groups should be possible. There are also the reservations, mentioned earlier, about
defining fairness in terms of certain types of statistical parities (see, e.g., (Bright et al., 2016) for causal
interpretations of intersectionality, a topic I turn to next). For readers sympathetic to that sort of view,
this essay is best understood as an investigation of the consequences and limitations of current proposals for
capturing unbiased assessment.
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categories, certain populations may admit non-trivial fair assessments while others do not.
For example, it could be the case that the population of Broward County defendants in
2015 admits non-trivial fair assessment for races and genders, while the 2016 population does
not. This raises yet further concerns about fair treatment: some populations can be treated
fairly, while others cannot unless the assessment meets the highest bar of perfection. The
third problem that arises for resisting the limitative nature of the foregoing observations by
focusing only on a set of pre-determined partitions is the prospect of intersectional bias, which
I turn to next.

5 Intersectionality

We have seen that membership in multiple social groups is universal and is, in a sense, a tru-
ism. Intersectionality theory is concerned with membership in multiple socially disadvantaged
groups, and with how membership in multiple socially disadvantaged groups can compound
disadvantage in a nonlinear way, so to speak. Calibration, predictive equity, and equalized
odds each presents a particular conception of unbiased assessment. A natural question to
ask is whether any of these conceptions of unbiased assessments admits the possibility of
intersectional bias. Do the intersectionality theorist’s concerns emerge here?

Kimberlé Crenshaw, who introduced the term “intersectionality,” makes use of a court
case to explain how bias against black women, for example, is consistent with the lack of that
form of bias against black people or against women (Crenshaw, 1989). In DeGraffenreid v.
General Motors, five black women alleging discrimination by General Motor’s seniority-based
system sued the company. Prior to 1964, General Motors did not hire black women. All of
the black women hired after 1970 lost their jobs through a seniority-based layoff during a
later recession. The district court rejected the plaintiffs’ attempt to bring a suit on behalf of
black women in particular rather than on behalf of black people or women. According to the
court, the suit must present “a cause of action for race discrimination, sex discrimination, or
alternatively either, but not a combination of both” (qtd. in Crenshaw, 1989, p. 141). The
court noted that, while General Motors did not hire black women prior to 1964, they did hire
female employees for a number of years prior to 1964. So there was no sex discrimination.
And what if General Motors had hired black people—specifically black men—for a number of
years prior to 1964? Crenshaw’s point is that that would not really absolve General Motors
of the charge of discrimination against black women. It certainly does not follow that there
could be no discrimination against black women.

To address the spectre of intersectional bias in the fair assessment setting considered here,
we need to introduce the notion of the coarsest common refinement of a set of partitions. As
technical work that deals with partitions has shown, the coarsest common refinement of a
set of partitions is a very handy concept (e.g., Aumann, 1976).18 A partition π refines (is a
refinement of) another partition π′ if every cell of π is a subset of a cell of π′. In turn, π′

coarsens or is a coarsening of π. The partition π is a common refinement of partitions π′ and
π′′ if π refines both π′ and π′′. The coarsest common refinement of partitions π′ and π′′ is the
partition π that is a common refinement of π′ and π′′ such that any other common refinement

18Thanks to Ignacio Ojea Quintana for urging that I look into this issue. Since drafting this paper, I
learned of a more recent and intentional spin on this sort of intersectional bias that goes by the label “fairness
gerrymandering” in the machine learning literature (e.g., Kearns et al., 2018).
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of π′ and π′′ is also a refinement of π. The coarsest common refinement of a set of partitions is
given by the partition consisting of the nonempty intersections of the cells of those partitions.
In the aforementioned court case, for example, from a race partition containing the categories
of black people and white people and a gender partition containing the categories of women
and men, we form a new partition with the categories of black women, black men, white
women, white men.

How does the fairness framework under consideration in this essay bear on the issue of
intersectionality? It is not true that if h is calibrated for each group in some set of partitions,
then h is calibrated for the coarsest common refinement of those partitions. For example,
even if an assessor exhibits no bias against black job candidates nor against women candidates
in the sense that it is calibrated for these groups, it can still fail to be calibrated for black
women. That bias not present against certain groups can be present against intersections of
those groups is easily established in the assessment framework under consideration.

Example 3. Let N = {1, 2, 3, 4, 5, 6, 7}, and let Y (i) = 1 for i = 2, 4, 5, 7. Again, having
property y is represented by an asterisk in Table 3. Consider two binary partitions, one for
gender, {M,F}, and one for race, {B,W}. The partitions and assessments scores are also
displayed in Table 3.

