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Abstract.
Intentional sampling methods are non-probabilistic procedures that select a group of individuals

for a sample with the purpose of meeting specific prescribed criteria. Intentional sampling methods
are intended for exploratory research or pilot studies where tight budget constraints preclude the
use of traditional randomized representative sampling. The possibility of subsequently generalize
statistically from such deterministic samples to the general population has been the issue of long
standing arguments and debates. Nevertheless, the intentional sampling techniques developed in this
paper explore pragmatic strategies for overcoming some of the real or perceived shortcomings and
limitations of intentional sampling in practical applications.
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The conterquestion ‘How can you justify purposive sampling?’
has a lot of force in it. The choice of a purposive plan will make
a scientist vulnerable to all kinds of open and veiled criticisms.
A way out of the dilemma is to make the plan very purposive,

but to leave a tiny bit of randomization in the plan.
Basu (1987,ch.XIV, p.257) - Why to Randomize?

1. INTRODUCTION

This extended abstract describes and comments some of the statistical models developed
by the authors in 2002 for a project lead by Datanexus, a Brazilian survey institute
for media audience. The main goal of this project was to provide new alternatives
for measuring television audience in São Paulo, Brazil. The project’s measurement
technology was based on a new meter capable of monitoring and recoding, at 1 minute
intervals, the time spent by each individual in the household watching each of the
available open TV channels.

The goal of the statistical modeling was to help in the selection of the Monitoring
Sample, a set of households where the equipment should be installed. The monitoring
sample was subject to the budget constraint of β = 250 households. In a preliminary
research, m = 10.000 households in a Interview Sample were asked to answer a detailed
questionnaire. The monitoring sample of size β should be selected from the m house-
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holds in the interview sample.
Section 2 details the stratification and clustering techniques used in the selection pro-

cedures for the interview sample. Section 3 defines the matrix and other mathematical
notations used in this paper. Section 4 explains the procedures used in the selection of the
monitoring sample; these procedures are based on Goal Programming or Multiobjective
Programming. Section 5 discusses the real or percieved dificulties in making statistical
generalizations based on non-randomized samples. Section 6 presents stochastic per-
turbation techniques designed as succedanea or poor man’s substitutes for randomized
sampling. Section 7 presents some experimental results concerning the performance of
the techniques and procedures developed in this paper. Section 8 presents our final re-
maks.

2. STRATIFICATION AND CLUSTERING

In 2002, IBGE, the Brazilian Institute of Geography and Statistics, had available data
on household and populational socio economic features, aggregated by censitary units,
CUs. The São Paulo metropolitan area was divided in 21.240 CUs. In this data bank,
each unit is characterized by 556 variables. These variables constitute 4 major groups,
namely: 87 describe the households themselves, 183 describe the households’ responsi-
ble persons, 113 describe the level of instruction of the persons in the households, and
173 describe other characteristics of persons living in the households. Of the original
CU’s, 217 had to be eliminated from the study due to data bank inconsistencies.

Taking into consideration the correlation matrix of all these variables, as well as
the analyses carried by the final users of the audience information, the 556 descriptive
variables were aggregated into 30 artificial variables, where 7 variables relate to income,
7 relate to instruction, 8 relate to the households’ sizes and facilities, and 8 variables
relate to the sex and age of the persons living in the households.

The first step in the procedure for selecting the interview sample was to group the CUs
into 10 strata (deciles) according to mean personal income. Next, using the 30 artificial
variables, the CU’s in each stratum were grouped into 10 clusters, using a Simulated
Annealing algorithm and the L1 metric, see Späth (1985, ch.6) and Pflug (2000). The
main motivations for choosing the L1 norm were:

- Unified treatment of Ordinal and Continuous variables.
- Robustness: Using the L1 norm, cluster’s centers are defined by median coordinates.

