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Abstract
Although logical consistency is desirable in scientific research, standard statistical hypothesis tests are typically logically
inconsistent. To address this issue, previous work introduced agnostic hypothesis tests and proved that they can be logically
consistent while retaining statistical optimality properties. This article characterizes the credal modalities in agnostic hypoth-
esis tests and uses the hexagon of oppositions to explain the logical relations between these modalities. Geometric solids
that are composed of hexagons of oppositions illustrate the conditions for these modalities to be logically consistent. Prisms
composed of hexagons of oppositions show how the credal modalities obtained from two agnostic tests vary according to
their threshold values. Nested hexagons of oppositions summarize logical relations between the credal modalities in these
tests and prove new relations.

Keywords: Statistical hypothesis tests, hexagon of oppositions, logical consistency, agnostic hypothesis tests, probabilistic

and alethic modalities.

1 Introduction

Logical consistency is desirable in scientific research. It can be hard to interpret inconsistent con-
clusions and to develop theories that explain them. As a result, they are detrimental to scientific
communication and decision-making.

Despite the desirability of logical consistency, it is not satisfied by many methods of statistical
hypothesis testing. For instance, consider that a researcher simultaneously tests two hypotheses, A
and B, such that ‘not B’ implies ‘not A’. In such a situation, one expects that the rejection of B would
imply the rejection of A. However, this property does not apply to standard tests, such as the ones
based on the p-value or the Bayes factor [17, 22, 24].
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TABLE 1. Modalities of agnostic hypothesis tests

Modality Definition Name Equivalence Interpretation
�H L(H )=0 Necessity (A) �H ∧�H H is accepted

¬�H L(H )=1 Impossibility (E) �H ∧¬�H H is rejected
∇H L(H )=0.5 Contingency (Y) �H ∧¬�H H not decided
�H L(H )<1 Possibility (I) �H ∨∇H H not rejected

¬�H L(H )>0 Non-necessity (O) ¬�H ∨∇H H not accepted
�H L(H ) �=0.5 Non-contingency (U) �H ∨¬�H H is decided

Besides this flaw, one can find other logical inconsistencies in standard hypothesis testing pro-
cedures. da Silva et al. [9], Izbicki and Esteves [20] classify the types of logical inconsistencies
in these procedures into failures to satisfy at least one of four of conditions of classical logics. If
all conditions are satisfied by a test, then it is defined as logically consistent. This use of the term
contrasts with the one in the literature of non-classical logics, in which (in)consistency often refers to
forms of modifying classical notions of contradiction, negation, conflation, etc. so as to allow logical
systems with greater flexibility than classical logic [6, 7, 26]. Izbicki and Esteves [20] shows that
a standard test is logically consistent if and only if it is based on point estimation, which generally
does not satisfy statistical optimality.

This grim result motivated Esteves et al. [16] to investigate agnostic hypothesis tests. Such a
test is a function, L, that assigns to each hypothesis, H , a value in {0,0.5,1}. H is accepted when
L(H )=0, H is rejected when L(H )=1 and the test non-comitally neither accepts nor rejects H
when L(H )=0.5. In this article, we use agnostic tests to define credal modalities, as described in
Table 1.

Using this framework, Esteves et al. [16] shows that the agnostic generalizations of some standard
hypothesis tests can achieve logical consistency. Indeed, a hypothesis test is logically consistent if
and only if it is based on a region estimator. As a result, there exist agnostic hypothesis tests that
are both logically consistent and statistically optimal.

This positive result motivates the development of schematic diagrams for explaining agnostic
tests and their logical properties. The relations between the credal modalities in Table 1 can be
represented by the hexagon of oppositions [3, 4]. It follows from the definition in Table 1 that these
credal modalities are defined by opposition relations in well-ordered structures, such as the ones
in Béziau [1, 2]. Although this article considers solely total orders, extensions of the hexagon of
oppositions to partial orders can be found in Demey and Smessaert [12].