Table 3: Intersectional Bias

B W

M h(1) = 2/3, h(2∗) = 2/3 h(3) = 0, h(4∗) = 2/3

F h(5∗) = 2/3 h(6) = 2/3, h(7∗) = 2/3

The assessor h is calibrated for both the {M,F} partition and the {B,W} partition. In
all of those groups, two thirds of those who receive an assessment of 2/3 have property y.
The coarsest common refinment is the four-cell partition {B ∩M,B ∩ F,W ∩M,W ∩ F}
composed of the groups of black men, black women, white men, and white women. Since
PB∩F (Y = 1|h = 2/3) = 1, h is underconfident in (and so not calibrated for) black women.
At the same time, h is overconfident in both black men and white women. �

Two further points are worth emphasizing. First, the example also shows that it is
conceptually possible for membership in multiple socially disadvantaged groups to lead to
favorable assessment bias. This could be the case if y is an undesirable feature like recidivism.
Or, if y is a desirable feature, simply swap the M and F labels to generate a case of favorable
bias for black women. Second, since calibration implies predictive equity, it follows that
h satisfies predictive equity for the race and gender partitions in Example 3. But h also
violates predictive equity for the coarsest common refinement: PB∩F (Y = 1|h = 2/3) = 1 6=
PW∩F (Y = 1|h = 2/3) = 1/2, for example. In the Appendix, Example 5 establishes that
equalized odds can also be violated for the coarsest common refinement of two partitions
even when the constraint is satisfied for these coarser partitions. So intersectional bias is
possible for all of the fairness constraints under considerations. I summarize these points in
the following observation.
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Observation 6. Let h be an assessor for N .

1. Even if h is calibrated for each partition in a set Π of partitions of N , h can fail to be
calibrated for the coarsest common refinement of Π.

2. Even if h satisfies predictive equity for each partition in a set Π of partitions of N , h
can fail to satisfy predictive equity for the coarsest common refinement of Π.

3. Even if h satisfies equalized odds for each partition in a set Π of partitions of N , h can
fail to satisfy equalized odds for the coarsest common refinement of Π.

I end on at least a slightly more positive note. Suppose that we manage to specify some
number of population partitions for which unbiased assessment is most ethically relevant
in a particular assessment problem. The next observation provides one consideration in
favor of focusing on unbiased assessment for the coarsest common refinement of the relevant
partitions.

Observation 7. Let h be an assessor for N .

1. If h is calibrated for the coarsest common refinement of a set Π of partitions of N , then
h is calibrated for each partition in Π.

2. If h satisfies predictive equity for the coarsest common refinement of a set Π of partitions
of N , then h satisfies predictive equity for each partition in Π.

3. If h satisfies equalized odds for the coarsest common refinement of a set Π of partitions
of N , then h satisfies equalized odds for each partition in Π.

Observation 7 assures us that, if we can specify the population partitions that are ethically
relevant in an assessment problem, then satisfying a particular fairness constraint for the
coarsest common refinement implies that the constraint is satisfied on all of the relevant
partitions. The constraint only needs to be satisfiable in the coarsest common refinement
in a non-trivial way. This contrasts with the lack of a corresponding guarantee, indicated
in Observation 6, when we focus on unbiased assessments for the coarser partitions as the
district court did in DeGraffenreid v. General Motors. Nevertheless, satisfaction of one of
these fairness constraints on the coarsest common refinement of a set of partitions is only
a sufficient condition for the constraint’s satisfaction for all partitions in the set; it is not
necessary, as simple examples illustrate. As a result, focusing only on the coarsest common
refinement unduly restricts the set of fair assessors. Furthermore, we generally do not know
at the time of assessment whether non-trivial unbiased assessment is possible for the coarsest
common refinement.

6 Conclusion

There are multiple ways to carve a population, multiple social identities, for which it may
be important to avoid biased assessments. Fixing a single partition of identities is overly
restrictive, committing us to ignoring both relevant forms of bias against other groups and
changing social context. Allowing even a set of partitions to ossify into the relevant partitions

19



may fail to make us sufficiently attentive. In the DeGriffenreid v. General Motors decision,
the court resisted the idea that relevant classifications are open to reconsideration or refine-
ment: “The prospect of the creation of new classes of protected minorities, governed only by
the mathematical principles of permutation and combination, clearly raises the prospect of
opening the hackneyed Pandora’s box” (qtd. in Crenshaw, 1989, p. 142). Pandora’s box or
not, the alternative seems to be refusal to confront different possible forms of group bias. If
Sen is right, such dogmatism also “makes the world much more flammable.”