Since median values depend only on the ranking of the individual points in the cluster,
they are very robust to outliers,

After stratification and clustering, the CU’s were divided into 100 (more or less) ho-
mogeneous groups. Finally, 10 households were selected in each cluster using a ran-
domized sampling procedure, constituting the m = 10,000 household interview sample.
Each household in the interview sample answered a detailed questionnaire that updated
demographic and socio-economic data, and included new data focusing entertainment
activities, like reading habits, internet access and, most importantly, the number and
quality of the TV sets available at each household as well as individual TV watching
habits. The questionnaires were used to update the 30 artificial variables on demographic
and social economic data, and tabulate 30 more variables on entertainment habits.
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Hence, with the information given by the questionnaires, each of the m = 10.000
households in the interview sample is described by Data Bank of u+ v = 30+30 = 60
features, as detailed in the next section. From the 10,000 interview sample, 2,672
households were eliminated due to missing values.

3. MATRIX NOTATION AND DATA BANK STRUCTURE

The operator r:s:t, read - from r to t with step s, indicates the vector [r,r+ s,r+2s, . . . t]
or the corresponding domain of indices. r:t is a short hand for r:1:t. A(i, j) is the element
in the i-th row and j-th column of matrix A. Index vectors can be used to build a sub-
matrix by extracting a sub-set of rows and columns. For example, A(1 : m/2,n/2 : n) is
the north-east block, that is, the block of first rows and last columns, from matrix A. The
notation rand(m) designates a vector of independent uniform ]0,1[ random numbers,
while 1 and 0 designate matrices of ones’s and zeros with the appropriate dimensions.

The pointwise arithmetic operators, ⊕,�,�,�, etc., act element by element on ma-
trices of same dimension, for example,

C = A�B⇔C(i, j) = A(i, j)B(i, j) .

The p-norm of a vector is defined as

||x||p =
(
∑ j |x j|p

)1/p
, ||x||∞ = max j |x j| .

Each selected household is studied with respect to features of type t ∈ {1,2, . . . ,u}.
Each individual living in a selected household is studied with respect features of type
t ∈ {u+ 1,u+ 2, . . . ,u+ v}. A given feature type, t, entails a discrete, ordinal, d(t)-
dimensional classification system, with classes {1,2, . . . ,d(t)}. For example, in Brazil,
it is common practice to use the A,B,C,D,E ordinal classification system, d(t) = 5, cor-
responding to percentile strata of interest for each feature, say top 3%,10%,30%,60%
and lower 40%. The auxiliary vector c(t) gives cumulative class dimensions, that is,
c(t) = d(t)+ c(t−1) where, by definition, c(0) = 0.

A single matrix A is used to tabulate all data from the exploratory research. The
h-th line of matrix A, A(h, :), contains all the data concerning household h and the
individuals living in it. All entries of A are zero if not otherwise stated. For 1 ≤ t ≤ u
and c(t− 1)+ 1 ≤ k ≤ c(t), A(h,k) = 1 iff household h is of class k for feature type t.
For u+1≤ t ≤ u+v and c(t−1)+1≤ k≤ c(t), A(h,k) is the number of individuals of
class k for feature type t living in household h. From the above definitions we have the
following normalization conditions:

- For the household classification sub-matrix, i.e. for 1 ≤ t ≤ u, and 1 ≤ k ≤ c(u),
A(h,c(t−1)+1 : c(t))1 = 1. This is the ‘partition’ condition, stating that, for any feature
type t, household h belongs to one and only one class. Also, for any feature type t, the
total number of households of class k is given by 1′A(1 : m,c(t−1)+ k).

- For the individual classification sub-matrix, for u+ 1 ≤ t ≤ u+ v and c(u) + 1 ≤
k ≤ c(u+ v), A(h,c(t− 1)+ 1 : c(t))1 gives the number of individuals in household h.
Similarly, 1′A(1 : m,c(t− 1)+ k) gives the number of individuals of class k for feature
type t.
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4. INTENTIONAL SAMPLING

The project’s tight budget constraint of having only β = 250 households in the mon-
itoring sample, precludes the use of traditional statistical randomized sampling tech-
niques. For a thorough and humorous analysis of the limitations of traditional sampling
techniques, see Brewer (2002). In order to make a pilot study viable, this project used
non-probabilistic intentional (or purposive) sampling. Intentional sampling methods are
non-randomized procedures that select a group of individuals for a sample with the pur-
pose of meeting specific prescribed criteria.