Figure 1 represents the standard hexagon of oppositions. Each credal modality is associated
with one vertex in the logical hexagon, namely: A (necessity), E (impossibility), I (possibility), O
(non-necessity), U (non-contingency) and Y (contingency).1 In Figure 1, logical relations between

1The four vowels used to label the vertices of the traditional square of opposition are chosen from the Latin word AfIrmo,
for affirming universal (necessary) and particular (possible) modal propositions, and nEgO for negating them. [3] extended
the square into the hexagon of opposition, using the two remaining French vowels to label the top and bottom of its six
vertices. Some confusion comes from the historical use of four vowels (A, E, I and U) to describe which part(s) of a modal
proposition (modus and dictum) are negated. This description follows the mnemonic rule: nihil A, E dictum negat, Ique
modum, U totum, meaning: A- neither modus nor dictum is negated, E- dictum is negated I- modus is negated, U- modus and
dictum are negated. Finally, each corner of the square of opposition is traditionally labelled by an anagram describing the
(four) equivalent modal propositions obtained by using, respectively, the modality of — necessary, impossible, contingent and
possible. Mnemonic anagrams are provided by the Latin words: (A) Purpurea — purple, (E) Iliace — colicky, (I) Amabimus
— lovely, and (O) Edentuli — no-tooth; see [15, v.II, p.109–111].
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FIG. 1. The hexagon of oppositions for an agnostic hypothesis test.

modalities are represented as edges, which are classified according to the following types:

• arrows: indicate logical implications, i.e., if modality J points to K and J is obtained, then K
is also obtained.

• dashed-lines: indicate contrariety, i.e., modalities connected by these lines cannot both be true.
• dotted-lines: indicate sub-contrariety, i.e., modalities connected by these lines cannot both be

false.
• double-lines: indicate contradictions, i.e., modalities connected by these lines cannot either be

both true or be both false.

This article characterizes the credal modalities from the statistical theory developed in Esteves
et al. [16] and uses the hexagon of oppositions to explain the logical properties that arise in these
modalities. Section 2 uses polyhedra based on the hexagon of oppositions to present the four con-
ditions for a test to be logically consistent. Next, hexagonal prisms illustrate the construction of
the modalities that arise from standard hypothesis tests (Section 3) and that arise from a logically
consistent agnostic test (Section 4). Section 5 uses a nested hexagon of oppositions to discuss the
logical relations between the modalities obtained in Sections 3 and 4.

Note that Sections 3 and 4 examine two different types of credal modalities. To avoid ambiguity,
the credal modality defined in each section is represented by a different symbol. Section 3 defines
credal modalities based on threshold values on a probability measure over the space of hypotheses.
Since probability is an additive measure, the corresponding probabilistic modalities are represented
by superposing the plus sign to the standard modal symbols (�, +�, +∇ and +�). In contrast, Section
4 defines credal modalities based on threshold values on a possibilistic measure over the space of
hypotheses. The corresponding alethic modalities are denoted by the standard modal symbols (�,
�, ∇ and �). For a detailed explanation of probability and possibility measures see Borges and
Stern [5], Dubois and Prade [13], Stern and Pereira [30].

2 Logical conditions on agnostic tests

To discuss the logical conditions on statistical tests, it is necessary to present some definitions.
A parameter is an unknown or unobservable quantity with possible values in an arbitrary set, �,
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FIG. 2. A representation of invertibility using two hexagons of oppositions. H̃ denotes the negation
of a hypothesis H . Two modalities are connected by a bidirectional arrow if each one implies and
is implied by the other.

named the parameter space. A statistical hypothesis, H , is a statement about a parameter. It is of the
form H :θ ∈�H , where �H is an element of an arbitrary σ -field over �. For example, the parameter
space could be �=R

d , d ∈N
∗, and a hypothesis could be stated as a linear equation, H :Aθ =b,

corresponding to the hypothesis set �H ={θ ∈R
d |Aθ =b}. Whenever there is no ambiguity, the

symbol H is used as a shortcut for �H , although the former is a statement and the latter is a set. A
statistical hypothesis test is a function that attributes credal modalities to each statistical hypothesis.

Esteves et al. [16] introduces four logical consistency conditions for statistical hypothesis tests:
invertibility, monotonicity, union consonance and intersection consonance. In the following, these
properties are represented using geometric solids composed of hexagons of oppositions.

2.1 Invertibility

Invertibility restrains the conclusions that can be obtained when simultaneously testing a hypoth-
esis, H , and its set complement, H̃ =�−H . If invertibility holds, then either both hypotheses are
undecided or one is accepted and the other is rejected. This restriction is represented symbolically
in Definition 2.1:

DEFINITION 2.1 (Invertibility)

(�H ⇐⇒ ¬�H̃ ) ∧ (∇H ⇐⇒ ∇H̃ ).