But we confront limitations in taking the relevant classes in fair assessment to be “gov-
erned only by the mathematical principles of permutation and combination.” Requiring that
certain forms of bias be avoided for all possible social groupings is overly constraining, plac-
ing unrealistic demands on assessment as Observations 1, 2, and 3 attest. Put another way,
bias against some group is inevitable for non-trivial assessment problems. Requiring only
that an assessor be “close” to bias-free for all groups does not change this picture much (Ob-
servations 1′, 2′, 3′). For example, an assessor is ε-approximately calibrated for all groups if
and only if it is ε-approximately perfect. Specifying a set of relevant partitions in advance,
non-trivial, unbiased assessment may still be impossible for all partitions in the set as is the
case in Examples 2 and 4. Moreover, even if assessments satisfy one of the fairness properties
for some set of partitions, it does not follow that the property is satisfied for the coarsest
common refinement (Observation 6), establishing the possibility of forms of intersectional
bias for these fairness constraints. However, if non-trivial unbiased assessment is possible
for the coarsest common refinement of the partitions in the set, then, by Observation 7, as-
sessments will be unbiased for the partitions in the set. But even this may be too stringent
since unbiased assessment is sometimes possible for each partition in a set even if imperfect
assessments must be biased for the coarsest common refinement of those partitions.

Where does this leave us? What the foregoing analysis helps us to make clear is that,
not only is there a conflict between eliminating different forms of bias, but there are serious
limits to the extent to which a given form of bias can be eliminated across different partitions.
Often, many partitions are important. In “auditing” an assessor for bias (e.g., Kearns et al.,
2018), outside of some rather restrictive cases, we are guaranteed to find bias against some
group. While that is pertinent data for the ethical evaluation of an assessor, what are the
prescriptive implications for assessment? Some have recently argued for rejecting nearly all
of the statistical criteria of fairness proposed in the literature for reasons of a different nature
than those I have considered (e.g., Hedden, 2021). Do the observations recorded here add
to this case? It seems there are two broad approaches we might pursue. First, we could
reconcile ourselves with bias against some groups since it is essentially inevitable on this way
of understanding fair assessment, hoping and doing what we can to ensure that implied forms
of bias minimally impact what we take to be the most relevant protected classes for the given
time and place (cf. Hébert-Johnson et al., 2018). Second, we could seek a different conception
of fair assessment.
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Appendix

Example of Three Partitions for which the Only Calibrated
Assessor Is Perfect

Example 4. Let N = {1, 2, 3, 4, 5, 6} and let Y (i) = 1 for i = 1, 2, 6. Possession of property
y is represented by an asterisk in both tables 4 and 5. Consider three partitions of N : one
for gender {M,F}, one for race {B,L,W}, and one for sexual orientation {G,S}. The three
partitions are represented in tables 4 and 5.

Table 4: Gender and Race Partitions

B L W

M 1∗ 2∗ 3

F 4 5 6∗

Table 5: Sexual Orientation Partition

G 1∗ 5

S 2∗ 3 4 6∗

Suppose that there is some imperfect assessor h that is calibrated simultaneously for both
{M,W} and {B,L,W}. Note first that some individual i ∈ N must receive a score in
(0, 1). (Otherwise, fallibility would imply that some individual with property y receives an
assessment of 0 or some individual lacking it receives an assessment of 1. Either results
in a failure of calibration whichever individual and partition we use.) Consider the gender
partition. Suppose that the witness to the fallibility of h is inM . (I will check one case, leaving
the others to the reader.) Calibration only allows for two possible witnessing assessment
scores: {1/2, 2/3}. If the witnessing score is 2/3, then h(i) = 2/3 for i = 1, 2, 3. But then, h
is not calibrated for any cell of the {B,L,W} partition. If the witnessing score is 1/2, then
calibration implies h(3) = 1/2. Since h is calibrated for W , h(6) = 1/2. Either h(1) = 1/2 or
h(2) = 1/2. If the former, then h(2) = 1. Calibration for {B,L,W} implies that h(4) = 1/2.
Now, in group S, individuals 3, 4, and 6 all have score 1/2, but only 1/3 of them have property
y. So, h is not calibrated for S. The other cases can be similarly verified. �

Proof of Observation 4

Proof. (1). Suppose that h makes perfect distinctions: for all i, j ∈ N , Y (i) 6= Y (j) implies
h(i) 6= h(j). To define g, for all r ∈ [0, 1], set

g(r) =

{
1, if Y (i) = 1 for some i such that h(i) = r;

0, otherwise.
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If g(h(i)) = 1, then for some j ∈ {j : h(j) = h(i)}, Y (j) = 1. By perfect distinctions,
Y (i) = Y (j) = 1. Similarly, if g(h(i)) = 0, then Y (i) = 0. So, g ◦ h is perfect.

Now suppose that h does not make perfect distinctions. Then, for some i, j ∈ N such
that Y (i) 6= Y (j), h(i) = h(j). There cannot exist a function g : [0, 1]→ {0, 1} such that g◦h
is perfect since g must map h(i) and hence h(j) to 0 or 1. This will misclassify either i or j.
Hence, if h does not make perfect distinctions, then there exists no function g : [0, 1]→ {0, 1}
such that g ◦ h is perfect.

(2). Suppose that h is non-constant and satisfies perfect non-discrimination. Then,
by perfect non-discrimination, h assigns all individuals with y the same score p, and all
individuals without y the same score p′. Since h is non-constant, p 6= p′, so the population
cannot be homogeneous. Defining g as before, g ◦ h is perfect and injective since g(h(i)) =
g(h(j)) = 1 implies that i and j are both in the set of individuals individuals with y and
hence h(i) = h(j) = p, and g(h(i)) = g(h(j)) = 0 implies that i and j are both in the set
individuals without y and hence h(i) = h(j) = p′.

Now suppose that the population is not homogeneous and there exists an injective function
g : [0, 1] → {0, 1} such that g ◦ h is perfect. Since the population is not homogeneous, g ◦ h
takes both values 0 and 1. Then, since g ◦ h is injective, h takes only two values. Now, since
g ◦ h is perfect, h must satisfy perfect non-discrimination.

Proof of Observation 1′

Proof. (2)⇒ (1). Trivial.
(1) ⇒ (3). Suppose that, for some ε ≥ 0, h is approximately calibrated for all binary

partitions. Then, in particular, for each i ∈ N , h is approximately calibrated for the partition
{{i}, N \ {i}}. It follows that,

|P{i}(Y = 1|h = p)− p| ≤ ε. (1)

Since {i} is a singleton, the conditional probability P{i}(Y = 1|h = p) is defined only for the
one p such that h(i) = p. Now, for the defined conditional probabilities, if Y (i) = 1, then
P{i}(Y = 1|h = p) = 1; and if Y (i) = 0, then P{i}(Y = 1|h = p) = 0. So, for all i ∈ N , we
have Y (i) = P{i}(Y = 1|h = p) whenever the right hand side is defined. Substituting in 1,

|Y (i)− h(i)| ≤ ε. (2)

Since 2 holds for each i, it follows that h is ε-approximately perfect.
(3) ⇒ (2). Suppose that h is approximately perfect for some ε ≥ 0: for all i ∈ N , 2

holds. Let G be an arbitrary, nonempty subset of N . Let p be any value such that the
conditional probability PG(Y = 1|h = p) is defined. Consider first the case in which p ≤ 0.5.
Let G+ = {i ∈ N : Y (i) = 1}. Either PG+(·|h = p) is defined or not. If it is defined, then
PG+(Y = 1|h = p) = 1 since Y (i) = 1 for all i ∈ G+. So, for any i ∈ G such that Y (i) = 1
and h(i) = p, we have

|PG(Y = 1|h = p)− p| ≤ |PG+(Y = 1|h = p)− p| = |Y (i)− h(i)| ≤ ε. (3)

If PG+(·|h = p) is not defined, then h(i) = p for no i ∈ N such that Y (i) = 1. Then, for any
i ∈ G such that h(i) = p,

|PG(Y = 1|h = p)− p| = |Y (i)− h(i)| ≤ ε. (4)
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By 3 and 4, whether PG+(·|h = p) is defined or not, we have |PG(Y = 1|h = p)−p| ≤ ε. When
p > 0.5, an analogous argument using G− = {i ∈ N : Y (i) = 0} instead of G+ establishes
that |PG(Y = 1|h = p)− p| ≤ ε in that case, too. It follows that |PG(Y = 1|h = p)− p| ≤ ε
for any p ∈ [0, 1] such that PG(·|h = p) is defined. Since any partition π of N consists of such
groups G, we conclude that h is ε-approximately calibrated for any partition π.