4.1. Goal Optimization

The intentional sampling criteria discussed in the sequel seek the efficient selection
of a monitoring sample where all pertinent pre-defined clusters or strata of the general
population are well represented. However, the ideas motivating these intentional sam-
pling criteria are compleatly different from the ideas motivating traditional forms of
representative sampling in Statistical theory, see Brewer (2002).

In this sub-section, the intentional sampling criteria are formulated as Goal Optimiza-
tion problems. The fulfillment of these intentional criteria gives, in turn, plausible argu-
ments for generalizing (in proportion) some means (or first moments, or central values)
of the monitoring sample to the general population.

The Goal Optimization problem for sample selection is formulated as a generalized
knapsack problem, defined by the following entities:

• g(1 : c(u+ v)), a goal or target vector for optimal panel representation;
• x, Boolean decision variables. xh indicates if household h belongs (or not) to the
selected monitoring sample;

• b, the monitoring cost and β , the budget. In this paper the monitoring cost is
considered to be constant, with b = 1;

• w, a positive vector of weights. It may me convenient to write the weights as the
ratio of an importance and a normalization vector, w = wm� wn, see Romero
(1991,Ch.7);

• r,s, non-negative surplus and slack variables. As usual in mathematical program-
ming, these artificial variables measure departure from the problem’s (idealized)
constraints,

b′x≤ β , A′x− r+ s = g .

Milan Zeleny (1982, p.156) enunciates the following displaced ideal criterion for
optimal choice:

“Alternatives that are closed to the ideal are preferred to those that are
farther. To be as close as possible to the perceived ideal is the rationale of
human choice.”

192



Zeleny’s displaced ideal criterion is translated into the following Goal Optimization
problem:

min‖ w� (s+ r) ‖p .

For p = 1 and p = ∞, the absolute and minimax norms, the Goal Optimization
problem can be reduced to a Linear Programming problem that, in turn, can be solved
very efficiently by the Simplex method or by interior point algorithms, see Martin (1998)
and Murtagh (1981). The Simplex method, in its primal or dual forms, is specially well
suited for this application, allowing fast and efficient reoptimization if constraints are
added or modified, as required by several techniques used in this paper, like post-optimal
and sensitivity analysis, see Gal (1979) and Gal, H.J.Greenberg (1997), or branch-and-
bound algorithms for integer programming, see Kovács (1980) and Nemhauser and
Wolsey (1988).

4.2. Multiobjective Programming

Vilfredo Pareto (1896) stated the following criterion of dominance:

In a Multiobjective Programming problem, a solution A dominates a solu-
tion B if and only if A is better than B with respect to at least one objective,
and A is not worse than B with respect to the remaining objectives.

For the statistical sampling problem at hand, consider two solutions, A and B. A is
a solution that exactly achieves the goal, and B is an alternative solution that samples
exactly the same number of households and individuals in each class of each feature
type, but includes an extra individual at one of the households. From a statistical point
of view, solution B dominates solution A, because B includes a sample equivalent to A
as a sub-sample. Hence, in no circumstance sample B provides less information, and in
some circumstances it possibly provides more information, than sample A.

In a Multiobjective Programming problem, a solution is Pareto-efficient iff it is not
dominated by any other feasible solution or, as stated by Zelleny (1982,p.74),

A non-dominated [or efficient] solution is a feasible solution for which
and increase in value of any criterion can be achieved only at the expense of
a decrease in value of at least one other criterion.

The non-dominated boundary [of the feasible region] is sometimes char-
acterized as the trade-off curve [or efficient frontier].

The Pareto efficiency criterion is slightly different from the displaced ideal criterion
used in the last sub-section. Accordingly, Pareto efficiency leads an alternative opti-
mization problem, namely, Multiobjective Programming. Zeleny (1982) points out that
the Goal programming formulation may sometimes produce optimal solutions that are
inefficient for an alternative, and better formulated, Multiobjective Programming prob-
lem. These considerations lead to an improved formulation for the sampling problem,
where the surplus variables, r, are not explicitly penalized, only the slack variables, s.
This is the Multiobjective Programming problem:

min‖ w� s ‖p .
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Notwithstanding apparent benefits of Multiobjective Programming formulations, pre-
vious commitments assumed by the client concerning the performance and evaluation
metrics to be adopted in the project, made Goal Optimization the formulation of choice.
Similar reasons explain the addoption of a penaly function based on the absolute norm,
p = 1, instead of the minimax norm, p = ∞, or even a more complex penaly function
based on a convex combination of both norms.