Figure 2 uses two hexagons of opposition to represent Definition 2.1. The hexagons for H (below)
and H̃ (above) are joined by double-arrowed edges to form a hexagonal prism. These edges illustrate
that, if invertibility holds, then the connected modalities necessarily occur simultaneously. The
modalities in the H̃ hexagon are inverted in relation to the modalities in the H hexagon. As a result,
if invertibility holds, then one obtains the following logical equivalences: A↔ Ẽ, E ↔ Ã, I ↔ Õ,
O↔ Ĩ, U ↔ Ũ, Y ↔ Ỹ.

2.2 Monotonicity

Monotonicity restrains the conclusions that can be obtained when simultaneously testing nested
hypotheses. Two hypotheses, H and H ′, are nested if H implies H ′ (H ⊆H ′). If monotonicity holds,
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FIG. 3. Logical implications induced by monotonicity (blue arrows). The figure displays stacked
hexagons of statistical modalities for a sequence of nested hypotheses. Each horizontal cut represents
a different hypothesis; in the figure we display two of them: H ⊆H ′.

then the conclusion obtained for H ′ is always at least as favourable as the conclusion obtained for
H . That is, if H is accepted, then H ′ is accepted and, if H is possible, then H ′ is possible. This
restriction is represented symbolically in Definition 2.2.

DEFINITION 2.2 (Monotonicity)

H ⊆H ′ ⇒
{

�H ⇒�H ′

�H ⇒�H ′.

Figure 3 represents monotonicity through the hexagon of oppositions. The hexagon for H ′ is larger
than the one for H as a means to illustrate that H ⊆H ′. These hexagons are connected by additional
edges to form a pyramidal frustum. Each horizontal cut of this solid can be thought to represent a
new hypothesis. These hypotheses imply the ones below them and are implied by the ones above
them. The arrows that go from the top of the frustum to its bottom represent that, if a hypothesis is
below another, then the conclusion obtained for the lower one should be at least as favourable as the
one obtained for the upper one. The arrows that go in the opposite direction are obtained by taking
the negation of the previous implications. As a result of monotonicity, one obtains the following
logical implications: A→A’, I→ I’, O’→O, E’→E.

2.3 Consonance

Consonance restricts the conclusions that one can obtain when simultaneously testing a set of
hypotheses and their unions or intersections. Let {Hi}i∈I be an arbitrary collection of hypotheses.
Under strong union consonance, if one concludes that ∪i∈I Hi is possible, then at least one Hi is pos-
sible. Similarly, under strong intersection consonance, if one concludes that ∩i∈I Hi is not necessary,
then at least one Hi is not necessary. These restrictions are represented symbolically in Definition 2.3
and 2.4.

DEFINITION 2.3 (Strong union consonance)
For every I ,

�(∪i∈I Hi)→∃i∈ I s.t. �Hi.
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FIG. 4. Logical implications induced by strong union consonance (left) and strong intersection con-
sonance (right). If one obtains the conclusion in the centre of the triangle, then one obtains at least
one of the conclusions in the middle of the edges of the triangle and another in the vertices connected
to this edge. That is, there exists at least one path such as the one illustrated by the blue arrows.

Strong union consonance is equivalent to

∀i∈ I ,¬�Hi ⇒¬�(∪i∈I Hi)

that is, the ¬�-modality is closed under the union.

DEFINITION 2.4 (Strong intersection consonance)
For every I ,

¬�(∩i∈I Hi)⇒∃i∈ I s.t. ¬�Hi.

Strong intersection consonance is equivalent to

∀i∈ I ,�Hi ⇒�(∩i∈I Hi),

that is, the �-modality is closed under the intersection.
Figure 4 illustrates Definition 2.3 and 2.4. For union consonance, consider a triangle in which

each vertex represents the possibility of a single hypothesis. If one obtains the centre of the triangle
and the union of all hypotheses is possible, then one also obtains at least one of the midpoints of
the edge, representing the possibilities of pairwise unions, and at least one of the vertices connected
to this edge. Figure 4 also illustrates the symmetry between strong union consonance and strong
intersection consonance. Indeed, if invertibility holds, then these types of consonance are equivalent.

2.4 The logic of credal modalities in logically consistent hypothesis tests

A hypothesis test is logically consistent if it satisfies invertibility, monotonicity, union and inter-
section consonance, and �� is obtained. Logically consistent tests have properties that improve
their computation and interpretation. For example, it follows from invertibility and Table 1 that, for
every hypothesis H , �H and �H̃ cannot be simultaneously obtained. That is, a logically consistent
hypothesis test admits no contradictions.