Proof of Observation 2′

Proof. (2)⇒ (1). Trivial.
(1) ⇒ (3). Let h satisfy ε-approximate predictive equity for all binary partitions with

0 ≤ ε < 1. Suppose that, for i, j ∈ N , Y (i) 6= Y (j) but h(i) = h(j) = p. Then, in
particular, h satisfies ε-approximate predictive equity for the partition π = {G+, G−}, where
G+ = {i ∈ N : Y (i) = 1}, and both of the conditional probabilities in 5 are defined:

|PG+(Y = 1|h = p)− PG−(Y = 1|h = p)| ≤ ε < 1. (5)

But 5 implies that
|1− 0| ≤ ε < 1,

which is a contradiction. Hence, Y (i) 6= Y (j) implies that h(i) 6= h(j). It follows that
approximate predictive equity with ε ∈ [0, 1) implies perfect distinction.

(3) ⇒ (2). Suppose that h satisfies perfect distinction: for all i, j ∈ N , Y (i) 6= Y (j)
implies that h(i) 6= h(j). Let π = {G1, . . . , Gm} be an arbitrary partition of N . Since for
any individuals i, j ∈ N such that h(i) = h(j) = p we have Y (i) = Y (j), it follows that
PGk

(Y = 1|h = p) = PGl
(Y = 1|h = p)—which is equal to 1 or 0 according to whether

Y (i) = Y (j) = 1 or Y (i) = Y (j) = 0—for any two groups Gk, Gl ∈ π whenever those two
conditional probabilities are defined. That is, h satisfies approximate predictive equity for π
with ε = 0. Since π was arbitrary, h satisfies ε-approximate predictive equity for all partitions
with 0 ≤ ε < 1.

Proof of Observation 3′

Proof. (1 ⇒). Let h satisfy ε-approximately equalized odds for all partitions. Consider the
partition of singleton cells. For any two i, j ∈ N such that Y (i) = Y (j) = 0, |f+i (h) −
f+j (h)| ≤ ε. In particular, since maxi∈N f+i (h) = maxi∈{Y=0} h(i) and mini∈N f+{i}(h) =

mini∈{Y=0} h(i), it follows that maxi∈{Y=0} h(i) −mini∈{Y=0} h(i) ≤ ε. A similar argument
applies if Y (i) = Y (j) = 1. Hence, for all i, j ∈ N , if Y (i) = Y (j), then |h(i)− h(j)| ≤ ε.

(1 ⇐). Suppose that h is ε-approximately perfectly non-discriminatory: Y (i) = Y (j)
implies that |h(i) − h(j)| ≤ ε. For any cells Gk, Gl of any partition π of N such that
the conditional expectations are defined, f+k (h), f+l (h) ∈ [mini∈{Y=0} h(i),maxi∈{Y=0} h(i)].

Hence, |f+k (h)− f+l (h)| ≤ |maxi∈{Y=0} h(i)−mini∈{Y=0} h(i)| ≤ ε. An analogous argument
works for the false negative rates for π. Since π was arbitrary, it follows that h satisfies
approximately equalized odds for all partitions.

(2). Let h satisfy ε-approximately equalized odds for all binary partitions with ε ≥ 0.
Define Gmin

− = {i ∈ N : h(i) = mini∈{Y=0}h(i)}, Gmax
− = {i ∈ N : h(i) = maxi∈{Y=0} h(i)}.
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By the assumption, ∣∣∣f+
Gmin
−

(h)− f+
N\Gmin

−
(h)
∣∣∣ ≤ ε (6)∣∣∣f+Gmax

−
(h)− f+N\Gmax

−
(h)
∣∣∣ ≤ ε (7)

(If any of the terms in 6 or 7 are undefined, then either all individuals in the population
have y or there is a single value p such that, for any i with Y (i) = 0, h(i) = p. In neither
case is it possible to get a violation of 2ε-approximate perfect non-discrimination for any
binary partition.) Using the triangle inequality, 6, and 7, we have, for any i, j ∈ N such that
Y (i) = Y (j) = 0,

|h(i)− h(j)| ≤
∣∣∣f+Gmax

−
(h)− f+

Gmin
−

(h)
∣∣∣

≤
∣∣∣f+Gmax

−
(h)− f+

N\(Gmin
− ∪ Gmax

− )
(h)
∣∣∣+
∣∣∣f+

N\(Gmin
− ∪ Gmax

− )
(h)− f+

Gmin
−

(h)
∣∣∣

≤
∣∣∣f+Gmax

−
(h)− f+N\Gmax

−
(h)
∣∣∣+
∣∣∣f+

N\Gmin
−

(h)− f+
Gmin
−

(h)
∣∣∣

≤ ε+ ε.