5. THE ROLE OF RANDOMIZATION

As defined in the last section, intentional sampling methods are non-randomized pro-
cedures that select a group of individuals for a sample with the purpose of meeting
specific prescribed criteria. The forth author of this paper is troubled about the validity
of using statistical generalization arguments from such a non-randomized sample to the
general population. Better said, he believes that one cannot do so without making very
strong and often unrealistic assumptions about the (joint) probability distributions un-
derlying the observed phenomena. For similar perspectives, see Hacking (1988, p.429-
430), Kempthorne (1977, p.16), Peirce and Jastrow (1884) and Pearl (2000, p.340,348).
Of course, that does not mean that, even using strict non-randomized intentional sam-
pling methods, one can not construe generalization arguments under non-statistical for-
malisms, see Stern (2004) and Stern, Pereira (2012) and references herein. The forth
author presents his opinions concerning the decouling principle, the role of randomiza-
tion, and related issues in Stern (2008, 2011a).

Moreover, the forth author believes that only working under an appropriate episte-
mological framework and using appropriate methodologies, that most certainly include
randomization methods, is it possible to achieve the goal of “objective” statistical infer-
ence, see Stern (2011b,c).

The above comments are not corroborated by the third author of this paper. For him,
working under a “genuine” Bayesian methodology, any possible sample observation that
could be possibly obtained by a randomization process, could be equality treated as if
it was collected under the process. The reason for this opinion is that randomization
is independent of the objective of the study, the inference about the state of nature.
Hence, the randomization process cannot interfere in the statistical inference to be used.
Whenever randomization is used, its role ends before the statistical inference work starts.
For a clinical trial study conducted along these lines, see Fossaluza et al. (2010).

Furthermore, the third author does not corroborate any attempt to serach for “objec-
tive” inference procedures. In fact, for him, the subjective perspective is so essential to
the “genuine” Bayesian framework that it can be used to define the scope of Bayesian
statistics; As stated by I.G.Good (1972) in his Random Thoughts about Randomness:
- A statistician who uses subjective probabilities is called a ’Bayesian’.
The quotation of Debabrata Basu opening this paper inspired both of the contending

authors of the current paper. However, taken this quotation in its proper context, it
becomes clear that Prof. Basu would fully support the positions taken by the third author.
The following paragraphs are reproduced from Basu (1988):

The object of planning a survey should be to end up with a good sample.
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The term “representative sampling” has often been used in sample survey
terminology. But no one has cared to give a precise definition of the term. It is
implicitly taken for granted that the statistician with his biased mind is unable
to select a representative sample. So a simplistic solution is sought by turning
to an unbiased die (the random number tables). Thus, a deaf and dumb die is
supposed to do the job of selecting a “representative sample” better than a
trained statistician. Basu (1988,p.198).

(Why to randomize?) - The conterquestion ‘How can you justify purposive
sampling?’ has a lot of force in it. It is only in transparently simple cases that
one can give a clear-cut argument in favor of a particular purposive plan.
In a true-to-life survey situation, it is very difficult to sell the idea of a fully
purposive plan. The very purpose of a purposive plan is rooted in the scientific
intuition and knowledge of a surveyor. No two surveyors are likely to agree on
the choice of their survey plans. The choice of a purposive plan will make
a scientist vulnerable to all kinds of open and veiled criticisms. A way out
of the dilemma is to make the plan very purposive, but to leave a tiny bit
of randomization in the plan; for example, draw a systematic sample with a
random start or make a very extensive stratification of the population and then
draw a sample of size 1 from each stratum! Basu (1988, p.257)

It is a clear imperative that the surveyor fully describe his survey plan and
carefully explain all the considerations that led to the particular plan. And
this inhibits the choice of a purposive plan. The possible criticism that the
surveyor’s chosen plan was not the optimum one (even with respect to his own
background information) may not cast any doubt on his conclusions as long
as the critic can analyze his (the surveyor’s) data. No wonder, therefore, that
all of us choose the path of least resistance and try to incorporate an element
of randomness in the survey plan. Basu (1988, p.258).