Logically consistent tests also allow the use of classical logic to obtain deductions over
decided hypotheses. To show this property, we use the functionally complete ‘nand’ operator
(↑), either as defined over truth values or as defined over hypotheses (sets). Over hypotheses,
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H1 ↑H2 :=�−(H1 ∩H2). It follows that, for example, H1 ∧H2 =H1 ∩H2, H1 ∨H2 =H1 ∪H2 and
¬H1 =�−H1. Over truth values, �H1 ↑�H2 is obtained if and only if either �H1 is not obtained
or �H2 is not obtained. Lemma A.1 in the Appendix shows that, if a test is logically consistent
and H1 and H2 are decided (�H1 and �H2 are obtained), then �(H1 ↑H2) is obtained if and only if
�H1 ↑�H2 is obtained. In other words, if a test is logically consistent and H1,...,Hn are decided,
then, for every logical proposition, P, �P(H1,...,Hn) is obtained if and only if P(�H1,...,�Hn) is
obtained. Once one has decided the credal modality of H1,...,Hn, computing P(�H1,...,�Hn) is
usually cheaper than computing �P(H1,...,Hn) by directly applying the statistical test. Also, this
ability to treat decided hypothesis as if they were true or false makes the outcomes of the test easier
to interpret.

Besides the application of classical logic to decided hypotheses, one can also use it between
different credal modalities. For example, the implications in Figures 1 and 4 are transitive. This can
be used to obtain new relations by combining the implications in each of the figures. For example,
it follows from Figure 2 that (¬�H )→ (�H̃ ). Also, it follows from Figure 1 that (�H̃ )→ (�H̃ ).
Therefore, one can conclude that (¬�H )→ (�H̃ ). Similarly, it follows from Figure 2 that (�H )→
¬(�H̃ ). Also, it follows from the contrariety relation in Figure 1 that is obtained from Table 1 that
(�H̃ )→ (¬∇H̃ ). By combining these results one can conclude that, if �H is obtained, then ∇H̃ is
not obtained.

Despite the advantages of working with logically consistent hypothesis tests, several standard tests
available in the statistical literature are logically inconsistent. Indeed, standard hypothesis tests can
fail basic logical properties. The following section investigates examples of logical inconsistency in
frequentist and Bayesian statistics.

3 Logical inconsistency of standard tests

Hypothesis tests are often used to determine beliefs. Using Table 1, one can translate each possible
result of an hypothesis test to a credal modality. In case a hypothesis test does not satisfy all the
properties in Section 2, then we say the resulting logical system is incoherent. Even though it
is challenging to communicate and interpret these systems, they are the ones that are generally
obtained from standard hypothesis tests. The next subsection revisits some known examples of
logical inconsistencies in classical tests.

3.1 Classical tests

• Failure of invertibility: Tests based on p-values treat the null and the alternative hypotheses
differently. Indeed, the p-value is calculated using solely probabilities obtained under the null
hypothesis; probabilities obtained under alternative hypotheses are left out. As a result, a test
based on a p-value generally will not be invertible.

• Failure of monotonicity: Under regularity conditions, one can assume that if two individu-
als have the same genotype, then they will also have the same corresponding phenotypical
characteristics. However, Izbicki et al. [21] shows that the likelihood ratio test can reject the
hypothesis that two individuals have the same phenotype and not reject the hypothesis that they
have the same genotype.

• Failure of consonance: Consider the standard framework of analysis of variance with three
groups. Let α1, α2 and α3 be the unknown means of each group. Izbicki and Esteves [20]
shows that, using the generalized likelihood ratio test, one can conclude that ‘α1 =α2 =α3 =0’
is impossible and, at the same time, conclude that ‘αi =0’ is possible, for every i∈{1,2,3}.
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TABLE 2. Example of a loss function for a Bayesian hypothesis test

As an alternative to the above classical procedures, one might consider a Bayesian hypothesis test.
One such hypothesis test obtains the credal modality for a hypothesis from its posterior probability.
Specifically, the credal modality is chosen according to cutoff levels of the posterior probability.
For simplicity, these tests are called ‘posterior probability cutoff tests’. Since posterior probability
tests are coherent from the perspective of Statistical Decision Theory, one might expect that they
are also logically coherent. This is not the case, as shown in the following section.