Hence, for any two i, j ∈ N such that Y (i) = Y (j) = 0, |h(i) − h(j)| ≤ 2ε. An analogous
argument establishes that for any two i, j ∈ N such that Y (i) = Y (j) = 1, |h(i) − h(j)| ≤
2ε.

Example of a Violation of Equalized Odds for the Coarsest
Common Refinement of Two Partitions

Example 5. Let N = {1, 2, 3, 4, 5, 6, 7, 8}, and let Y (i) = 1 for i = 1, 3, 5, 7. Again, having
property y is represented by an asterisk in Table 6. Consider two binary partitions, one for
gender, {M,F}, and one for race, {B,W}. The partitions and assessments scores are also
displayed in Table 6.

Table 6: Intersectional Bias

B W

M h(1∗) = 1, h(2) = 0 h(3∗) = 1/2, h(4) = 1/2

F h(5∗) = 1/2, h(6) = 1/2 h(7∗) = 1, h(8) = 0

The assessor h satisfies equalized odds for both the {M,F} partition and the {B,W} par-
tition: f+M (h) = f+F (h) = 1/4, f−M (h) = f−F (h) = 1/4, f+B (h) = f+W (h) = 1/4, and
f−B (h) = f−W (h) = 1/4. The coarsest common refinement is the four-cell partition {B ∩
M,B ∩ F,W ∩M,W ∩ F} composed of the groups of black men, black women, white men,
and white women. To see that h does not satisfy equalized odds for this partition, it suffices
to observe that f+B∩F (h) = 1/2 while f+W∩F (h) = 0 and f−B∩F (h) = 1/2 while f−W∩F (h) = 0.
The assessor is perfect, in fact, for black men and white women, and has positive error rates
for black women and white men. �
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Proof of Observation 7

Proof. (1). Let Π be a set of partitions of N and π = {G1, . . . , Gm} the coarsest common
refinement of the partitions in Π. Assume that h is calibrated for π. We want to show that
for any π′ ∈ Π, h is calibrated for π′. Any cell G′ of π′ is a union of some number of cells of
π: G′ =

⋃
kGk where the Gk are cells of π. Since, for each such Gk, Pk(Y = 0|h = p) = p,

by the law of total probability

PG′(Y = 0|h = p) =
∑
k

PG′(Y = 0|h = p,Gk)PG′(Gk|h = p)

=
∑
k

pPG′(Gk|h = p)

= p
∑
k

PG′(Gk|h = p)

= p.

So, for any cell G′ of any partition π′ ∈ Π, h is calibrated.
(2). Analogous to the previous proof.
(3). Let Π be a set of partitions of N and π = {G1, . . . , Gm} the coarsest common

refinement of the partitions in Π. Assume that h satisfies equalized odds for π. We want to
show that for any π′ ∈ Π, h satisfies equalized odds for π′. Any cell G′ of π′ is a union of
some number of cells of π: G′ =

⋃
kGk. Since the Gk partition G′ and there is some r ∈ [0, 1]

such that, for each Gk ∈ π, Ek(h|Y = 0) = r (when that conditional expectation is defined),
by the law of total expectation,

EG′(h|Y = 0) =
∑
k

EG′(h|Y = 0, Gk)PG′(Gk|Y = 0)

=
∑
k

rPG′(Gk|Y = 0)

= r
∑
k

PG′(Gk|Y = 0)

= r.

Hence, f+G′(h) = f+G′′(h) = r for all cells G′, G′′ ∈ π′ for which those error rates are defined.
(If defined for no Gk, we need only check the false negative rates.) By the same line of
reasoning, mutatis mutandis, f−G′(h) = f−G′′(h) for all G′, G′′ ∈ π′. Thus, for any π′ ∈ Π, h
satisfies equalized odds.
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