Notwithstanding their different motivations, distinct theoretical backgrounds and di-
vergent epistemological frameworks, both of the contending authors can agree on the
convenience of reconciling randomization methods with intentional survey sampling.
This is the objective of the methods developed in Section 6.

Before ending this section, it is important to emphasize that the statistical literature
distinguishes between two intended uses of randomization, namely, decoupling (aka
random design) and model justification (aka random sampling):

Decoupling: Randomization techniques aiming to eliminate experimental biases com-
ing from systematic design problems, including several forms of uncontrolled influ-
ence, conscious or unconscious, received from or exerted by participating agents.

Model justification: Randomization techniques aiming to justify assumptions concern-
ing the functional form of distributions and parametric constraints in the statistical
model of the experiment.

A deeper probabilistic analysis of randomization, as it is commonly used is statistics,
shows that, from a theoretical point of view, the two concepts can greatly overlap, see
Gelman (2003), Pearl (2000) and Stern (2008, 2011a). Nevertheless, the methodology
developed in the next section focus specifically on decoupling.
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6. DECOUPLING BY STOCHASTIC PERTURBATIONS

This section discusses stochastic perturbation methods designed as succedanea or poor
man’s substitutes for the randomization decoupling techniques used in traditional sta-
tistical sampling. The decoupling methods developed in this section are based on cel-
ebrated analogies between stochastic processes and chaotic, turbulent or unstable phe-
nomena, for general overviews, see Chaitin et al. (2011), Chazelle (2000), Claude and
Chaitin (2008), Griffinths and Tenenbaum (2003), Schroeder (1991), Stern (2011) and
Terwijn (2003). Accordingly, the methods developed in this section require, for the Goal
or Multiobjective Programming problem formulated in Section 3, perturbations that are
large enough to fully enter these mathematical programming problems’ instability re-
gion. At the same time, in order to obtain solutions that may be slightly sub-optimal but
still quite useful for the purposes stated in the previous sections, the same perturbations
should be as small as possible.

Most of the work in post-optimal and sensitivity analysis for integer programming
already publisher in the mathematical programming literature concerns linear program-
ming, and focus sufficient stability conditions, like stability radii for cost or right hand
side perturbations. These kind of stability analysis can only provide lower bounds to the
perturbations required for our intended purpose.

Fortunately, there are available in the mathematical programming literature a few
“negative results” concerning the instability of optimization problems that can be
adapted to our purposes, see for example Blair (1997, 1998). Inspired by Brair’s results,
a perturbed problem is defined by a new generalized knapsack constraint that is obtained

replacing β by β̃ = β +1 and b by b̃ = b+ z, where z = ε(2/β )rand(m). The expected
value E(z(i)) = ε/β . Hence, the expected increase in value for a boolean solution x with
β non-zero elements is E(z′x) = ε . As discussed in the next section, a convenient choice
of the perturbation parameter ε , positive and not much greater than 1, should produce
appropriate perturbations.

7. EXPERIMENTAL RESULTS

The Goal Programming problem described in Section 4 was implemented using GAMS
- the General Algebraic Modeling System compiler, and solved using the CPLEX opti-
mization library. All pre and post processing routines, including the generation of ran-
dom perturbation vectors, graphics, etc., were implemented in ANSI-C and R.

The features considered as targets for optimal panel representation and their respective
categories are ([a,b[ represents the range a ≤ x < b for a real variable x, and [a,b]
represents the range a≤ k ≤ b for an integer variable k):

1. Household monthly income (minimum sallaries): [0,1[, [1,2[, [2,3[, [3,5[, [5,10[,
[10,20[, [20,∞[;

2. Individual social-economic class: A, B, C, D/E;
3. Sex: Male, Female;
4. Age range (years): [0,4], [5,9], [10,14], [15,19], [20,24], [25,29], [30,34], [35,39],

[40,44], [45,49], [50,59], [60,∞[;
5. Scholarity level (years of study): [0,1], [1,4], [5,8], [9,12], [12,∞[;
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6. Individual daily TV attendance (hours/day): [1,2], [3,4], [5,6], [7,8], [9,10], [10,∞[.