3.2 Posterior probability cutoff tests

Posterior probabilities can be used to define probabilistic modal operators (�, +�, +∇ and +�), as
explained in the following paragraphs. We use these special symbols to distinguish the probabilistic
operators from the standard (alethic) operators that were used so far: �, �, ∇ and �.

A Bayesian statistical model considers two types of random variables: a parameter θ in the
parameter space �, and data, X , in the sample space, χ . While parameters correspond to unknown
quantities, the data correspond to observable or observed quantities.

The uncertainty about the model’s variables is described through probability statements. Before
observing the data, the joint distribution for θ and X is denoted by p(θ,x). By integrating x out of
the joint distribution, one obtains

p(θ )=
∫

χ

p(θ,x)dx.

The distribution p(θ ) is called the prior distribution for θ , since it represents the uncertainty about
θ before observing X .

After the value x of X is observed, the uncertainty about θ is updated based on this observation.
One’s uncertainty about θ changes from p(θ ) to p(θ |x), the probability of θ given x. The latter term
is called the posterior distribution for θ and can be obtained using Bayes Theorem:

p(θ |x)= p(θ )p(x|θ )∫
�

p(θ,x)dθ
. (1)

To attribute a credal modality to a hypothesis under scrutiny, one can use Bayesian decision
theory [10]. In this context, one chooses a credal modality by minimizing the expected penalty that
derives from a given loss function. Table 2 presents a loss function that is typically used in Bayesian
hypothesis tests. If H is true and one decides that H is necessary, then the loss is 0. Similarly, if
H is false and one decides that H is impossible, then the loss is 0. However, if H is true and one
decides that H is impossible, then the loss is a, where a>0. This type of decision is called a type-1
error. Similarly, if H is false and one decides that H is necessary, then the loss is 1. This type of
decision is called a type-2 error. The constant a defines how much a type-1 error is worse than a
type-2 error. When a=1, both types of error are equally undesirable.
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TABLE 3. Example of a loss function for an agnostic Bayesian hypothesis test.

The optimal decision for the loss function in Table 2 is to choose �H , when p(H |x)> (1+a)−1,
and ¬+�H , when p(H |x)< (1+a)−1. In other words, the credal modality for each hypothesis is
decided based on a cutoff of the posterior probability. If the posterior probability of a hypothesis is
sufficiently high, then one concludes that it is necessary. Otherwise, one concludes that the hypothesis
is impossible.

The loss function in Table 2 can be extended to agnostic hypothesis tests, as presented in Table 3. In
agnostic tests, one can choose to let the hypothesis be undecided, i.e., one can choose +∇ H . Whenever
this option is chosen, one commits a type-3 error and incurs in a loss of b, where 0<b<min(a,1).
This range of values for b implies that, by remaining agnostic, one loses less than by taking a wrong
decision and more than by taking a correct decision.

The optimal decision for this loss function is similar to the one that was discussed for standard
tests. By taking c1 =max((1+a)−1,1−b) and c2 =min((1+a)−1, b

a ), one obtains that the optimal
test is:

Choose credal modality

⎧⎪⎨⎪⎩
�H , if p(H |x)>c1

¬+�H , if p(H |x)<c2

+∇ H , otherwise.

(2)

In words, the probabilistic modal operator is obtained by comparing the posterior probability of the
hypothesis, H , to the cutoffs, c1 and c2. If p(H |x) is larger than the upper cutoff, c1, then the optimal
decision is that H is necessary. If p(H |x) is smaller than the lower cutoff, c2, then the optimal
decision is that H is impossible. Finally, for intermediate values of p(H |x), H remains undecided.
This test is illustrated in Figure 5.

The posterior probability cutoff tests are logically incoherent. Although the values of a and b can
be chosen so that the tests are invertible and monotonic, these tests are not consonant. The main
argument for the lack of consonance can be presented in two steps. First, the hypothesis H0 :θ ∈�

has probability 1. Second, H0 can generally be partitioned into a large collection of hypotheses,
H1,...,Hn, such that each P(Hi |x) is arbitrarily small. As a result, the cutoff tests obtain that H0

is necessary and H1,...,Hn are all impossible, i.e., they lack consonance with respect to the union
operation. A similar example shows that these tests also are not consonant with respect to intersection.

The results of this section show that several standard hypothesis tests cannot be made logically
consistent. In the following section, we discuss how to obtain logically consistent hypothesis tests.

4 Logically consistent agnostic hypothesis tests

A logically consistent agnostic hypothesis test satisfies all the properties described in Section 2:
invertibility, monotonicity, union and intersection consonance, and �� is obtained. Esteves et al.
[16] shows that every logically consistent agnostic testing scheme can be obtained from a region
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FIG. 5. Typical hexagon of statistical modalities for the posterior probability cutoff test, given by
Table 3. The coloured edges indicate the chosen modalities as a function of the posterior probability
of H , p(H |x).

FIG. 6. A test for hypothesis H based on the region estimator for θ , S.

estimator (a set of plausible values for θ ). More precisely, for every logically consistent test, there
exists a region estimator, S ⊆�, such that the test is of the form

Choose credal modality

⎧⎨⎩
�H if S ⊆H
¬�H if S ⊆ H̃
∇H if S ∩H �=∅ and S ∩H̃ �=∅.

The tests that are of the above type are called region-based tests. Figure 6 illustrates such tests. No
matter what region estimator, S, is used, the test based on S is logically consistent [16]. For the
test to have additional statistical properties, S might be built using the Bayesian or the frequentist
frameworks. In the following, we describe a particular type of region-based test: the Generalized
Full Bayesian Significance Test (GFBST). This test is an extension of the Full Bayesian Significance
Test [23] (FBST) to agnostic hypothesis tests.

4.1 FBST and GFBST

Credal modalities that are obtained from a possibilistic measure [13, 14] are defined as possibilistic
(or alethic) modal operators (�, �, ∇ and �). Note that these symbols are different from the ones

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article/25/5/741/3979884 by U

niversidade de Sï¿½
o Paulo user on 24 August 2020



[11:09 23/8/2017 jzx024.tex] Paper Size: a4 paper Job: JIGPAL Page: 751 741–757

Logically-consistent hypothesis testing 751

used for the probability modal operators. Hereafter, we study the possibilistic modal operators that
are obtained from the FBST and the GFBST.

The FBST is based on the epistemic value of the hypothesis of interest given the observed data,
ev(H |x). The epistemic value is a transformation of a probability into a possibility measure [5, 30].
Specifically, ev(H |x) is obtained through the steps:

(1) Define a surprise function, s(θ |x)= p(θ |x)
r(θ ) , where r(θ ) is a reference density over � [27]. The

reference density can be interpreted as an invariant measure under a relevant transformation
group. For example, the reference density may be obtained from the information geometry
according to a metric on the parameter space [28].

(2) Define the tangent set to H , T (H ), as T (H ), where,

T (H )={θ1 ∈�|∀θ0 ∈H ,s(θ1 |x)>s(θ0 |x)}.
Note that T (H )∩H =∅, that is, the tangent set to an hypothesis and the hypothesis are disjoint.
This aspect of the e-value’s definition is motivated by the legal principle known as in dubio
pro reo (most favorable interpretation, benefit of the doubt, or presumption of innocence) [25].
Intuitively, only parameter points that are more probable than every point of a given hypothesis
can be admitted as witnesses against this hypothesis.

(3) Obtain ev(H |x)=1−p(T (H )|x).
Alernatively, Lemma A.2 in the Appendix shows how ev(H |x) can be obtained as a function
of ev({θ0}|x), for each θ0 ∈H .

The FBST chooses �H when ev(H |x)>c, and ¬�H when ev(H |x)≤c, where c∈ (0,1) is a
cutoff defined by the practitioner. This procedure is similar to region-based tests. Indeed, if S ={θ0 ∈
� : ev({θ0}|x)>c}, then Theorem A.3 shows that the FBST has the form

Choose credal modality

{ ¬�H , if S ⊆ H̃
�H , otherwise.

The GFBST extends the FBST into a region-based agnostic hypothesis test. Let S be such as in
the previous paragraph. The GFBST has the form:

Choose credal modality

⎧⎨⎩
¬�H , if S ⊆ H̃ (S ∩H =∅)
�H , if S ⊆H (S ∩H̃ =∅)
∇H , if S ∩H �=∅ and S ∩H̃ �=∅.

While in the FBST, S ∩H �=∅ implies �H , in the GFBST this case can lead to either �H or ∇H .
Since this difference makes the GFBST a region-based test, it is logically consistent. By applying
Theorem A.3, the GFBST can also be written as a function of ev(H |x) and ev(H̃ |x):

Choose credal modality

⎧⎨⎩
¬�H , if ev(H |x)≤c
�H , if ev(H̃ |x)≤c
∇H , otherwise.