The numerical experiments were based on 150 runs for each perturbation parameter
ε ∈ {1,1.5,2,2.5,3}. Each run consists in generating a random vector z and solving
the perturbed goal optimization problem, with norm p = 1 and homogeneous feature
weight w= 1, generating an optimal portfolio of β = 250 households for the monitoring
sample. Two criteria were used to analyse the performance of our Goal Optimization
with Stochatic Perturbation method: Decoupling and Optimality.

FIGURE 1. Household repetitions in (sub)optimal panels for ε ∈ {1,1.5,2,2.5,3}.

FIGURE 2. Pair of households repetitions in (sub)optimal panels for ε ∈ {1,1.5,2,2.5,3}.
The first criterion, Decoupling, concerns the absence of a tendency to select the same

households or pairs of households in different runs. Figure 1 shows the repetition of
selected households among the 150 runs for each ε ∈ {1,1.5,2,2.5,3}. The leftmost
graph shows the number of households selected between zero and 50 times; the second
shows the number of households selected [51,150] times; and the rightmost graph shows
the number of households selected [101,150] times. Figure 2 contains analogous graphs
considering pairs of households, using the ranges [0,5], [6,20] and [21,150]. We can
observe that the tendency to choose the same households in different runs decreases
rapidly with the parameter ε . For ε = 3, only 25 out of 7,328 candidate households
are selected more than 50 times (33.3% of runs), and only 250 out of 2.7E+7 pairs are
chosen in more than 20 times (13.3% of runs).
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FIGURE 3. Desired (dark) and actual (light) sample frequencies, ε = 3.

The second criterion, Optimality, considers how close to the desired target is the
optimal solution of the stochastically perturbed Goal Optimization problem. Naturally,
larger values of the perturbation parameter induce strong decoupling, favouring the
first criterion, while smaller values engender perturbed problems that are closer to
the original deterministic problem, favouring the second criterion. From an empirical
analysis by the two criteria, ε = 3 seems to provide a good compromise.

Figures 3 and 4 show a comparison between the desired (dark) and actual (light)
sample frequencies, for a given run chosen randomly from the 150 available with ε = 3.
This randomly chosen run is fairly typical for the batch, producing an optimal solution
that is very close to the desired target.

Empirical evidence based on experiments like the one described above give us a strong
indication that, once the single empirical perturbation parameter, ε , is adequately cali-
brated, the Goal Optimization with Stochatic Perturbation method performs admirably
well in the following senses:

• Decoupling: Distinct perturbation vectors, z = ε(4/β )rand(m), produce very dif-
ferent optimal solutions, that is, distinctively diverse monitoring samples;

• Optimality: The optimal solution of the stochastically perturbed Goal Optimization
problem come very close to the desired target.
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FIGURE 4. Desired (dark) and actual (light) sample frequencies, ε = 3.

8. FUTURE RESEARCH AND FINAL REMARKS

Future Research Concerning Optimization

At the present stage of development, the perturbation parameter ε is calibrated em-
pirically by a trial and simulation procedure used in conjunction with numerical opti-
mization by the bisection method. We hope to extend Blair’s instability analysis to the
generalized knapsack problem in order to obtain analytically a reasonable starting guess
for the value of ε .

We also hope to extend this paper’s approach to non-linear integer programming
problems, allowing the use objective functions based on p-norms for 1 ≤ p ≤ ∞, as
preconized in Section 4.1. We believe that the results presented at Skorin-Kapov and
Granot (1987) provide good insights and some useful hints for pursuing this path of
research.

Future Research Concerning Inference

We hope to extend this paper’s approach of integrating interntional sampling with
decoupling by stochastic perturbation to sequential designs. Fossaluza et al. (2009) and
references herein offer good examples for possible applications in this line of research.
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