(3)

Remark: In previous references, the tangent set to H was defined as T ∗(H )={θ1 ∈� :s(θ1 |x)>
supθ0∈H s(θ0 |x)}. Under regularity conditions that are usually found in statistical models [20, ex.3.23],
p(T ∗(H )|x)=p(T (H )|x). Hence, in these cases, both definitions lead to the same results. However,
only T (H ) allows the assumption-free characterization in Equation (3).
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FIG. 7. Example of the behaviour of the GFBST for a fixed sample x as a function of the cutoff,
c, when the supremum of the surprise function is obtained only in H . The prisms on the left and
right side represent the results obtained by the GFBST when applied, respectively, to H and H̃ . The
hexagon obtained from each horizontal cut represents the GFBST test that uses the corresponding
cutoff. The coloured edges represent the credal modalities that are obtained from the GFBST as a
function of the cutoff value.

The GFBST can be made more interpretable using some properties of ev. Note that, for every
H , either T (H )=∅ or T (H̃ )=∅. Therefore, either ev(H |x)=1 or ev(H̃ |x)=1. When ev(H |x)=1
and ev(H̃ |x)=1, no matter what the value of c is, ∇H and ∇H̃ are obtained. When ev(H |x)=1
and ev(H̃ |x)<1, either �H and ¬�H̃ are obtained, or ∇H and ∇H̃ are obtained. Similarly, if
ev(H̃ |x)=1 and ev(H |x)<1, then either �H̃ and ¬�H are obtained or ∇H and ∇H̃ are obtained.
Section 7 illustrates this behaviour when ev(H |x)=1 and ev(H̃ |x)<1. For every c∈ (0,1), ¬�H
is not obtained. This behaviour is different from the one in Figure 5.

5 Hybrid hexagons: relations between probabilistic and possibilistic modal
operators

Although the posterior probability test and the GFBST have different logical properties, It follows
from the characterization of the GFBST in Section 4, that �H can be made a more stringent modality
than +�H . Indeed, if c<0.5 in Equation (3), then Theorem A.4 in the Appendix proves that

�H ⇒p(H |x)≥1−c⇒�H . (4)

Therefore, in Equation (2), the cutoffs c1 =1−c and c2 =c yield

�H ⇒�H ⇒ +�H ⇒�H .

These relationships are summarized in the nested hexagon of Figure 8. The above implications show
that it is possible to combine the two types of credal modality into a single hexagon of oppositions.
Since the hexagon of oppositions has two degrees of freedom and the implication �H ⇒+�H holds, it
is possible to use �H as the necessity modality and +�H as the possibility modality in a new hexagon
of oppositions. Similarly, since �H ⇒�H holds, one can use �H as the necessity modality and
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FIG. 8. Nested hexagon of opposition that shows the implication relations between the probabilistic
and possibilistic modal operators.

FIG. 9. Hybrid hexagon of oppositions that is obtained from combining probabilistic and possibilistic
modalities.

�H as the possibility modality in another hexagon of oppositions. Similar hybrid hexagons have
appeared in Carnielli and Pizzi [8], Demey and Smessaert [11].

Figure 9 illustrates the hybrid hexagon obtained using �H and +�H . This hexagon summarizes
several relations between �H and +�H that can be proved using the fact that �H ⇒+�H . In particular,
note that, if p(H )=0, then it follows from Equation (1) that p(H |x)=0. Therefore, it follows from
Equation (2) that ¬+�H holds. Using the contrariety relation in Figure 9, one can conclude that �H
does not hold. In summary, if a hypothesis, H , is such that p(H )=0, then H is not accepted by the
GFBST.

The previous conclusion is compatible with a common idea in Statistics: if p(H )=0, then one
cannot accept H ; one can only fail to reject H [18, 19]. Indeed, if p(H )=0, then ¬�H is obtained,
i.e., the GFBST cannot accept H . However, even though p(H )=0, it is possible to obtain �H , i.e.,
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the GFBST can fail to reject H . However, when p(H )=0, then p(H |x)=0 and ¬+�H is obtained,
that is, the posterior probability test always rejects H .

The above result might be surprising, given the importance of null probability hypotheses in the
theoretical and empirical sciences [29]. For example, if �=R

d , then it is common to find hypotheses
in the form of linear equations, H :Aθ =b, where matrix A is h×d. This case includes, for example,
the simple null hypothesis H :θ =c. In case the distribution of θ is continuous, then p(H )=0 and,
for every x, p(H |x)=0. Therefore, while the probability cutoff test always obtains ¬+�H for precise
hypotheses, the GFBST can either obtain ∇H or ¬�H . That is, while the credal modality obtained
from the probability cutoff test for precise hypotheses is known beforehand, the GFBST allows one
to use data to revisit their beliefs regarding these hypotheses.

6 Conclusions and final remarks

We show how the hexagon of oppositions can be a useful tool to explain consistency properties of
statistical hypothesis tests. Indeed, geometric solids composed of hexagons of oppositions illustrate
the conditions for a statistical hypothesis test to be logically consistent. Also, prisms composed of
hexagons of oppositions explain the definitions of hypothesis tests such as the probability cutoff
test and the GFBST. A hybrid hexagon of oppositions summarizes the logical relations between
these tests. In summary, the hexagon of opposition can be used as a powerful form of diagrammatic
representation that is helpful in organizing, displaying and explaining complex logical properties of
multiple statistical tests of hypothesis and their intricate inter-relationships.
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Appendix
LEMMA A.1
If �H1 and �H2 are obtained in a logically consistent hypothesis test, then �(H1 ↑H2) is obtained
if and only if �H1 ↑�H2 is obtained.

PROOF. If �(H1 ↑H2) is obtained, then �(�−(H1 ∩H2)) is obtained. It follows from invertibility
that ¬�(H1 ∩H2) is obtained. Therefore, it follows from an implication relation in Figure 1 that
¬�(H1 ∩H2) is obtained. Hence, using intersection consonance, either ¬�H1 or ¬�H2 is obtained.
Conclude from a contradiction relation in Figure 1 that either �H1 is not obtained or �H2 is not
obtained, i.e., �H1 ↑�H2 is obtained.

If �H1 ↑�H2 is obtained, then either �H1 is not obtained or �H2 is not obtained. Hence, using
a contradiction relation in Figure 1, either ¬�H1 or ¬�H2 is obtained. Since by hypothesis �H1

and �H2 are obtained, it follows from Table 1 that either ¬�H1 or ¬�H2 is obtained. Therefore,
using monotonicity, ¬�(H1 ∩H2) is obtained. It follows from invertibility that �(�−(H1 ∩H2)) is
obtained, that is, �(H1 ↑H2) is obtained.

LEMMA A.2
ev(H |x)=supθ0∈H ev({θ0}|x)

PROOF.

ev(H |x)=1−p({θ1 ∈�|∀θ0 ∈H ,s(θ1 |x)>s(θ0 |x)} |x)

=1−p(∩θ0∈H {θ1 ∈�|s(θ1 |x)>s(θ0 |x)} |x)

=1− inf
θ0∈H

p({θ1 ∈�|s(θ1 |x)>s(θ0 |x)} |x)

=1− inf
θ0∈H

p(T ({θ0})|x)= sup
θ0∈H

ev({θ0}|x)

THEOREM A.3
Let S ={θ0 ∈� : ev({θ0}|x)>c}. For every H ⊆�, ev(H |x)≤c if and only if H ∩S =∅.

PROOF. Note that ev(H |x)≤c if and only if supθ0∈H ev({θ0}|x)≤c (Lemma A.2). That is, ev(H |x)≤c
if and only if S ∩H =∅.

THEOREM A.4
If c<0.5 in Equation (3), then

�H ⇒p(H |x)≥1−c⇒p(H |x)>c⇒�H .
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PROOF. For every �H ⊂�,

1− ev(H̃ |x)=p(θ ∈T (H̃ )|x)

=p(θ ∈{θ1 ∈�|∀θ0 ∈ H̃ ,s(θ1 |x)>s(θ0 |x)} |x)

≤p(θ ∈�H |x)=p(H |x), (5)

where the last inequality follows from the fact that

{θ1 ∈�|∀θ0 ∈ H̃ ,s(θ1 |x)>s(θ0 |x)}⊆�−�H̃ =�H .

Similarly, one can obtain

1− ev(H |x)≤p(H̃ |x) (6)

Assume that �H is obtained. It follows from Equation (3) that ev(H̃ |x)≤c, that is, 1− ev(H̃ |x)≥
1−c. Conclude from Equation (5) that p(H |x)≥1−c. Then, since c<0.5, it holds that p(H |x)>c.
Therefore, p(H̃ |x)<1−c. Conclude from Equation (6) that 1− ev(H |x)<1−c, that is, ev(H |x)>c.
It follows from Equation (3) that �H is obtained.
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